Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy

Abstract

Glial cells actively participate in synaptic transmission. They clear molecules from the synaptic cleft, receive signals from neurons and, in turn, release molecules that can modulate signaling between neuronal elements. Whether glial-derived transmitters can contribute to enduring changes in postsynaptic efficacy, however, remains to be established. In rat hypothalamic paraventricular nucleus, we demonstrate an increase in the amplitude of miniature excitatory postsynaptic currents in response to norepinephrine that requires the release of ATP from glial cells. The increase in quantal efficacy, which likely results from an insertion of AMPA receptors, is secondary to the activation of P2X7 receptors, an increase in postsynaptic calcium and the activation of phosphatidylinositol 3-kinase. The gliotransmitter ATP, therefore, contributes directly to the regulation of postsynaptic efficacy at glutamatergic synapses in the CNS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Norepinephrine induces an enduring increase in mEPSC amplitude that is accompanied by an increase in postsynaptic efficacy.
Figure 2: The enduring increase in mEPSC amplitude is not associated with an increase in AMPA channel conductance.
Figure 3: The enduring increase in mEPSC amplitude requires SNARE-dependent exocytosis, an increase in postsynaptic calcium and activation of PI3K.
Figure 4: The enduring increase in mEPSC amplitude does not involve postsynaptic α1-adrenoceptors or glutamate signaling.
Figure 5: Activation of P2X7 receptors is necessary and sufficient for the expression of the enduring increase in mEPSC amplitude.
Figure 6: Norepinephrine targets glial cells to release ATP.
Figure 7: Glial cells are necessary for the enduring increase in mEPSC amplitude triggered by α1-adrenoceptor activation.
Figure 8: A general rise in calcium in glial cells does not mimic the enduring increase in mEPSC amplitude observed in response to norepinephrine.

Similar content being viewed by others

References

  1. Parpura, V. et al. Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, J.M. et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Beattie, E.C. et al. Control of synaptic strength by glial TNFα. Science 295, 2282–2285 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Robitaille, R. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21, 847–855 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Guthrie, P.B. et al. ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520–528 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Z., Haydon, P.G. & Yeung, E.S. Direct observation of calcium-independent intercellular ATP signaling in astrocytes. Anal. Chem. 72, 2001–2007 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Cotrina, M.L., Lin, J.H., Lopez-Garcia, J.C., Naus, C.C. & Nedergaard, M. ATP-mediated glia signaling. J. Neurosci. 20, 2835–2844 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khakh, B.S. Molecular physiology of P2X receptors and ATP signalling at synapses. Nat. Rev. Neurosci. 2, 165–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Shigetomi, E. & Kato, F. Action potential-independent release of glutamate by Ca2+ entry through presynaptic P2X receptors elicits postsynaptic firing in the brainstem autonomic network. J. Neurosci. 24, 3125–3135 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Armstrong, J.N., Brust, T.B., Lewis, R.G. & MacVicar, B.A. Activation of presynaptic P2X7-like receptors depresses mossy fiber-CA3 synaptic transmission through p38 mitogen-activated protein kinase. J. Neurosci. 22, 5938–5945 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shibuya, I. et al. Evidence that multiple P2X purinoceptors are functionally expressed in rat supraoptic neurones. J. Physiol. (Lond.) 514, 351–367 (1999).

    Article  CAS  Google Scholar 

  13. Jacques-Silva, M.C. et al. P2X7 receptors stimulate AKT phosphorylation in astrocytes. Br. J. Pharmacol. 141, 1106–1117 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Man, H.Y. et al. Activation of PI3-kinase is required for AMPA receptor insertion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 38, 611–624 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Sanna, P.P. et al. Phosphatidylinositol 3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J. Neurosci. 22, 3359–3365 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Raymond, C.R., Redman, S.J. & Crouch, M.F. The phosphoinositide 3-kinase and p70 S6 kinase regulate long-term potentiation in hippocampal neurons. Neuroscience 109, 531–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Lin, C.H. et al. A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31, 841–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Tweedle, C.D. & Hatton, G.I. Ultrastructural changes in rat hypothalamic neurosecretory cells and their associated glia during minimal dehydration and rehydration. Cell Tissue Res. 181, 59–72 (1977).

    Article  CAS  PubMed  Google Scholar 

  19. Theodosis, D.T. & Poulain, D.A. Activity-dependent neuronal-glial and synaptic plasticity in the adult mammalian hypothalamus. Neuroscience 57, 501–535 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Malinow, R. & Malenka, R.C. AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Day, T.A., Sibbald, J.R. & Khanna, S. ATP mediates an excitatory noradrenergic neuron input to supraoptic vasopressin cells. Brain Res. 607, 341–344 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Kapoor, J.R. & Sladek, C.D. Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J. Neurosci. 20, 8868–8875 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sawyer, C.H. & Clifton, D.K. Aminergic innervation of the hypothalamus. Fed. Proc. 39, 2889–2895 (1980).

    CAS  PubMed  Google Scholar 

  24. Carter, A.G. & Regehr, W.G. Quantal events shape cerebellar interneuron firing. Nat. Neurosci. 5, 1309–1318 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sharma, G. & Vijayaraghavan, S. Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38, 929–939 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Zucker, R.S. Can a synaptic signal arise from noise? Neuron 38, 845–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Kombian, S.B., Hirasawa, M., Mouginot, D., Chen, X. & Pittman, Q.J. Short-term potentiation of miniature excitatory synaptic currents causes excitation of supraoptic neurons. J. Neurophysiol. 83, 2542–2553 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Armstrong, W.E., Gallagher, M.J. & Sladek, C.D. Noradrenergic stimulation of supraoptic neuronal activity and vasopressin release in vitro: mediation by an alpha 1-receptor. Brain Res. 365, 192–197 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Randle, J.C., Bourque, C.W. & Renaud, L.P. Alpha 1-adrenergic receptor activation depolarizes rat supraoptic neurosecretory neurons in vitro. Am. J. Physiol. 251, R569–R574 (1986).

    CAS  PubMed  Google Scholar 

  30. Daftary, S.S., Boudaba, C., Szabo, K. & Tasker, J.G. Noradrenergic excitation of magnocellular neurons in the rat hypothalamic paraventricular nucleus via intranuclear glutamatergic circuits. J. Neurosci. 18, 10619–10628 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gordon, G.R. & Bains, J.S. Priming of excitatory synapses by alpha1 adrenoceptor-mediated inhibition of group III metabotropic glutamate receptors. J. Neurosci. 23, 6223–6231 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Traynelis, S.F., Silver, R.A. & Cull-Candy, S.G. Estimated conductance of glutamate receptor channels activated during EPSCs at the cerebellar mossy fiber-granule cell synapse. Neuron 11, 279–289 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Benke, T.A., Luthi, A., Isaac, J.T. & Collingridge, G.L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Stern, J.E., Galarreta, M., Foehring, R.C., Hestrin, S. & Armstrong, W.E. Differences in the properties of ionotropic glutamate synaptic currents in oxytocin and vasopressin neuroendocrine neurons. J. Neurosci. 19, 3367–3375 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O'Connor, V. et al. Disruption of syntaxin-mediated protein interactions blocks neurotransmitter secretion. Proc. Natl. Acad. Sci. USA 94, 12186–12191 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Di, S., Malcher-Lopes, R., Halmos, K.C. & Tasker, J.G. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J. Neurosci. 23, 4850–4857 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. North, R.A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Duffy, S. & MacVicar, B.A. Adrenergic calcium signaling in astrocyte networks within the hippocampal slice. J. Neurosci. 15, 5535–5550 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tweedle, C.D. & Hatton, G.I. Morphological adaptability at neurosecretory axonal endings on the neurovascular contact zone of the rat neurohypophysis. Neuroscience 20, 241–246 (1987).

    Article  CAS  PubMed  Google Scholar 

  40. Clarke, D.D. Fluoroacetate and fluorocitrate: mechanism of action. Neurochem. Res. 16, 1055–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Edwards, F.A., Gibb, A.J. & Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144–147 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Oliet, S.H., Piet, R. & Poulain, D.A. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292, 923–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Miyata, S., Nakashima, T. & Kiyohara, T. Structural dynamics of neural plasticity in the supraoptic nucleus of the rat hypothalamus during dehydration and rehydration. Brain Res. Bull. 34, 169–175 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Leybaert, L., Paemeleire, K., Strahonja, A. & Sanderson, M.J. Inositol-trisphosphate-dependent intercellular calcium signaling in and between astrocytes and endothelial cells. Glia 24, 398–407 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Anderson, C.M., Bergher, J.P. & Swanson, R.A. ATP-induced ATP release from astrocytes. J. Neurochem. 88, 246–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Fellin, T. et al. Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron 43, 729–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Araque, A., Parpura, V., Sanzgiri, R.P. & Haydon, P.G. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129–2142 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Bezzi, P. & Volterra, A. A neuron-glia signalling network in the active brain. Curr. Opin. Neurobiol. 11, 387–394 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Coco, S. et al. Storage and release of ATP from astrocytes in culture. J. Biol. Chem. 278, 1354–1362 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Bekar, L.K. et al. Complex expression and localization of inactivating Kv channels in cultured hippocampal astrocytes. J. Neurophysiol. 93, 1699–1709 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Sank for technical assistance and for conducting the immunohistochemistry experiments. We are also grateful to Q. Pittman for assistance with the dehydration protocol and for comments on an earlier version of the manuscript and to S. Oliet and B. MacVicar for helpful discussions. This work was supported by operating grants to J.S.B. from the Canadian Institutes of Health Research (CIHR) and T.E.F. from the Heart and Stroke Foundation of Saskatchewan. G.R.J.G. is supported by a studentship from the Natural Sciences and Engineering Research Council. J.S.B. is a CIHR New Investigator and an Alberta Heritage Foundation for Medical Research Scholar. T.E.F. is a CIHR/Regional Partnership Program New Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaideep S Bains.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, G., Baimoukhametova, D., Hewitt, S. et al. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8, 1078–1086 (2005). https://doi.org/10.1038/nn1498

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1498

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing