Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis

Abstract

This protocol permits the simultaneous mutation scanning and genotyping of PCR products by high-resolution DNA melting analysis. This is achieved using asymmetric PCR performed in the presence of a saturating fluorescent DNA dye and unlabeled oligonucleotide probes. Fluorescent melting curves of both PCR amplicons and amplicon–probe duplexes are analyzed. The shape of the PCR amplicon melting transition reveals the presence of heterozygotes, whereas specific genotyping is enabled by melting of the unlabeled probe–amplicon duplex. Unbiased hierarchal clustering of melting transitions automatically groups different sequence variants; this allows common variants to be easily recognized and genotyped. This technique may be used in both laboratory research and clinical settings to study single-nucleotide polymorphisms and small insertions and deletions, and to diagnose associated genetic disorders. High-resolution melting analysis accomplishes simultaneous gene scanning and mutation genotyping in a fraction of the time required when using traditional methods, while maintaining a closed-tube environment. The PCR requires <30 min (capillaries) or 1.5 h (96- or 384-well plates) and melting acquisition takes 1–2 min per capillary or 5 min per plate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Melting analysis of heterozygous DNA.
Figure 2: Diagram of asymmetric PCR in the presence of an unlabeled probe.
Figure 3: High resolution melting analysis of the Factor V Leiden SNP.
Figure 4: High resolution melting analysis of exon 11 of the cystic fibrosis transconductance regulator (CFTR) gene.

Similar content being viewed by others

References

  1. Ririe, K.M., Rasmussen, R.P. & Wittwer, C.T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem. 245, 154–160 (1997).

    Article  CAS  Google Scholar 

  2. Palais, R., Liew, M. & Wittwer, C. Quantitative heteroduplex analysis for single nucleotide polymorphism genotyping. Anal. Biochem. 346, 167–175 (2005).

    Article  CAS  Google Scholar 

  3. Reed, G.H. & Wittwer, C.T. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin. Chem. 50, 1748–1754 (2004).

    Article  CAS  Google Scholar 

  4. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K. & Sekiya, T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA 86, 2766–2770 (1989).

    Article  CAS  Google Scholar 

  5. Lerman, L.S. & Silverstein, K. Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 155, 482–501 (1987).

    Article  CAS  Google Scholar 

  6. Highsmith, W.E., Jr. et al. Use of a DNA toolbox for the characterization of mutation scanning methods. I: construction of the toolbox and evaluation of heteroduplex analysis. Electrophoresis 20, 1186–1194 (1999).

    Article  CAS  Google Scholar 

  7. Xiao, W. & Oefner, P.J. Denaturing high-performance liquid chromatography: a review. Hum. Mutat. 17, 439–474 (2001).

    Article  CAS  Google Scholar 

  8. Li, Q., Liu, Z., Monroe, H. & Culiat, C.T. Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis 23, 1499–1511 (2002).

    Article  CAS  Google Scholar 

  9. Wittwer, C.T. & Kusukawa, N. in Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (eds. Burtis, C., Ashwood, D. & Bruns, D.) 1407–1449 (Elsevier, New York, 2005).

    Google Scholar 

  10. Zhou, L., Wang, L., Palais, R., Pryor, R. & Wittwer, C.T. High-resolution DNA melting analysis for simultaneous mutation scanning and genotyping in solution. Clin. Chem. 51, 1770–1777 (2005).

    Article  CAS  Google Scholar 

  11. Herrmann, M.G., Durtschi, J.D., Bromley, L.K., Wittwer, C.T. & Voelkerding, K.V. Amplicon DNA melting analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. Clin. Chem. 52, 494–503 (2006).

    Article  CAS  Google Scholar 

  12. Wittwer, C.T., Reed, G.H., Gundry, C.N., Vandersteen, J.G. & Pryor, R.J. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin. Chem 49, 853–860 (2003).

    Article  CAS  Google Scholar 

  13. SantaLucia, J., Jr. & Hicks, D. The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004).

    Article  CAS  Google Scholar 

  14. Lay, M.J. & Wittwer, C.T. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin. Chem. 43, 2262–2267 (1997).

    CAS  PubMed  Google Scholar 

  15. Gundry, C.N. et al. Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin. Chem. 49, 396–406 (2003).

    Article  CAS  Google Scholar 

  16. Wittwer, C.T., Herrmann, M.G., Moss, A.A. & Rasmussen, R.P. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques 22, 130–131, 134–138 (1997).

    Article  CAS  Google Scholar 

  17. Liew, M. et al. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin. Chem. 50, 1156–1164 (2004).

    Article  CAS  Google Scholar 

  18. Zhou, L., Myers, A.N., Vandersteen, J.G., Wang, L. & Wittwer, C.T. Closed-tube genotyping with unlabeled oligonucleotide probes and a saturating DNA dye. Clin. Chem. 50, 1328–1335 (2004).

    Article  CAS  Google Scholar 

  19. Zhou, L. et al. High-resolution DNA melting curve analysis to establish HLA genotypic identity. Tissue Antigens 64, 156–164 (2004).

    Article  CAS  Google Scholar 

  20. McKinney, J.T. et al. Rapid, comprehensive screening of the human medium chain acyl-CoA dehydrogenase gene. Mol. Genet. Metab. 82, 112–120 (2004).

    Article  CAS  Google Scholar 

  21. Willmore-Payne, C., Holden, J.A., Chadwick, B.E. & Layfield, L.J. Detection of c-kit exons 11- and 17-activating mutations in testicular seminomas by high-resolution melting amplicon analysis. Mod. Pathol. 19, 1164–1169 (2006).

    Article  CAS  Google Scholar 

  22. Thomas, S.M., Moreno, R.F. & Tilzer, L.L. DNA extraction with organic solvents in gel barrier tubes. Nucleic Acids Res. 17, 5411 (1989).

    Article  CAS  Google Scholar 

  23. Williams, S.M., Meadows, C.A. & Lyon, E. Automated DNA extraction for real-time PCR. Clin. Chem. 48, 1629–1630 (2002).

    CAS  PubMed  Google Scholar 

  24. Margraf, R.L., Mao, R. & Wittwer, C.T. Masking selected sequence variation by incorporating mismatches into melting analysis probes. Hum. Mutat. 27, 269–278 (2006).

    Article  CAS  Google Scholar 

  25. Cradic, K.W. et al. Substitution of 3′-phosphate cap with a carbon-based blocker reduces the possibility of fluorescence resonance energy transfer probe failure in real-time PCR assays. Clin. Chem. 50, 1080–1082 (2004).

    Article  CAS  Google Scholar 

  26. Erali, M., Palais, R.A. & Wittwer, C.T. in Beacons: Signalling Nucleic Acid Probes—Methods in Molecular Biology (eds. Sietz, O. & Marx, A.) in press (Human Press, Totowa, 2007).

    Google Scholar 

  27. Wittwer, C.T. & Kusukawa, N. in Real-time PCR (eds. Persing, D. et al.) 71–84 (ASM Press, Washington, DC, 2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl T Wittwer.

Ethics declarations

Competing interests

Aspects of rapid PCR and high-resolution melting are licensed from the University of Utah to Idaho Technology. CTW has equity interest in Idaho Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montgomery, J., Wittwer, C., Palais, R. et al. Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nat Protoc 2, 59–66 (2007). https://doi.org/10.1038/nprot.2007.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.10

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing