Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice

Abstract

Long-term functional deficits after a brain injury are difficult to assess in the mouse. If no deficit is observed, researchers could conclude either that the animal has fully recovered or that the tests they used were not appropriate or sensitive enough to the modality of the deficits. We present here a detailed protocol describing how to conduct an adhesive removal test for this species. It consists of applying adhesive tape on each forepaw of the animal and measuring the time-to-contact and the time-to-remove them. This behavior implies correct paw and mouth sensitivity (time-to-contact) and correct dexterity (time-to-remove). To decrease interindividual differences, we recommend a training session (1 week, 1 trial per day) before surgical procedures so that mice to reach optimal performances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mice handling.
Figure 2: Adhesive removal performance.

Similar content being viewed by others

References

  1. Schallert, T. et al. Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol. Biochem. Behav. 16, 455–462 (1982).

    Article  CAS  Google Scholar 

  2. Schallert, T., Fleming, S.M., Leasure, J.L., Tillerson, J.L. & Bland, S.T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39, 777–787 (2000).

    Article  CAS  Google Scholar 

  3. Chen, S.F. et al. Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci. 81, 288–298 (2007).

    Article  CAS  Google Scholar 

  4. Hoane, M.R., Pierce, J.L., Holland, M.A. & Anderson, G.D. Nicotinamide treatment induces behavioral recovery when administered up to 4 h following cortical contusion injury in the rat. Neuroscience 154, 861–868 (2008).

    Article  CAS  Google Scholar 

  5. Esneault, E. et al. Combined therapeutic strategy using erythropoietin and mesenchymal stem cells potentiates neurogenesis after transient focal cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 28, 1552–1563 (2008).

    Article  CAS  Google Scholar 

  6. Annett, L. et al. Behavioural assessment of the effects of embryonic nigral grafts in marmosets with unilateral 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 125, 228–246 (1992).

    Article  Google Scholar 

  7. Quaranta, A., Siniscalchi, M., Frate, A. & Vallortigara, G. Paw preference in dogs: relations between lateralised behaviour and immunity. Behav. Brain Res. 153, 521–525 (2004).

    Article  CAS  Google Scholar 

  8. Starkey, M.L. et al. Assessing behavioural function following a pyramidotomy lesion of the corticospinal tract in adult mice. Exp. Neurol. 195, 524–539 (2005).

    Article  Google Scholar 

  9. Bouet, V. et al. Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp. Neurol. 203, 555–567 (2007).

    Article  Google Scholar 

  10. Freret, T. et al. Behavioral deficits after distal focal cerebral ischemia in mice: Usefulness of adhesive removal test. Behav. Neurosci. 123, 224–230 (2009).

    Article  Google Scholar 

  11. Komotar, R.J. et al. Neurologic assessment of somatosensory dysfunction following an experimental rodent model of cerebral ischemia. Nat. Protoc. 2, 2345–2347 (2007).

    Article  CAS  Google Scholar 

  12. Carmichael, S.T. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2, 396–409 (2005).

    Article  Google Scholar 

  13. Green, A.R. Why do neuroprotective drugs that are so promising in animals fail in the clinic? An industry perspective. Clin. Exp. Pharmacol. Physiol. 29, 1030–1034 (2002).

    Article  CAS  Google Scholar 

  14. STAIR. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 30, 2752–2758 (1999).

  15. Wahlgren, N.G. & Ahmed, N. Neuroprotection in cerebral ischaemia: facts and fancies—the need for new approaches. Cerebrovasc. Dis. 17 (Suppl 1): 153–166 (2004).

    Article  CAS  Google Scholar 

  16. Berry, D. et al. Dimeric fibroblast growth factor-2 enhances functional recovery after focal cerebral ischemia. Restor. Neurol. Neurosci. 23, 251–256 (2005).

    CAS  PubMed  Google Scholar 

  17. Freret, T. et al. Long-term functional outcome following transient middle cerebral artery occlusion in the rat: correlation between brain damage and behavioral impairment. Behav. Neurosci. 120, 1285–1298 (2006).

    Article  Google Scholar 

  18. Gerlai, R., Thibodeaux, H., Palmer, J.T., van Lookeren Campagne, M. & Van Bruggen, N. Transient focal cerebral ischemia induces sensorimotor deficits in mice. Behav. Brain Res. 108, 63–71 (2000).

    Article  CAS  Google Scholar 

  19. Tamura, A., Graham, D.I., McCulloch, J. & Teasdale, G.M. Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J. Cereb. Blood Flow Metab. 1, 53–60 (1981).

    Article  CAS  Google Scholar 

  20. Welsh, F.A., Sakamoto, T., McKee, A.E. & Sims, R.E. Effect of lactacidosis on pyridine nucleotide stability during ischemia in mouse brain. J. Neurochem. 49, 846–851 (1987).

    Article  CAS  Google Scholar 

  21. Gonzalez, C.L. & Kolb, B. A comparison of different models of stroke on behaviour and brain morphology. Eur. J. Neurosci. 18, 1950–1962 (2003).

    Article  CAS  Google Scholar 

  22. Leker, R.R. et al. Long-lasting regeneration after ischemia in the cerebral cortex. Stroke 38, 153–161 (2007).

    Article  Google Scholar 

  23. Baumann, C.R. et al. Sleep EEG changes after middle cerebral artery infarcts in mice: different effects of striatal and cortical lesions. Sleep 29, 1339–1344 (2006).

    Article  Google Scholar 

  24. Guegan, C. et al. PTD-XIAP protects against cerebral ischemia by anti-apoptotic and transcriptional regulatory mechanisms. Neurobiol. Dis. 22, 177–186 (2006).

    Article  CAS  Google Scholar 

  25. van Lookeren Campagne, M. et al. Evidence for a protective role of metallothionein-1 in focal cerebral ischemia. Proc. Natl. Acad. Sci. USA 96, 12870–12875 (1999).

    Article  CAS  Google Scholar 

  26. Iadecola, C., Zhang, F., Casey, R., Nagayama, M. & Ross, M.E. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J. Neurosci. 17, 9157–9164 (1997).

    Article  CAS  Google Scholar 

  27. Bernaudin, M. et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 19, 643–651 (1999).

    Article  CAS  Google Scholar 

  28. Leconte, C. et al. Delayed hypoxic postconditionning protects against cerebral ischemia in the mouse: in vitro identification of potential mediators. (in press) doi:10.1161/STROKEAHA.109.557314 (2009).

  29. Fisher, M. et al. Update of the Stroke Therapy Academic Industry Roundtable Preclinical Recommendations. Stroke 40, 2244–2250 (2009).

    Article  Google Scholar 

  30. Willing, A.E. Experimental models: help or hindrance. Stroke 40, S152–S154 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Regional Council of Basse-Normandie, the University of Caen Basse-Normandie, and the Centre National de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Freret.

Supplementary information

Supplementary Video 1

Adhesive removal in the mouse. The colour circles show up adhesives once removed: left one first (red circle) and then the right (blue circle). (WMV 5638 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouet, V., Boulouard, M., Toutain, J. et al. The adhesive removal test: a sensitive method to assess sensorimotor deficits in mice. Nat Protoc 4, 1560–1564 (2009). https://doi.org/10.1038/nprot.2009.125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.125

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing