Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth

Abstract

The genetic basis for the development of brainstem neurons that generate respiratory rhythm is unknown. Here we show that mice deficient for the transcription factor MafB die from central apnea at birth and are defective for respiratory rhythmogenesis in vitro. MafB is expressed in a subpopulation of neurons in the preBötzinger complex (preBötC), a putative principal site of rhythmogenesis. Brainstems from Mafb−/− mice are insensitive to preBötC electrolytic lesion or stimulation and modulation of rhythmogenesis by hypoxia or peptidergic input. Furthermore, in Mafb−/− mice the preBötC, but not major neuromodulatory groups, presents severe anatomical defects with loss of cellularity. Our results show an essential role of MafB in central respiratory control, possibly involving the specification of rhythmogenic preBötC neurons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene inactivation of Mafb.
Figure 2: Central respiratory defect in Mafb−/− mice.
Figure 3: MafB expression in the preBötC.
Figure 4: Mafb−/− brainstems are unresponsive to electrolytic lesion or stimulation of the preBötC.
Figure 5: Mafb−/− brainstems are unresponsive to modulation of rhythmogenesis by hypoxia or peptidergic input.
Figure 6: Abnormal preBötC structure in Mafb−/− animals.
Figure 7: Analysis of (nor)adrenergic brainstem neurons.
Figure 8: Analysis of hindbrain structures involved in respiratory control.

Similar content being viewed by others

References

  1. Monteau, R. & Hilaire, G. Spinal respiratory motoneurons. Prog. Neurobiol. 37, 83–144 (1991).

    Article  CAS  Google Scholar 

  2. Bianchi, A.L., Denavit-Saubie, M. & Champagnat, J. Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol. Rev. 75, 1–45 (1995).

    Article  CAS  Google Scholar 

  3. St-John, W.M. Neurogenesis of patterns of automatic ventilatory activity. Prog. Neurobiol. 56, 97–117 (1998).

    Article  CAS  Google Scholar 

  4. Rekling, J.C. & Feldman, J.L. PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu. Rev. Physiol. 60, 385–405 (1998).

    Article  CAS  Google Scholar 

  5. Hilaire, G. & Duron, B. Maturation of the mammalian respiratory system. Physiol. Rev. 79, 325–360 (1999).

    Article  CAS  Google Scholar 

  6. Richter, D.W. & Spyer, K.M. Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci. 24, 464–472 (2001).

    Article  CAS  Google Scholar 

  7. McCrimmon, D.R., Ramirez, J.M., Alford, S. & Zuperku, E.J. Unraveling the mechanism for respiratory rhythm generation. Bioessays 22, 6–9 (2000).

    Article  CAS  Google Scholar 

  8. Feldman, J.L., Mitchell, G.S. & Nattie, E.E. Breathing: rhythmicity, plasticity, chemosensitivity. Annu. Rev. Neurosci. (e-pub, 2003).

  9. Onimaru, H. & Homma, I. A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J. Neurosci. 23, 1478–1486 (2003).

    Article  CAS  Google Scholar 

  10. Mellen, N.M., Janczewski, W.A., Bocchiaro, C.M. & Feldman, J.L. Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37, 821–826 (2003).

    Article  CAS  Google Scholar 

  11. Onimaru, H., Arata, A. & Homma, I. Intrinsic burst generation of preinspiratory neurons in the medulla of brainstem-spinal cord preparations isolated from newborn rats. Exp. Brain Res. 106, 57–68 (1995).

    Article  CAS  Google Scholar 

  12. Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W. & Feldman, J.L. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729 (1991).

    Article  CAS  Google Scholar 

  13. Di Pasquale, E., Monteau, R. & Hilaire, G. In vitro study of central respiratory-like activity of the fetal rat. Exp. Brain Res. 89, 459–464 (1992).

    Article  CAS  Google Scholar 

  14. Koshiya, N. & Guyenet, P.G. Tonic sympathetic chemoreflex after blockade of respiratory rhythmogenesis in the rat. J. Physiol. 491, 859–869 (1996).

    Article  CAS  Google Scholar 

  15. Ramirez, J.M., Schwarzacher, S.W., Pierrefiche, O., Olivera, B.M. & Richter, D.W. Selective lesioning of the cat pre-Botzinger complex in vivo eliminates breathing but not gasping. J. Physiol. 507, 895–907 (1998).

    Article  CAS  Google Scholar 

  16. Solomon, I.C., Edelman, N.H. & Neubauer, J.A. Patterns of phrenic motor output evoked by chemical stimulation of neurons located in the pre-Botzinger complex in vivo. J. Neurophysiol. 81, 1150–1161 (1999).

    Article  CAS  Google Scholar 

  17. Gray, P.A., Janczewski, W.A., Mellen, N., McCrimmon, D.R. & Feldman, J.L. Normal breathing requires preBotzinger complex neurokinin-1 receptor–expressing neurons. Nat. Neurosci. 4, 927–930 (2001).

    Article  CAS  Google Scholar 

  18. Jacquin, T.D. et al. Reorganization of pontine rhythmogenic neuronal networks in Krox-20 knockout mice. Neuron 17, 747–58 (1996).

    Article  CAS  Google Scholar 

  19. Poon, C.S., Zhou, Z. & Champagnat, J. NMDA receptor activity in utero averts respiratory depression and anomalous long-term depression in newborn mice. J. Neurosci. 20, RC73 (2000).

    Article  CAS  Google Scholar 

  20. Shirasawa, S. et al. Rnx deficiency results in congenital central hypoventilation. Nat. Genet. 24, 287–290 (2000).

    Article  CAS  Google Scholar 

  21. Fortin, G. et al. Genetic and developmental models for the neural control of breathing in vertebrates. Respir. Physiol. 122, 247–257 (2000).

    Article  CAS  Google Scholar 

  22. Del Toro, E.D. et al. Generation of a novel functional neuronal circuit in Hoxa1 mutant mice. J. Neurosci. 21, 5637–5642 (2001).

    Article  CAS  Google Scholar 

  23. Qian, Y. et al. Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev. 15, 2533–2545 (2001).

    Article  CAS  Google Scholar 

  24. Sieweke, M.H., Tekotte, H., Frampton, J. & Graf, T. MafB is an interaction partner and repressor of Ets-1 that inhibits erythroid differentiation. Cell 85, 49–60 (1996).

    Article  CAS  Google Scholar 

  25. Kelly, L.M., Englmeier, U., Lafon, I., Sieweke, M.H. & Graf, T. MafB is an inducer of monocytic differentiation. Embo J. 19, 1987–1997 (2000).

    Article  CAS  Google Scholar 

  26. Sadl, V.S. et al. The mouse kreisler segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev. Biol. 249, 16–29 (2002).

    Article  CAS  Google Scholar 

  27. Cordes, S.P. & Barsh, G.S. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79, 1025–1034 (1994).

    Article  CAS  Google Scholar 

  28. Hertwig, P. Neue Mutationen und Kopplungsgruppen bei der Hausmaus. Z.indukt. Abst. Vererb. Lehre 80, 220–246 (1942).

    Google Scholar 

  29. Eichmann, A. et al. The expression pattern of the Mafb/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant. Mech. Dev. 65, 111–122 (1997).

    Article  CAS  Google Scholar 

  30. Chatonnet, F., del Toro, E.D., Voiculescu, O., Charnay, P. & Champagnat, J. Different respiratory control systems are affected in homozygous and heterozygous kreisler mutant mice. Eur. J. Neurosci. 15, 684–692 (2002).

    Article  Google Scholar 

  31. Hilaire, G., Bou, C. & Monteau, R. Rostral ventrolateral medulla and respiratory rhythmogenesis in mice. Neurosci. Lett. 224, 13–16 (1997).

    Article  CAS  Google Scholar 

  32. Errchidi, S., Hilaire, G. & Monteau, R. Permanent release of noradrenaline modulates respiratory frequency in the newborn rat: an in vitro study. J. Physiol. 429, 497–510 (1990).

    Article  CAS  Google Scholar 

  33. Wang, W., Fung, M.L. & St John, W.M. Pontile regulation of ventilatory activity in the adult rat. J. Appl. Physiol. 74, 2801–2811 (1993).

    Article  CAS  Google Scholar 

  34. Viemari, J.C., Burnet, H., Bevengut, M. & Hilaire, G. Perinatal maturation of the mouse respiratory rhythm-generator: in vivo and in vitro studies. Eur. J. Neurosci. 17, 1233–1244 (2003).

    Article  Google Scholar 

  35. Koshiya, N. & Smith, J.C. Neuronal pacemaker for breathing visualized in vitro. Nature 400, 360–363 (1999).

    Article  CAS  Google Scholar 

  36. Lieske, S.P., Thoby-Brisson, M., Telgkamp, P. & Ramirez, J.M. Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nat. Neurosci. 3, 600–607 (2000).

    Article  CAS  Google Scholar 

  37. Gray, P.A., Rekling, J.C., Bocchiaro, C.M. & Feldman, J.L. Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBotzinger complex. Science 286, 1566–1568 (1999).

    Article  CAS  Google Scholar 

  38. Pabst, O., Rummelies, J., Winter, B. & Arnold, H.H. Targeted disruption of the homeobox gene Nkx2.9 reveals a role in development of the spinal accessory nerve. Development 130, 1193–1202 (2003).

    Article  CAS  Google Scholar 

  39. Wang, H., Stornetta, R.L., Rosin, D.L. & Guyenet, P.G. Neurokinin-1 receptor-immunoreactive neurons of the ventral respiratory group in the rat. J. Comp. Neurol. 434, 128–146 (2001).

    Article  CAS  Google Scholar 

  40. Guyenet, P.G., Sevigny, C.P., Weston, M.C. & Stornetta, R.L. Neurokinin-1 receptor-expressing cells of the ventral respiratory group are functionally heterogeneous and predominantly glutamatergic. J. Neurosci. 22, 3806–3816 (2002).

    Article  CAS  Google Scholar 

  41. Ptak, K. et al. The murine neurokinin NK1 receptor gene contributes to the adult hypoxic facilitation of ventilation. Eur. J. Neurosci. 12, 2245–2252 (2002).

    Article  Google Scholar 

  42. Thoby-Brisson, M. & Ramirez, J.M. Role of inspiratory pacemaker neurons in mediating the hypoxic response of the respiratory network in vitro. J. Neurosci. 20, 5858–5866 (2000).

    Article  CAS  Google Scholar 

  43. Guyenet, P.G. & Wang, H. Pre-Botzinger neurons with preinspiratory discharges “in vivo” express NK1 receptors in the rat. J. Neurophysiol. 86, 438–446 (2001).

    Article  CAS  Google Scholar 

  44. Champagnat, J. & Fortin, G. Primordial respiratory-like rhythm generation in the vertebrate embryo. Trends Neurosci. 20, 119–124 (1997).

    Article  CAS  Google Scholar 

  45. Ren, J. et al. Absence of Ndn, encoding the Prader-Willi syndrome-deleted gene necdin, results in congenital deficiency of central respiratory drive in neonatal mice. J. Neurosci. 23, 1569–1573 (2003).

    Article  CAS  Google Scholar 

  46. Amiel, J. et al. Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat. Genet. 33, 459–461 (2003).

    Article  CAS  Google Scholar 

  47. Filiano, J.J. & Kinney, H.C. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol. Neonate 65, 194–197 (1994).

    Article  CAS  Google Scholar 

  48. Kinney, H.C. et al. Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome. Science 269, 1446–1450 (1995).

    Article  CAS  Google Scholar 

  49. Kinney, H.C., Filiano, J.J. & White, W.F. Medullary serotonergic network deficiency in the sudden infant death syndrome: review of a 15-year study of a single dataset. J. Neuropathol. Exp. Neurol. 60, 228–247 (2001).

    Article  CAS  Google Scholar 

  50. Tiveron, M.C., Hirsch, M.R. & Brunet, J.F. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J. Neurosci. 16, 7649–7660 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Casagrande and the Klein lab at the European Molecular Biology Laboratory (EMBL, Heidelberg) for technical advice and V. Arce for pilot experiments and discussions. Blastocyst injections were carried out by F. Single (ZMBH, Heidelberg) and K. Vinterstein (EMBL, Heidelberg). L.M.K. was supported by the EMBL and the Association pour la Recherche sur le Cancer (ARC); B.B. was supported by the Association pour la Recherche sur la Polyarthrite (ARP). The project was supported by grants to M.S. from the ARC, La Ligue Nationale contre le Cancer (LNCC) and the Fondation pour la Recherche Medical (FRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H Sieweke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

Anatomy and histology of peripheral respiratory apparatus in mafB-/- mice. (a-f) Hematoxylin/Eosin/Saffran stained sections of lung tissue (a,b), a cross section of the trachea with adjacent esophagus, blood vessels and vertebra (c,d) and intercostal musculature with adjacent rib (e,f) from mafB+/+ (a,c,e) and mafB-/- (b,d,f) E18.5 embryos. (g-h) Alizarin red / Alcian blue coloration of rib cage skeleton from mafB+/+ (g) and mafB-/- (h) E18.5 embryos showing bone in red and cartilage in blue. (i-j) Wholemount anti-Neurofilament immunohistochemistry on diaphragm from mafB+/+ (i) and mafB-/- (j) E14.5 embryos in an abdominal view. Scale bars represent 100 μm. Method: For histological analysis E18.5 embryos were fixed for 24h in formol, dehydrated and paraffin embedded. 8 μm sections were stained with Hematoxylin / Eosin / Saffran. Bone and cartilage staining was performed with Alizarin red for bones and Alcian blue for cartilage. For wholemount immunohistochemistry embryos were collected in PBS, fixed in methanol:DMSO (4:1) overnight at 4°C, and bleached in methanol:DMSO:30% H2O2 (4:1:1) for 4-5 hr at room temperature. Stainings were performed essentially as described with rabbit anti-neurofilament antibody (1:400) recognizing a 165-kD neurofilament protein and secondary peroxidase-conjugated goat anti-rabbit antibody. (JPG 82 kb)

Supplementary Fig. 2.

No increase in hypoxic marker VEGF in mafB-/- brainstems. RT-PCR analysis of VEGF hypoxia marker in brains from mafB+/- and mafB-/- E18.5 embryos. NIH-3T3 cells in absence or presence of the hypoxia mimetic compound CoCl2 (upper panel) and newborn wild type mice (P0) kept in air or in 7% O2 for 6 hours (lower panel) are shown as positive controls of VEGF induction under hypoxic conditions. Results are representative of two separate experiments. Method: Total RNA was isolated from brain preparations of E18.5 embryos or P0 newborns using RNeasy®mini kit (Quiagen). cDNA was synthesized using random hexamers and Superscript II (Invitrogen) following the manufacturer's recommendations. PCR was performed using specific primers for actin (5':CCTAAGGCCAACCGTGAAAAG, 3':CTTCATGGTGCTAGGAGCCA), and VEGF (5':GCGGGCTGCCTCGCAGTC, 3':TCACCGCCTTGGCTTGTCAC). PCR was performed on 2 μl, 0.5 μl and 0.125 μl of reverse transcription reaction for 16 to 20 cycles for actin and 24 to 28 cycles for VEGF. Representative results of several experiments are shown. Acquisition and quantification was performed using Diana and Aida software (Raytest). (JPG 8 kb)

Supplementary Fig. 3.

Neuronal expression of MafB in preBötC. (a-f) Double immuno-fluorescence for MafB and neuronal markers on preBötC cells. 20 μm sagittal frozen sections were stained with polyclonal anti-MafB antibody and either anti-β-III tubulin or anti-NeuN antibodies. Images were acquired by confocal microscopy to reveal MafB (a,b), β-III tubulin or NeuN (c,d) staining, and an overlap of both images (e,f). The scale bar represents 10 μm. Method: After post-fixation, tissue sections were incubated for 30 minutes with PBS/0.05% Tween20/1% BSA (PBST-BSA). Sections were incubated overnight at 4°C with anti-MafB rabbit antiserum (1/100), with anti-NeuN antibody (MAB377, Chemicon, 1/2000) or with anti-β-III tubulin antibody (MMS-435P, BabCo Covance research, 1/1000) in PBST-BSA. MafB, NeuN and β-III tubulin stainings were revealed with anti-rabbit AlexaFluor 488 (1/500) or anti-mouse AlexaFluor 594 (1/500) (Molecular Probes) respectively. (JPG 34 kb)

Supplementary Video 1.

3-D animation of mafB+/+ and mafB-/- preBötC as shown in Fig. 6e,f of the manuscript. (MOV 2002 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchi, B., Kelly, L., Viemari, JC. et al. MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nat Neurosci 6, 1091–1100 (2003). https://doi.org/10.1038/nn1129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing