Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Isolation of murine microglial cells for RNA analysis or flow cytometry

Abstract

There is increasing interest in the isolation of adult microglia to study their functions at a morphological and molecular level during normal and neuroinflammatory conditions. Microglia have important roles in brain homeostasis, and in disease states they exert neuroprotective or neurodegenerative functions. To assay expression profiles or functions of microglia, we have developed a method to isolate microglial cells and infiltrating leukocytes from adult mouse brain. This protocol uses a digestion cocktail containing collagenase and dispase, and it involves separation over discontinuous percoll gradients. Isolated cells can be used for RNA analysis, including RNase protection analysis (RPA), quantitative RT-PCR, high-density microarray, proteomic or flow cytometric characterization of cell surface markers or adoptive transfer. Cell isolation can be completed in less than 4 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Procedure workflow.
Figure 2: Flow cytometry analysis of cells recovered from 70%–37%interphase.
Figure 3: RNA integrity and RPA results.

Similar content being viewed by others

References

  1. Del Rio-Hortega, P. in Cytology and Cellular Pathology of the Nervous System (ed., Penfield, W.) 481–584 (Paul B. Hoeber, New York, 1932).

    Google Scholar 

  2. Perry, V.H. Macrophages and the Nervous System 62–87 (R.G. Landes, Austin, 1994).

    Google Scholar 

  3. Carson, M.J. Microglia as liaisons between the immune and central nervous systems: Functional implications for multiple sclerosis. Glia 40, 218–231 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Streit, W.J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40, 133–139 (2002).

    Article  PubMed  Google Scholar 

  5. Rivest, S. et al. How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc. Soc. Exp. Biol. & Med. 223, 22–38 (2000).

    Article  CAS  Google Scholar 

  6. Aloisi, F. Immune functions of microglia. Glia 36, 165–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Vallat-Decouvelaere, A.V. et al. Neurotoxicity and neuroprotection, two aspects of microglial activation in human immunodeficiency virus (HIV) infection. Ann. Pathol. 24, 31–44 (2004).

    Article  PubMed  Google Scholar 

  8. Byrnes, K.R. et al. Expression of two temporally distinct microglia-related gene clusters after spinal cord injury. Glia 53, 420–433 (2006).

    Article  PubMed  Google Scholar 

  9. Gebicke-Haerter, P.J. Microarrays and expression profiling in microglia research and in inflammatory brain disorders. J. Neurosci. Res. 81, 327–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Albright, A.V. & Gonzalez-Scarano, F. Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. J. Neuroimmunol. 157, 27–38 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Moran, L.B., Duke, D.C., Turkheimer, F.E., Banati, R.B. & Graeber, M.B. Towards a transcriptome definition of microglial cells. Neurogenetics 5, 95–108 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Stence, N., Waite, M. & Dailey, M.E. Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33, 256–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lehnardt, S. et al. A mechanism for neurodegeneration induced by group B streptococci through activation of the TLR2/MyD88 pathway in microglia. J. Immunol. 177, 583–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Esen, N. & Kielian, T. Central role for MyD88 in the responses of microglia to pathogen-associated molecular patterns. J. Immunol. 176, 6802–6811 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hussain, S.F. et al. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro. oncol. 8, 261–279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cardona, A. et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Huang, D. et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J. 20, 896–905 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sedgwick, J.D. et al. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl. Acad. Sci. USA. 88, 7438–7442 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ford, A.L., Goodsall, A.L., Hickey, W.F. & Sedgwick, J.D. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J. Immunol. 154, 4309–4321 (1995).

    CAS  PubMed  Google Scholar 

  23. Juedes, A.E. & Ruddle, N.H. Resident and infiltrating central nervous system APCs regulate the emergence and resolution of experimental autoimmune encephalomyelitis. J. Immunol. 166, 5168–5175 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Becher, B., Durell, B.G. & Noelle, R.J. IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis. J. Clin. Invest. 112, 1186–1191 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heppner, F.L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ponomarev, E.D., Shriver, L.P., Maresz, K. & Dittel, B.N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 81, 374–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Bergmann, C.C., Altman, J.D., Hinton, D. & Stohlman, S.A. Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system. J. Immunol. 163, 3379–3387 (1999).

    CAS  PubMed  Google Scholar 

  28. Maric, D. et al. Anatomical gradients in proliferation and differentiation of embryonic rat CNS accessed by buoyant density fractionation: alpha 3, beta 3 and gamma 2 GABAA receptor subunit co-expression by post-mitotic neocortical neurons correlates directly with cell buoyancy. Eur. J. Neurosci. 9, 507–522 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Lisak, R.P., Pleasure, D.E., Silberberg, D.H., Manning, M.C. & Saida, T. Long term culture of bovine oligodendroglia isolated with a Percoll gradient. Brain Res. 223, 107–122 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Thorne, B., Wonnacott, S. & Dunkley, P.R. Isolation of hippocampal synaptosomes on Percoll gradients: cholinergic markers and ligand binding sites. J. Neurochem. 56, 479–484 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, D. et al. Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. J. Neurosci. 22, 10633–10642 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Elhofy, A. et al. Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. J. Leukoc. Biol. 77, 229–237 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NS32151 to R.M.R.), the Dana Foundation (to R.M.R.) and the National Multiple Sclerosis Society (FG 1528-A-1 and TA 3021-A-1 to A.E.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M Ransohoff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardona, A., Huang, D., Sasse, M. et al. Isolation of murine microglial cells for RNA analysis or flow cytometry. Nat Protoc 1, 1947–1951 (2006). https://doi.org/10.1038/nprot.2006.327

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.327

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing