Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors

Abstract

Over the past decade, lentiviral vectors have emerged as powerful tools for transgene delivery. The use of lentiviral vectors has become commonplace and applications in the fields of neuroscience, hematology, developmental biology, stem cell biology and transgenesis are rapidly emerging. Also, lentiviral vectors are at present being explored in the context of human clinical trials. Here we describe improved protocols to generate highly concentrated lentiviral vector pseudotypes involving different envelope glycoproteins. In this protocol, vector stocks are prepared by transient transfection using standard cell culture media or serum-free media. Such stocks are then concentrated by ultracentrifugation and/or ion exchange chromatography, or by precipitation using polyethylene glycol 6000, resulting in vector titers of up to 1010 transducing units per milliliter and above. We also provide reliable real-time PCR protocols to titrate lentiviral vectors based on proviral DNA copies present in genomic DNA extracted from transduced cells or on vector RNA. These production/concentration methods result in high-titer vector preparations that show reduced toxicity compared with lentiviral vectors produced using standard protocols involving ultracentrifugation-based methods. The vector production and titration protocol described here can be completed within 8 d.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influence of vector copy numbers on EGFP transgene expression in transduced HOS cells.

Similar content being viewed by others

References

  1. Akkina, R.K. et al. High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol. 70, 2581–2585 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Reiser, J. et al. Transduction of nondividing cells using pseudotyped defective high- titer HIV type 1 particles. Proc. Natl. Acad. Sci. USA 93, 15266–15271 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Reiser, J., Lai, Z., Zhang, X.Y. & Brady, R.O. Development of multigene and regulated lentivirus vectors. J. Virol. 74, 10589–10599 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cronin, J., Zhang, X.Y. & Reiser, J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene. Ther. 5, 387–398 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reiser, J. Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Ther. 7, 910–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Sena-Esteves, M., Tebbets, J.C., Steffens, S., Crombleholme, T. & Flake, A.W. Optimized large-scale production of high titer lentivirus vector pseudotypes. J. Virol. Methods 122, 131–139 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Chen, S.T., Iida, A., Guo, L., Friedmann, T. & Yee, J.K. Generation of packaging cell lines for pseudotyped retroviral vectors of the G protein of vesicular stomatitis virus by using a modified tetracycline inducible system. Proc. Natl. Acad. Sci. USA 93, 10057–10062 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, X.Y., La Russa, V.F. & Reiser, J. Transduction of bone-marrow-derived mesenchymal stem cells by using lentivirus vectors pseudotyped with modified RD114 envelope glycoproteins. J. Virol. 78, 1219–1229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ricks, D.M., Kutner, R., Zhang, X.Y., Welsh, D.A. & Reiser, J. Optimized lentiviral transduction of mouse bone marrow-derived mesenchymal stem cells. Stem. Cells Dev. 17, 441–450 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Scherr, M., Battmer, K., Blomer, U., Ganser, A. & Grez, M. Quantitative determination of lentiviral vector particle numbers by real-time PCR. Biotechniques 31, 520–522, 524, passim (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Logan, A.C. et al. Factors influencing the titer and infectivity of lentiviral vectors. Hum. Gene. Ther. 15, 976–988 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Radcliffe, P.A. et al. Analysis of factor VIII mediated suppression of lentiviral vector titres. Gene Ther. 15, 289–297 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, X.Y. et al. Lentiviral vectors for sustained transgene expression in human bone marrow-derived stromal cells. Mol. Ther. 5, 555–565 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Sastry, L., Johnson, T., Hobson, M.J., Smucker, B. & Cornetta, K. Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther. 9, 1155–1162 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Pluta, K., Luce, M.J., Bao, L., Agha-Mohammadi, S. & Reiser, J. Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J. Gene. Med. 7, 803–817 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Pluta, K. et al. Lentiviral vectors encoding tetracycline-dependent repressors and transactivators for reversible knockdown of gene expression: a comparative study. BMC Biotechnol. 7, 41 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kuroda, H., Kutner, R.H., Bazan, N.G. & Reiser, J. A comparative analysis of constitutive and cell-specific promoters in the adult mouse hippocampus using lentivirus vector-mediated gene transfer. J. Gene. Med. 10, 1163–1175 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Baekelandt, V., Eggermont, K., Michiels, M., Nuttin, B. & Debyser, Z. Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Ther. 10, 1933–1940 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Marino, M.P., Luce, M.J. & Reiser, J. Small- to large-scale production of lentivirus vectors. In Lentivirus Gene Engineering Protocols, Vol. 229 (ed. M. Federico) 43–55 (Humana Press, Totowa, NJ, 2003).

    Chapter  Google Scholar 

  21. Mochizuki, H., Schwartz, J.P., Tanaka, K., Brady, R.O. & Reiser, J. High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J. Virol. 72, 8873–8883 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Follenzi, A. & Naldini, L. Generation of HIV-1 derived lentiviral vectors. Methods Enzymol. 346, 454–465 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Teng, M.N., Borrow, P., Oldstone, M.B. & de la Torre, J.C. A single amino acid change in the glycoprotein of lymphocytic choriomeningitis virus is associated with the ability to cause growth hormone deficiency syndrome. J. Virol. 70, 8438–8443 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Cornu, T.I. & de la Torre, J.C. Characterization of the arenavirus RING finger Z protein regions required for Z-mediated inhibition of viral RNA synthesis. J. Virol. 76, 6678–6688 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amendola, M., Venneri, M.A., Biffi, A., Vigna, E. & Naldini, L. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat. Biotechnol. 23, 108–116 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Strang, B.L., Ikeda, Y., Cosset, F.L., Collins, M.K. & Takeuchi, Y. Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Ther. 11, 591–598 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant NS044832.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Reiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutner, R., Zhang, XY. & Reiser, J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 4, 495–505 (2009). https://doi.org/10.1038/nprot.2009.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.22

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing