Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Laboratory models of alcoholism: treatment target identification and insight into mechanisms

Abstract

Laboratory models, including animal tissues and live animals, have proven useful for discovery of molecular targets of alcohol action as well as for characterization of genetic and environmental factors that influence alcohol's neural actions. Here we consider strengths and weaknesses of laboratory models used in alcohol research and analyze the limitations of using animals to model a complex human disease. We describe targets for the neural actions of alcohol, and we review studies in which animal models were used to examine excessive alcohol drinking and to discover genes that may contribute to risk for alcoholism. Despite some limitations of the laboratory models used in alcohol research, these experimental approaches are likely to contribute to the development of new therapies for alcohol abuse and alcoholism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Use of animals to identify direct and indirect alcohol targets can lead to development of pharmacotherapies for alcohol abuse and alcoholism.
Figure 2: Complexity of gene-environment-behavioral interactions in the neural actions of alcohol.

Ann Thomson

Similar content being viewed by others

References

  1. Diamond, I. & Gordon, A.S. Cellular and molecular neuroscience of alcoholism. Physiol. Rev. 77, 1–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Schuckit, M.A., Smith, T.L. & Kalmijn, J. The search for genes contributing to the low level of response to alcohol: patterns of findings across studies. Alcohol. Clin. Exp. Res. 28, 1449–1458 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Oroszi, G. & Goldman, D. Alcoholism: genes and mechanisms. Pharmacogenomics 5, 1037–1048 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Crabbe, J.C. Genetic contributions to addiction. Annu. Rev. Psychol. 53, 435–462 (2002).

    Article  PubMed  Google Scholar 

  5. Heinz, A., Schafer, M., Higley, J.D., Krystal, J.H. & Goldman, D. Neurobiological correlates of the disposition and maintenance of alcoholism. Pharmacopsychiatry 36 (Suppl.) S255–S258 (2003).

    CAS  PubMed  Google Scholar 

  6. Weiss, F. et al. Compulsive drug-seeking behavior and relapse. Neuroadaptation, stress, and conditioning factors. Ann. NY Acad. Sci. 937, 1–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Ueno, S. et al. Alcohol actions on GABA(A) receptors: from protein structure to mouse behavior. Alcohol. Clin. Exp. Res. 25, 76S–81S (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Carlezon, W.A., Jr. & Nestler, E.J. Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse? Trends Neurosci. 25, 610–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Krystal, J.H., Petrakis, I.L., Mason, G., Trevisan, L. & D'Souza, D.C. N-methyl-D-aspartate glutamate receptors and alcoholism: reward, dependence, treatment, and vulnerability. Pharmacol. Ther. 99, 79–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Nestler, E.J. Molecular mechanisms of drug addiction. Neuropharmacology 47. Suppl 1, 24–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Gonzales, R.A., Job, M.O. & Doyon, W.M. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol. Ther. 103, 121–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Nestler, E.J. Is there a common molecular pathway for addiction? Nat. Neurosci. 8, 1445–1449 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Cunningham, C.L. & Phillips, T.J. Genetic basis of ethanol reward. in Molecular Biology of Drug Addiction (ed. Maldonado, R.) 263–294 (Humana, Totowa, New Jersey, 2003).

    Google Scholar 

  14. Crabbe, J.C., Metten, P., Cameron, A.J. & Wahlsten, D. An analysis of the genetics of alcohol intoxication in inbred mice. Neurosci. Biobehav. Rev. 28, 785–802 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Crabbe, J.C. & Morris, R.G.M. Festina lente: Late night thoughts on high-throughput screening of mouse behavior. Nat. Neurosci. 7, 1175–1179 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, Y. & Lovinger, D.M. Methods in Alcohol-Related Neuroscience Research (CRC, Washington, D.C., 2000).

    Google Scholar 

  17. Dwyer, D.S. & Bradley, R.J. Chemical properties of alcohols and their protein binding sites. Cell. Mol. Life Sci. 57, 265–275 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Schuckit, M.A. Drug and Alcohol Abuse (Plenum, New York, 1979).

    Book  Google Scholar 

  19. Simantov, R. & Snyder, S.H. The opiate receptor. Biochem. Soc. Trans. 5, 62–65 (1977).

    Article  CAS  PubMed  Google Scholar 

  20. Carpenter-Hyland, E.P., Woodward, J.J. & Chandler, L.J. Chronic ethanol induces synaptic but not extrasynaptic targeting of NMDA receptors. J. Neurosci. 24, 7859–7868 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomas, M.P. & Morrisett, R.A. Dynamics of NMDAR-mediated neurotoxicity during chronic ethanol exposure and withdrawal. Neuropharmacology 39, 218–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Lovinger, D.M. Alcohols and neurotransmitter gated ion channels: past, present and future. Naunyn Schmiedebergs Arch. Pharmacol. 356, 267–282 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Grobin, A.C., Matthews, D.B., Devaud, L.L. & Morrow, A.L. The role of GABA(A) receptors in the acute and chronic effects of ethanol. Psychopharmacology (Berl.) 139, 2–19 (1998).

    Article  CAS  Google Scholar 

  24. Aguayo, L.G., Peoples, R.W., Yeh, H.H. & Yevenes, G.E. GABA(A) receptors as molecular sites of ethanol action. Direct or indirect actions? Curr. Top. Med. Chem. 2, 869–885 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Mihic, S.J. et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 389, 385–389 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Sundstrom-Poromaa, I. et al. Hormonally regulated alpha(4)beta(2)delta GABA(A) receptors are a target for alcohol. Nat. Neurosci. 5, 721–722 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallner, M., Hanchar, H.J. & Olsen, R.W. Ethanol enhances alpha 4 beta 3 delta and alpha 6 beta 3 delta gamma-aminobutyric acid type A receptors at low concentrations known to affect humans. Proc. Natl. Acad. Sci. USA 100, 15218–15223 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanchar, H.J., Dodson, P.D., Olsen, R.W., Otis, T.S. & Wallner, M. Alcohol-induced motor impairment caused by increased extrasynaptic GABA(A) receptor activity. Nat. Neurosci. 8, 339–345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei, W., Faria, L.C. & Mody, I. Low ethanol concentrations selectively augment the tonic inhibition mediated by delta subunit-containing GABAA receptors in hippocampal neurons. J. Neurosci. 24, 8379–8382 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Korpi, E.R., Kleingoor, C., Kettenmann, H. & Seeburg, P.H. Benzodiazepine-induced motor impairment linked to point mutation in cerebellar GABAA receptor. Nature 361, 356–359 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Congeddu, E. et al. Molecular characterization of new polymorphisms at the β2, α1, γ2 GABA(A) receptor subunit genes associated to a rat nonpreferring ethanol phenotype. Brain Res. Mol. Brain Res. 110, 289–297 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Radcliffe, R.A. et al. Behavioral characterization of alcohol-tolerant and alcohol-nontolerant rat lines and an F(2) generation. Behav. Genet. 34, 453–463 (2004).

    Article  PubMed  Google Scholar 

  33. Homanics, G.E. et al. Gene knockout of the alpha6 subunit of the gamma-aminobutyric acid type A receptor: lack of effect on responses to ethanol, pentobarbital, and general anesthetics. Mol. Pharmacol. 51, 588–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Siggins, G.R., Roberto, M. & Nie, Z. The tipsy terminal: presynaptic effects of ethanol. Pharmacol. Ther. 107, 80–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Ariwodola, O.J. & Weiner, J.L. Ethanol potentiation of GABAergic synaptic transmission may be self-limiting: role of presynaptic GABA(B) receptors. J. Neurosci. 24, 10679–10686 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carta, M., Mameli, M. & Valenzuela, C.F. Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J. Neurosci. 24, 3746–3751 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nie, Z. et al. Ethanol augments GABAergic transmission in the central amygdala via CRF1 receptors. Science 303, 1512–1514 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Wolf, F.W. & Heberlein, U. Invertebrate models of drug abuse. J. Neurobiol. 54, 161–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Scholz, H., Franz, M. & Heberlein, U. The hangover gene defines a stress pathway required for ethanol tolerance development. Nature 436, 845–847 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodan, A.R., Kiger, J.A., Jr. & Heberlein, U. Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J. Neurosci. 22, 9490–9501 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thiele, T.E. et al. High ethanol consumption and low sensitivity to ethanol-induced sedation in protein kinase A-mutant mice. J. Neurosci. 20, RC75, 1–6 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yao, L. et al. βγ dimers mediate synergy of dopamine D2 and adenosine A2 receptor-stimulated PKA signaling and regulate ethanol consumption. Cell 109, 733–743 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, M.S., Repp, A. & Smith, D.P. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150, 711–721 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kruse, S.W., Zhao, R., Smith, D.P. & Jones, D.N. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat. Struct. Biol. 10, 694–700 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, J.J. et al. Revisiting the odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. FEBS Lett. 558, 23–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Davies, A.G. et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell 115, 655–666 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Dopico, A.M., Lemos, J.R. & Treistman, S.N. Ethanol increases the activity of large conductance, Ca(2+)-activated K+ channels in isolated neurohypophysial terminals. Mol. Pharmacol. 49, 40–48 (1996).

    CAS  PubMed  Google Scholar 

  48. Corl, A.B., Rodan, A.R. & Heberlein, U. Insulin signaling in the nervous system regulates ethanol intoxication in Drosophila melanogaster. Nat. Neurosci. 8, 18–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Gerlai, R. Zebra fish: an uncharted behavior genetic model. Behav. Genet. 33, 461–468 (2003).

    Article  PubMed  Google Scholar 

  50. Lockwood, B., Bjerke, S., Kobayashi, K. & Guo, S. Acute effects of alcohol on larval zebrafish: a genetic system for large-scale screening. Pharmacol. Biochem. Behav. 77, 647–654 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Carvan, M.J., III, Loucks, E., Weber, D.N. & Williams, F.E. Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol. Teratol. 26, 757–768 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Browman, K.E., Crabbe, J.C. & Li, T.K. Genetic strategies in preclinical substance abuse research. in Psychopharmacology: The Fourth Generation of Progress (eds. Bloom, F.E. & Kupfer, D.J.) (Lippincott, Williams & Wilkins, Philadelphia, 2000).

    Google Scholar 

  53. Murphy, J.M. et al. Phenotypic and genotypic characterization of the Indiana University rat lines selectively bred for high and low alcohol preference. Behav. Genet. 32, 363–388 (2002).

    Article  PubMed  Google Scholar 

  54. McBride, W.J. & Li, T.K. Animal models of alcoholism: neurobiology of high alcohol-drinking behavior in rodents. Crit. Rev. Neurobiol. 12, 339–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Crabbe, J.C. & Phillips, T.J. Pharmacogenetic studies of alcohol self-administration and withdrawal. Psychopharmacology (Berl.) 174, 539–560 (2004).

    Article  CAS  Google Scholar 

  56. Soyka, M. & Chick, J. Use of acamprosate and opioid antagonists in the treatment of alcohol dependence: a European perspective. Am. J. Addict. 12 Suppl 1, S69–S80 (2003).

    Article  PubMed  Google Scholar 

  57. Johnson, B.A. & Ait-Daoud, N. Neuropharmacological treatments for alcoholism: scientific basis and clinical findings. Psychopharmacology (Berl.) 149, 327–344 (2000).

    Article  CAS  Google Scholar 

  58. Crabbe, J.C., Belknap, J.K. & Buck, K.J. Genetic animal models of alcohol and drug abuse. Science 264, 1715–1723 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Shirley, R.L., Walter, N.A., Reilly, M.T., Fehr, C. & Buck, K.J. Mpdz is a quantitative trait gene for drug withdrawal seizures. Nat. Neurosci. 7, 699–700 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Fehr, C., Shirley, R.L., Belknap, J.K., Crabbe, J.C. & Buck, K.J. Congenic mapping of alcohol and pentobarbital withdrawal liability loci to a <1 centimorgan interval of murine chromosome 4: identification of Mpdz as a candidate gene. J. Neurosci. 22, 3730–3738 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Crabbe, J.C. Identifying genes affecting addiction risk in animal models. in The Cell Biology of Addiction (eds. Madras, B. et al.) (Cold Spring Harbor Press, in press).

  62. Uhl, G.R. Molecular genetics of substance abuse vulnerability: remarkable recent convergence of genome scan results. Ann. NY Acad. Sci. 1025, 1–13 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Hood, H.M., Belknap, J.K., Crabbe, J.C. & Buck, K.J. Genomewide search for epistasis in a complex trait: Pentobarbital withdrawal convulsions in mice. Behav. Genet. 31, 93–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Bergeson, S.E. et al. Chromosomal loci influencing chronic alcohol withdrawal severity. Mammal. Genome 14, 454–463 (2003).

    Article  Google Scholar 

  65. Jansen, R.C. & Nap, J.P. Genetical genomics: the added value from segregation. Trends Genet. 17, 388–391 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Hitzemann, R. et al. On the integration of alcohol-related quantitative trait loci and gene expression analyses. Alcohol. Clin. Exp. Res. 28, 1437–1448 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Tabakoff, B., Bhave, S.V. & Hoffman, P.L. Selective breeding, quantitative trait locus analysis, and gene arrays identify candidate genes for complex drug-related behaviors. J. Neurosci. 23, 4491–4498 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chesler, E.J. et al. Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Bystrykh, L. et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat. Genet. 37, 225–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Hubner, N. et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 37, 243–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Boehm, S.L., II et al. gamma-Aminobutyric acid A receptor subunit mutant mice: new perspectives on alcohol actions. Biochem. Pharmacol. 68, 1581–1602 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Sullivan, E.V. & Pfefferbaum, A. Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology (Berl) 180, 583–594 (2005).

    Article  CAS  Google Scholar 

  73. Anderson, K.G., Schweinsburg, A., Paulus, M.P., Brown, S.A. & Tapert, S. Examining personality and alcohol expectancies using functional magnetic resonance imaging (fMRI) with adolescents. J. Stud. Alcohol 66, 323–331 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vivian, J.A. et al. Induction and maintenance of ethanol self-administration in cynomolgus monkeys (Macaca fascicularis): long-term characterization of sex and individual differences. Alcohol. Clin. Exp. Res. 25, 1087–1097 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Middaugh, L.D., Szumlinski, K.K., Van Patten, Y., Marlowe, A.L. & Kalivas, P.W. Chronic ethanol consumption by C57BL/6 mice promotes tolerance to its interoceptive cues and increases extracellular dopamine, an effect blocked by naltrexone. Alcohol. Clin. Exp. Res. 27, 1892–1900 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Mittleman, G., Van Brunt, C.L. & Matthews, D.B. Schedule-induced ethanol self-administration in DBA/2J and C57BL/6J mice. Alcohol. Clin. Exp. Res. 27, 918–925 (2003).

    Article  PubMed  Google Scholar 

  77. Falk, J.L. Production of polydipsia in normal rats by an intermittent food schedule. Science 133, 195–196 (1961).

    Article  CAS  PubMed  Google Scholar 

  78. Sharpe, A.L., Tsivkovskaia, N.O. & Ryabinin, A.E. Ataxia and c-Fos expression in mice drinking ethanol in a limited access session. Alcohol. Clin. Exp. Res. 29, 1419–1426 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Rodd-Henricks, Z.A. et al. Effects of concurrent access to multiple ethanol concentrations and repeated deprivations on alcohol intake of alcohol-preferring rats. Alcohol. Clin. Exp. Res. 25, 1140–1150 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Rhodes, J.S., Best, K., Belknap, J.K., Finn, D.A. & Crabbe, J.C. Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice. Physiol. Behav. 84, 53–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Finn, D.A. et al. A procedure to produce high alcohol intake in mice. Psychopharmacology (Berl.) 178, 471–480 (2005).

    Article  CAS  Google Scholar 

  82. Cronise, K., Finn, D.A., Metten, P. & Crabbe, J.C. Scheduled access to ethanol results in motor impairment and tolerance in female C57BL/6J mice. Pharmacol. Biochem. Behav. 81, 943–953 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Fidler, T.L., Clews, T.W. & Cunningham, C.L. Reestablishing an intragastric ethanol self-infusion model in rats. Alcohol. Clin. Exp. Res. (in press).

  84. Lopez, M.F. & Becker, H.C. Effect of pattern and number of chronic ethanol exposures on subsequent voluntary ethanol intake in C57BL/6J mice. Psychopharmacology (Berl.) published online 7 July 2005 (10.1007/s00213-005-0026-3).

    Google Scholar 

  85. Kliethermes, C.L. Anxiety-like behaviors following chronic ethanol exposure. Neurosci. Biobehav. Rev. 28, 837–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Anguelova, M., Benkelfat, C. & Turecki, G. A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol. Psychiatry 8, 574–591 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Barr, C.S. et al. Interaction between serotonin transporter gene variation and rearing condition in alcohol preference and consumption in female primates. Arch. Gen. Psychiatry 61, 1146–1152 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Caspi, A. et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301, 386–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Barr, C.S. et al. Sexual dichotomy of an interaction between early adversity and the serotonin transporter gene promoter variant in rhesus macaques. Proc. Natl. Acad. Sci. USA 101, 12358–12363 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hu, X. et al. An expanded evaluation of the relationship of four alleles to the level of response to alcohol and the alcoholism risk. Alcohol. Clin. Exp. Res. 29, 8–16 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Ozaki, N. et al. Serotonin transporter missense mutation associated with a complex neuropsychiatric phenotype. Mol. Psychiat. 8, 895, 933–936 (2003).

    Article  Google Scholar 

  92. Oswald, L.M. & Wand, G.S. Opioids and alcoholism. Physiol. Behav. 81, 339–358 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Egli, M. Can experimental paradigms and animal models be used to discover clinically effective medications for alcoholism? Addict. Biol. (in press).

  94. Lovinger, D.M., White, G. & Weight, F.F. Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243, 1721–1724 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Nagy, J. Renaissance of NMDA receptor antagonists: do they have a role in the pharmacotherapy for alcoholism? IDrugs 7, 339–350 (2004).

    CAS  PubMed  Google Scholar 

  96. Backstrom, P., Bachteler, D., Koch, S., Hyytia, P. & Spanagel, R. mGluR5 antagonist MPEP reduces ethanol-seeking and relapse behavior. Neuropsychopharmacology 29, 921–928 (2004).

    Article  PubMed  CAS  Google Scholar 

  97. Hungund, B.L. & Basavarajappa, B.S. Role of endocannabinoids and cannabinoid CB1 receptors in alcohol-related behaviors. Ann. NY Acad. Sci. 1025, 515–527 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Di, M.V. & Matias, I. Endocannabinoid control of food intake and energy balance. Nat. Neurosci. 8, 585–589 (2005).

    Article  CAS  Google Scholar 

  99. Le Foll, B. & Goldberg, S.R. Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J. Pharmacol. Exp. Ther. 312, 875–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Van Gaal, L.F., Rissanen, A.M., Scheen, A.J., Ziegler, O. & Rossner, S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365, 1389–1397 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the US Department of Veterans Affairs (J.C.C.), and the US National Institute on Alcohol Abuse and Alcoholism (AA10760, AA12714 and AA13519 to J.C.C) and the Division of Intramural Clinical and Basic Research (D.M.L.). We thank M. Rutledge-Gorman for help in preparing the manuscript, and G. McClearn for many previous versions of Figure 2.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovinger, D., Crabbe, J. Laboratory models of alcoholism: treatment target identification and insight into mechanisms. Nat Neurosci 8, 1471–1480 (2005). https://doi.org/10.1038/nn1581

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing