Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Measurement of cell proliferation by heavy water labeling

Abstract

DNA replication occurs almost exclusively during S-phase of the cell cycle and represents a simple biochemical metric of cell division. Previous methods for measuring cell proliferation rates have important limitations. Here, we describe experimental protocols for measuring cell proliferation and death rates based on the incorporation of deuterium (2H) from heavy water (2H2O) into the deoxyribose moiety of purine deoxyribonucleotides in DNA of dividing cells. Label incorporation is measured by gas chromatography/mass spectrometry. Modifications of the basic protocol permit analysis of small cell samples (down to 2,000 cells). The theoretical basis and operational requirements for effective use of these methods to measure proliferation and death rates of cells in vivo are described. These methods are safe for use in humans, have technical and interpretation advantages over alternative techniques and can be used on small numbers of cells. The protocols enable definitive in vivo studies of the fraction or absolute number of newly divided cells and their subsequent survival kinetics in animals and humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biosynthetic labeling of DNA using 2H2O.
Figure 2: Long-term BrdU administration reduces the proliferation rate of some cells.
Figure 3: 2H2O labeling efficiency at the purine-dR moiety of DNA is independent of apoptosis in surrounding tissue.
Figure 4: Asymptotic or maximal EM1* values calculated at 2H enrichment values in body water between 0% and 12%.
Figure 5: Experimental design.
Figure 6: Deoxyribose (dR) derivative used for NCI-GC/MS analysis and its preparation from DNA.
Figure 7: Example of low cell count method: proliferation of prostate epithelial cells in prostate biopsies and in seminal fluid.
Figure 8: GC/MS analysis of the PFTA derivative of dR.
Figure 9: Analyte abundance effects.

Similar content being viewed by others

References

  1. Sawada, S. et al. Comparison of autoradiography, liquid scintillation counting and immunoenzymatic staining of 5-bromo-2′-deoxyuridine for measurement of unscheduled DNA synthesis and replicative DNA synthesis in rat liver. Mutat. Res. 344, 109–116 (1995).

    Article  CAS  Google Scholar 

  2. Gratzner, H.G. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218, 474–475 (1982).

    Article  CAS  Google Scholar 

  3. Rocha, B. et al. Accumulation of bromodeoxyuridine-labeled cells in central and peripheral lymphoid organs: minimal estimates of production and turnover rates of mature lymphocytes. Eur. J. Immunol. 20, 1697–1708 (1990).

    Article  CAS  Google Scholar 

  4. Asher, E. et al. Evaluation of cell death in EBV-transformed lymphocytes using agarose gel electrophoresis, light microscopy and electron microscopy. II. Induction of non-classic apoptosis ('para-apoptosis') by tritiated thymidine. Leuk. Lymphoma 19, 107–119 (1995).

    Article  CAS  Google Scholar 

  5. Danova, M. et al. Cell cycle-related proteins and flow cytometry. Haematologica 75, 252–264 (1990).

    CAS  PubMed  Google Scholar 

  6. Parish, C.R. Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol. Cell Biol. 77, 499–508 (1999).

    Article  CAS  Google Scholar 

  7. Reichard, P. Interactions between deoxyribonucleotide and DNA synthesis. Annu. Rev. Biochem. 57, 349–374 (1988).

    Article  CAS  Google Scholar 

  8. Cohen, A. et al. Purine and pyrimidine metabolism in human T lymphocytes. Regulation of deoxyribonucleotide metabolism. J. Biol. Chem. 258, 12334–12340 (1983).

    CAS  PubMed  Google Scholar 

  9. Hellerstein, M.K. Measurement of T-cell kinetics: recent methodologic advances. Immunol. Today 20, 438–441 (1999).

    Article  CAS  Google Scholar 

  10. Tough, D.F. & Sprent, J. Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179, 1127–1135 (1994).

    Article  CAS  Google Scholar 

  11. Hellerstein, M.K. & Neese, R.A. Mass isotopomer distribution analysis: a technique for measuring biosynthesis and turnover of polymers. Am. J. Physiol. 263, E988–E1001 (1992).

    CAS  PubMed  Google Scholar 

  12. Hellerstein, M. Methods for measuring polymerisation biosynthesis: three general solutions to the problem of the 'true precursor'. Diabetes Nutr. Metab. 13, 46–60 (2000).

    CAS  PubMed  Google Scholar 

  13. Reome, J.B. et al. The effects of prolonged administration of 5-bromodeoxyuridine on cells of the immune system. J. Immunol. 165, 4226–4230 (2000).

    Article  CAS  Google Scholar 

  14. Cheshier, S.H. et al. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 96, 3120–3125 (1999).

    Article  CAS  Google Scholar 

  15. Kamath, A.T. et al. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100, 1734–1741 (2002).

    CAS  PubMed  Google Scholar 

  16. Jecker, P. et al. Long-term oral application of 5-bromo-2-deoxyuridine does not reliably label proliferating immune cells in the LEW rat. J. Histochem. Cytochem. 45, 393–401 (1997).

    Article  CAS  Google Scholar 

  17. Combadere, B. et al. CD4+Ki67+ lymphocytes in HIV-infected patients are effector T cells accumulated in the G1 phase of the cell cycle. Eur. J. Immunol. 30, 3598–3603 (2000).

    Article  CAS  Google Scholar 

  18. Macallan, D.C. et al. Measurement of cell proliferation by labeling of DNA with stable isotope-labeled glucose: studies in vitro, in animals, and in humans. Proc. Natl. Acad. Sci. USA 95, 708–713 (1998).

    Article  CAS  Google Scholar 

  19. Hellerstein, M. et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nat. Med. 5, 83–89 (1999).

    Article  CAS  Google Scholar 

  20. McCune, J.M. et al. Factors influencing T-cell turnover in HIV-1-seropositive patients. J. Clin. Invest. 105, R1–R8 (2000).

    Article  CAS  Google Scholar 

  21. Mohri, H. et al. Increased turnover of T lymphocytes in HIV-1 infection and its reduction by antiretroviral therapy. J. Exp. Med. 194, 1277–1287 (2001).

    Article  CAS  Google Scholar 

  22. Schwartz, G.N. et al. Proliferation kinetics of subpopulations of human marrow cells determined by quantifying in vivo incorporation of [2H2]-glucose into DNA of S-phase cells. Blood 102, 2068–2073 (2003).

    Article  CAS  Google Scholar 

  23. Neese, R.A. et al. Measurement in vivo of proliferation rates of slow turnover cells by 2H2O labeling of the deoxyribose moiety of DNA. Proc. Natl. Acad. Sci. USA 99, 15345–1530 (2002).

    Article  CAS  Google Scholar 

  24. Hellerstein, M.K. et al. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J. Clin. Invest. 112, 956–966 (2003).

    Article  CAS  Google Scholar 

  25. Messmer, B.T. et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J. Clin. Invest. 115, 755–764 (2005).

    Article  CAS  Google Scholar 

  26. Hsieh, E.A. et al. Dynamics of keratinocytes in vivo using HO labeling: a sensitive marker of epidermal proliferation state. J. Invest. Dermatol. 123, 530–536 (2004).

    Article  CAS  Google Scholar 

  27. Hsieh, E.A. et al. Effects of caloric restriction on cell proliferation in several tissues in mice: role of intermittent feeding. Am. J. Physiol. Endocrinol. Metab. 288, E965–E972 (2005).

    Article  CAS  Google Scholar 

  28. Chu, A. et al. Measurement of mouse vascular smooth muscle and atheroma cell proliferation by 2H2O incorporation into DNA. Am. J. Physiol. Cell Physiol. 291, C1014–C1021 (2006).

    Article  CAS  Google Scholar 

  29. Misell, L.M. et al. A stable isotope-mass spectrometric method for measuring human spermatogenesis kinetics in vivo. J. Urol. 175, 242–246 ; discussion 246 (2006).

    Article  CAS  Google Scholar 

  30. Misell, L.M. et al. Development of a novel method for measuring in vivo breast epithelial cell proliferation in humans. Breast Cancer Res. Treat. 89, 257–264 (2005).

    Article  Google Scholar 

  31. Misell, L.M. et al. A new in vivo stable isotope-mass spectrometric method for measuring mammary epithelial cell proliferation. FASEB J. 14, A786 (2000).

    Google Scholar 

  32. Kim, S.J. et al. Isolation of nuclei from label-retaining cells and measurement of their turnover rates in rat colon. Am. J. Physiol. Cell Physiol. 286, C1464–C1473 (2004).

    Article  CAS  Google Scholar 

  33. Kim, S.J. & Hellerstein, M.K. Pharmacological doses of dietary curcumin increase colon epithelial cell proliferation in vivo in rats. Phytother. Res. 10, 995–998 (2007).

    Article  Google Scholar 

  34. Kim, S.J. et al. In vivo measurement of DNA synthesis rates of colon epithelial cells in carcinogenesis. Biochem. Biophys. Res. Commun. 331, 203–209 (2005).

    Article  CAS  Google Scholar 

  35. Kim, H.A. et al. Heavy water labeling method for measuring the effect of genistein on mammary gland carcinogenesis. Mol. Cell Biochem. 301, 201–208 (2007).

    Article  CAS  Google Scholar 

  36. Shankaran, M. et al. Discovery of novel hippocampal neurogenic agents by using an in vivo stable isotope labeling technique. J. Pharmacol. Exp. Ther. 319, 1172–1181 (2006).

    Article  CAS  Google Scholar 

  37. Shankaran, M. et al. Measurement of brain microglial proliferation rates in vivo in response to neuroinflammatory stimuli: application to drug discovery. J. Neurosci. Res. 85, 2374–2384 (2007).

    Article  CAS  Google Scholar 

  38. Strawford, A. et al. Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O. Am. J. Physiol. Endocrinol. Metab. 286, E577–E588 (2004).

    Article  CAS  Google Scholar 

  39. Turner, S.M. et al. Dissociation between adipose tissue fluxes and lipogenic gene expression in ob/ob mice. Am. J. Physiol. Endocrinol. Metab. 292, E1101–E1109 (2007).

    Article  CAS  Google Scholar 

  40. Chen, S. et al. Measurement of pancreatic islet cell proliferation by heavy water labeling. Am. J. Physiol. Endocrinol. Metab. (2007, in press).

  41. Neese, R.A. et al. Advances in the stable isotope-mass spectrometric measurement of DNA synthesis and cell proliferation. Anal. Biochem. 298, 189–195 (2001).

    Article  CAS  Google Scholar 

  42. Strawford, A. et al. Adipose tissue triglyceride turnover, de novo lipogenesis and cell proliferation in humans measured with 2H2O. Am. J. Physiol. E577–E588 (2007).

  43. Peng, S.K. et al. Biologic effects of prolonged exposure to deuterium oxide. A behavioral, metabolic, and morphologic study. Arch. Pathol. 94, 81–89 (1972).

    CAS  PubMed  Google Scholar 

  44. Hodel, A. et al. Effects of prolonged moderate body deuteration on proliferative activity in major cell renewal systems in mice. Life Sci. 30, 1987–1996 (1982).

    Article  CAS  Google Scholar 

  45. Klein, P.D. & Klein, E.R. Stable isotopes: origins and safety. J. Clin. Pharmacol. 26, 378–382 (1986).

    Article  CAS  Google Scholar 

  46. Jones, P.J. & Leatherdale, S.T. Stable isotopes in clinical research: safety reaffirmed. Clin. Sci. (Lond.) 80, 277–280 (1991).

    Article  CAS  Google Scholar 

  47. Busch, R. et al. Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim. Biophys. Acta 1760, 730–744 (2006).

    Article  CAS  Google Scholar 

  48. Raman, A. et al. Water turnover in 458 American adults 40–79 yr of age. Am. J. Physiol. Renal Physiol. 286, F394–F401 (2004).

    Article  CAS  Google Scholar 

  49. Schoeller, D.A. Recent advances from application of doubly labeled water to measurement of human energy expenditure. J. Nutr. 129, 1765–1768 (1999).

    Article  CAS  Google Scholar 

  50. London, I.M. & Rittenberg, D. Deuterium studies in normal man. I. The rate of synthesis of serum cholesterol. II. Measurement of total body water and water absorption. J. Biol. Chem. 184, 687–691 (1950).

    CAS  PubMed  Google Scholar 

  51. Voogt, J.N. et al. Measurement of very low rates of cell proliferation by heavy water labeling of DNA and gas chromatography/pyrolysis/isotope ratio-mass spectrometric analysis. Nat. Protoc. 2, 3058–3062.

  52. Busch, R. et al. Isolation of peripheral blood CD4+ T cells using RosetteSep and MACS for studies of DNA turnover by deuterium labeling. J. Immunol. Methods 286, 97–109 (2004).

    Article  CAS  Google Scholar 

  53. Fanara, P. et al. In vivo measurement of microtubule dynamics using stable isotope labeling with heavy water: effect of taxanes. J. Biol. Chem. 279, 49940–49947 (2004).

    Article  CAS  Google Scholar 

  54. Previs, S.F. et al. Assay of the deuterium enrichment of water via acetylene. J. Mass Spectrom. 31, 639–642 (1996).

    Article  CAS  Google Scholar 

  55. Yang, D. et al. Assay of low deuterium enrichment of water by isotopic exchange with [U-13C3]acetone and gas chromatography-mass spectrometry. Anal. Biochem. 258, 315–321 (1998).

    Article  CAS  Google Scholar 

  56. Hellerstein, M.K. & Murphy, E. Stable isotope-mass spectrometric measurements of molecular fluxes in vivo: emerging applications in drug development. Curr. Opin. Mol. Ther. 6, 249–264 (2004).

    CAS  PubMed  Google Scholar 

  57. Hellerstein, M.K. & Neese, R.A. Mass isotopomer distribution analysis at eight years: theoretical, analytic, and experimental considerations. Am. J. Physiol. 276, E1146–E1170 (1999).

    CAS  PubMed  Google Scholar 

  58. Fagerquist, C.K. et al. Elimination of the concentration dependence in mass isotopomer abundance mass spectrometry of methyl palmitate using metastable atom bombardment. J. Am. Soc. Mass Spectrom. 12, 754–761 (2001).

    Article  CAS  Google Scholar 

  59. Fagerquist, C.K. et al. Molecular ion fragmentation and its effects on mass isotopomer abundances of fatty acid methyl esters ionized by electron impact. J. Am. Soc. Mass Spectrom. 10, 430–439 (1999).

    Article  CAS  Google Scholar 

  60. Patterson, B.W. et al. Improved accuracy and precision of gas chromatography/mass spectrometry measurements for metabolic tracers. Metabolism 47, 706–712 (1998).

    Article  CAS  Google Scholar 

  61. Collins, M.L. et al. Measurement of mitochondrial DNA synthesis in vivo using a stable isotope-mass spectrometric technique. J. Appl. Physiol. 94, 2203 (2003).

    Article  CAS  Google Scholar 

  62. Varady, K.A., Roohk, D.J. & Hellerstein, M.K. Dose effects of modified alternate-day fasting regimens on in vivo cell proliferation and plasma insulin-like growth factor-1 in mice. J. Appl. Physiol. 103, 547–551 (2007).

    Article  CAS  Google Scholar 

  63. Xiu, M. et al. Measurement of endothelial cell proliferation rate in vivo using heavy water labelling. FASEB J. A718 (2004).

Download references

Acknowledgements

We thank Chancy Fessler, Kris Prado, Daniel Holochwost, Tracy A. Gee, Iche M. Siah and Ablatt Mahsut for technical assistance and Dr. Nabil Saad for contributing analytical expertise. We also thank Dr. Katsuto Shinohara, Dr. Jeff Simko and Dr. Lisa Misell for contributions to the human prostate epithelial, low cell count results shown. The work was supported by funds from KineMed Inc. and NIH grants AI43866 and HD 40543-06 and University of California Discovery Program BioSTAR grant bio04-10445 to M.K.H. M.K.H. is co-founder and chief scientific officer of KineMed Inc.; the other coauthors are current or former employees of KineMed Inc. (G.M.H., M.A., R.B.) and/or consultants (R.A.N., R.B., M.A., E.J.M.) and hold stock or stock options in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc K Hellerstein.

Ethics declarations

Competing interests

M.K.H. is co-founder and chief scientific officer of KineMed, Inc.; the other coauthors are employees of KineMed, Inc. (J.N.V., G.M.H.) or consultants (R.B., M.A.) and hold stock options in the company.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, R., Neese, R., Awada, M. et al. Measurement of cell proliferation by heavy water labeling. Nat Protoc 2, 3045–3057 (2007). https://doi.org/10.1038/nprot.2007.420

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.420

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing