Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons

Abstract

The selective degeneration of dopaminergic (DA) midbrain neurons in the substantia nigra (SN) is a hallmark of Parkinson disease. DA neurons in the neighboring ventral tegmental area (VTA) are significantly less affected. The mechanisms for this differential vulnerability of DA neurons are unknown. We identified selective activation of ATP-sensitive potassium (K-ATP) channels as a potential mechanism. We show that in response to parkinsonism-inducing toxins, electrophysiological activity of SN DA neurons, but not VTA DA neurons, is lost owing to activation of K-ATP channels. This selective K-ATP channel activation is controlled by differences in mitochondrial uncoupling between SN and VTA DA neurons. Genetic inactivation of the K-ATP channel pore-forming subunit Kir6.2 resulted in a selective rescue of SN but not VTA DA neurons in two mechanistically distinct mouse models of dopaminergic degeneration, the neurotoxicological 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model and the mutant weaver mouse. Thus, K-ATP channel activation has an unexpected role in promoting death of DA neurons in chronic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of adult mesostriatal and mesolimbic DA neurons.
Figure 2: Kir6.2 forms the K-ATP channel pore in all DA neurons.
Figure 3: K-ATP subunit expression of individual laser-microdissected DA neurons.
Figure 4: K-ATP channel activation in response to complex I inhibition only in SN DA neurons.
Figure 5: Mitochondrial uncoupling controls differential K-ATP channel activation.
Figure 6: Selective rescue of SN DA neurons in Kir6.2−/− in a MPTP model of Parkinson disease.
Figure 7: In vitro responses to MPP+ and short-term in vivo responses to MPTP in Kir6.2+/+ and Kir6.2−/− mice.
Figure 8: Selective rescue of SN DA neurons in Kir6.2−/− weaver double mutant mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Morrison, B.M., Hof, P.R. & Morrison, J.H. Determinants of neuronal vulnerability in neurodegenerative diseases. Ann. Neurol. 44, S32–S44 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Damier, P., Hirsch, E.C., Agid, Y. & Graybiel, A.M. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 122, 1437–1448 (1999).

    Article  PubMed  Google Scholar 

  3. Greenamyre, J.T. & Hastings, T.G. Biomedicine. Parkinson's-divergent causes, convergent mechanisms. Science 304, 1120–1122 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Moore, D.J., West, A.B., Dawson, V.L. & Dawson, T.M. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 28, 57–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Schapira, A.H. Causes of neuronal death in Parkinson's disease. Adv. Neurol. 86, 155–162 (2001).

    CAS  PubMed  Google Scholar 

  7. Moratalla, R. et al. Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 89, 3859–3863 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Petroske, E., Meredith, G.E., Callen, S., Totterdell, S. & Lau, Y.S. Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106, 589–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Greene, J.G., Dingledine, R. & Greenamyre, J.T. Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol. Dis. 18, 19–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3, 1301–1306 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Przedborski, S. & Vila, M. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. Ann. NY Acad. Sci. 991, 189–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Langston, J.W. The etiology of Parkinson's disease with emphasis on the MPTP story. Neurology 47, S153–S160 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Hoglinger, G.U. et al. Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson's disease. J. Neurochem. 86, 1297–1307 (2003).

    Article  PubMed  Google Scholar 

  14. Testa, C.M., Sherer, T.B. & Greenamyre, J.T. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res. Mol. Brain Res. 134, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Seino, S. & Miki, T. Gene targeting approach to clarification of ion channel function: studies of Kir6.x null mice. J. Physiol. (Lond.) 554, 295–300 (2004).

    Article  CAS  Google Scholar 

  16. Bryan, J., Vila-Carriles, W.H., Zhao, G., Babenko, A.P. & Aguilar-Bryan, L. Toward linking structure with function in ATP-sensitive K+ channels. Diabetes 53, S104–S112 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Ashcroft, F. & Rorsman, P. Type 2 diabetes mellitus: not quite exciting enough? Hum. Mol. Genet. 13, R21–R31 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Liss, B., Bruns, R. & Roeper, J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 18, 833–846 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, Y. & Gutterman, D.D. Oxidative stress and potassium channel function. Clin. Exp. Pharmacol. Physiol. 29, 305–311 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Avshalumov, M.V., Chen, B.T., Koos, T., Tepper, J.M. & Rice, M.E. Endogenous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via atp-sensitive potassium channels. J. Neurosci. 25, 4222–4231 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liss, B. & Roeper, J. Correlating function and gene expression of individual basal ganglia neurons. Trends Neurosci. 27, 475–481 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Neuhoff, H., Neu, A., Liss, B. & Roeper, J.I. (h) channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J. Neurosci. 22, 1290–1302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang, C., Sigworth, F.J. & Haddad, G.G. Oxygen deprivation activates an ATP-inhibitable K+ channel in substantia nigra neurons. J. Neurosci. 14, 5590–5602 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mercuri, N.B. et al. Effects of anoxia on rat midbrain dopamine neurons. J. Neurophysiol. 71, 1165–1173 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Liss, B., Neu, A. & Roeper, J. The weaver mouse gain-of-function phenotype of dopaminergic midbrain neurons is determined by coactivation of wvGirk2 and K-ATP channels. J. Neurosci. 19, 8839–8848 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miki, T. et al. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA 95, 10402–10406 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tarasov, A., Dusonchet, J. & Ashcroft, F. Metabolic regulation of the pancreatic beta-cell ATP-sensitive K+ channel: a pas de deux. Diabetes 53, S113–S122 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, Y.F., Raab-Graham, K., Jan, Y.N. & Jan, L.Y. NO stimulation of ATP-sensitive potassium channels: involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection. Proc. Natl. Acad. Sci. USA 101, 7799–7804 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, Y.F., Jan, Y.N. & Jan, L.Y. Regulation of ATP-sensitive potassium channel function by protein kinase A-mediated phosphorylation in transfected HEK293 cells. EMBO J. 19, 942–955 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baukrowitz, T. et al. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Science 282, 1141–1144 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Krauss, S., Zhang, C.Y. & Lowell, B.B. The mitochondrial uncoupling-protein homologues. Nat. Rev. Mol. Cell Biol. 6, 248–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Brookes, P.S. Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic. Biol. Med. 38, 12–23 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Horvath, T.L. et al. Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson's disease. Endocrinology 144, 2757–2760 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Andrews, Z.B. et al. Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J. Neurosci. 25, 184–191 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roffler-Tarlov, S. & Graybiel, A.M. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum. Nature 307, 62–66 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. Ballanyi, K. Protective role of neuronal KATP channels in brain hypoxia. J. Exp. Biol. 207, 3201–3212 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Yamada, K. et al. Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292, 1543–1546 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Hernandez-Sanchez, C. et al. Mice transgenically overexpressing sulfonylurea receptor 1 in forebrain resist seizure induction and excitotoxic neuron death. Proc. Natl. Acad. Sci. USA 98, 3549–3554 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zingman, L.V. et al. Kir6.2 is required for adaptation to stress. Proc. Natl. Acad. Sci. USA 99, 13278–13283 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patil, N. et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat. Genet. 11, 126–129 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Liss, B. & Roeper, J. Molecular physiology of neuronal K-ATP channels. Mol. Membr. Biol. 18, 117–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Conti, B. et al. Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6-methyl-phenyl-tetrahydropyridine toxicity. J. Neurochem. 93, 493–501 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Salthun-Lassalle, B., Hirsch, E.C., Wolfart, J., Ruberg, M. & Michel, P.P. Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J. Neurosci. 24, 5922–5930 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, Q.Y. & Palmiter, R.D. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197–1209 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. O'Rahilly, S., Barroso, I. & Wareham, N.J. Genetic factors in type 2 diabetes: the end of the beginning? Science 307, 370–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Craft, S. & Watson, G.S. Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol. 3, 169–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Keuker, J.I., Vollmann-Honsdorf, G.K. & Fuchs, E. How to use the optical fractionator: an example based on the estimation of neurons in the hippocampal CA1 and CA3 regions of tree shrews. Brain Res. Brain Res. Protoc. 7, 211–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Alburges, M.E., Narang, N. & Wamsley, J.K. Alterations in the dopaminergic receptor system after chronic administration of cocaine. Synapse 14, 314–323 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Liss, B. et al. Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J. 20, 5715–5724 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to F.M. Ashcroft and R. Veh for support. We thank the animal facility of Marburg University for animal care and J. Clark, D. Meyer, E. Naudascher and H. Neuhoff for technical support. This work was supported by the Parkinson's Disease Society, UK, the Medical Research Council, Bundesministerium fuer Bildung und Forschung (BMBF-NGFNII), Gemeinnützige Hertie Foundation, Royal Society, Deutsche Forschungsgemeinschaft (J.W.), and fellowships from New College, Oxford and the Royal Society (B.L.) and Exeter College, Oxford (J.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Liss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liss, B., Haeckel, O., Wildmann, J. et al. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8, 1742–1751 (2005). https://doi.org/10.1038/nn1570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1570

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing