Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A rapid HPLC-MS/MS method for the simultaneous quantification of cyclosporine A, tacrolimus, sirolimus and everolimus in human blood samples

Abstract

In the past few years, high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has matured to a true alternative to antibody-based immunoassays in routine therapeutic drug monitoring. In transplantation medicine, mass spectrometry-based assessment of immunosuppressant drug levels is considered a gold standard diagnostic procedure. We describe a fast state-of-the-art routine online solid-phase extraction (SPE) HPLC-MS/MS analysis platform that allows monitoring of cyclosporine A, tacrolimus, sirolimus and everolimus from 50-μl aliquots of EDTA whole blood specimens within 3.4 min total analysis time. Sample purification is done by offline protein precipitation followed by two automated chromatographic separation steps. Mass spectrometry-based analyte quantification relies on selected reaction monitoring experiments. The assay underwent complete validation and performance evaluation studies and performs very well in several international proficiency testing schemes. In daily routine, it allows reporting of about 75 patient sample results per work shift with a typical total individual sample turnaround time of less than 3 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plumbing of the six-port switching valve located in the column compartment and connecting the SPE and HPLC chromatography step.
Figure 2: HPLC-MS/MS-derived analyte chromatograms for the lowest calibrator level (LLOQ) used.
Figure 3: Relative Bland Altman plot for the comparison of HPLC-MS/MS and immunoassay (FPIA)-derived cyclosporine A through level measurements.
Figure 4: Longitudinal cyclosporine A trough level profile of a male (m) heart transplant (HTX) recipient.

Similar content being viewed by others

References

  1. Geoghegan, K.F. & Kelly, M.A. Biochemical applications of mass spectrometry in pharmaceutical drug discovery. Mass Spectrom. Rev. 24, 347–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Korfmacher, W.A. Foundation review: principles and applications of LC-MS in new drug discovery. Drug Discov. Today 10, 1357–1367 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hopfgartner, G. Mass spectrometry in bioanalysis—methods, principles and instrumentation. In Methods and Principles in Medicinal Chemistry Vol. 36 (eds. Wanner, K. & Höfner, G.) 3–62 (Wiley-VCH, Weinheim, Germany, 2007).

    Google Scholar 

  4. de Boer, A.R., Lingeman, H., Niessen, W.M.A. & Irth, H. Mass spectrometry-based biochemical assays for enzyme-inhibitor screening. TRAC-Trend Anal. Chem. 26, 867–883 (2007).

    Article  CAS  Google Scholar 

  5. Vogeser, M. & Seger, C. A decade of HPLC-MS/MS in the routine clinical laboratory—goals for further developments. Clin. Biochem. 41, 649–662 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Seger, C. & Griesmacher, A. Some important aspects of implementing tandem mass spectrometry in a routine clinical laboratory environment. Biochemia Medica 17, 29–51 (2007).

    Article  CAS  Google Scholar 

  7. Chace, D.H. Mass spectrometry in the clinical laboratory. Chem. Rev. 101, 445–477 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Taylor, P.J. High-performance liquid chromatography-mass spectrometry in the clinical laboratory. Ther. Drug Monit. 27, 689–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, Z., Peng, Y. & Wang, S. Immunosuppressants: pharmacokinetics, methods of monitoring and role of high performance liquid chromatography/mass spectrometry. Clin. Appl. Immunol. Rev. 5, 405–430 (2005).

    Article  CAS  Google Scholar 

  10. Saint-Marcoux, F., Sauvage, F.-L. & Marquet, P. Current role of LC-MS in therapeutic drug monitoring. Anal. Bioanal. Chem. 388, 1327–1349 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Oellerich, M. & Armstrong, V.W. The role of therapeutic drug monitoring in individualizing immunosuppressive drug therapy: recent developments. Ther. Drug Monit. 28, 720–725 (2006).

    PubMed  Google Scholar 

  12. Morris, R.G. Immunosuppressant drug monitoring: is the laboratory meeting clinical expectations? Ann. Pharmacother. 39, 119–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Ghoshal, A.K. & Soldin, S.J. IMx tacrolimus II assay: is it reliable at low blood concentrations? A comparison with tandem MS/MS. Clin. Chem. 35, 389–392 (2002).

    CAS  Google Scholar 

  14. Johnston, A. et al. Monitoring cyclosporin in blood: between-assay differences at trough and 2 h post-dose (C2). Ther. Drug Monit. 25, 167–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Steimer, W. Performance and specificity of monoclonal immunoassays for cyclosporine monitoring: how specific is specific? Clin. Chem. 45, 371–381 (1999).

    CAS  PubMed  Google Scholar 

  16. Seger, C., Stöggl, W., Tentschert, K., Ramsay, S. & Griesmacher, A. Flexibility in the chromatography setup of a HPLC-MS/MS based immunosuppressant TDM platform allows to add MPA monitoring without hardware changes. Ther. Drug Monit. 29, 510 (2007).

    Google Scholar 

  17. Hochegger, K. et al. Differential effects of rapamycin in anti-GBM glomerulonephritis. J. Am. Soc. Nephrol. 19, 1520–1529 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seger, C., Tentschert, K., Hammerer-Lercher, A. & Griesmacher, A. Implementing an immunosuppressant TDM HPLC-MS/MS platform in a clinical environment: comparison with commercial immunoassays as key step in the performance evaluation. Ther. Drug Monit. 29, 505 (2007).

    Google Scholar 

  19. Annesley, T.M. & Clayton, L. Simple extraction protocol for analysis of immunosuppressant drugs in whole blood. Clin. Chem. 50, 1845–1848 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Streit, F., Armstrong, V.W. & Oellerich, M. Rapid liquid chromatography-tandem mass spectrometry routine method for simultaneous determination of sirolimus, everolimus, tacrolimus, and cyclosporin A in whole blood. Clin. Chem. 48, 955–958 (2002).

    CAS  PubMed  Google Scholar 

  21. Ceglarek, U. et al. Rapid simultaneous quantification of immunosuppressants in transplant patients by turbulent flow chromatography combined with tandem mass spectrometry. Clin. Chim. Acta. 346, 181–190 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Koal, T., Deters, M., Casetta, B. & Kaever, V. Simultaneous determination of four immunosuppressants by means of high speed and robust on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B 805, 215–222 (2004).

    Article  CAS  Google Scholar 

  23. Korecka, M., Solari, S.G. & Shaw, L.M. Sensitive, high throughput HPLC-MS/MS method with on-line sample clean-up for everolimus measurement. Ther. Drug Monit. 28, 484–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Deters, M., Kirchner, G., Resch, K. & Kaever, V. Simultaneous quantification of sirolimus, everolimus, tacrolimus and cyclosporine by liquid chromatography-mass spectrometry (LC-MS). Clin. Chem. Lab. Med. 40, 285–292 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Christians, U. et al. Automated, fast and sensitive quantification of drugs in blood by liquid chromatography-mass spectrometry with on-line extraction: immunosuppressants. J. Chromatogr. B 748, 41–53 (2000).

    Article  CAS  Google Scholar 

  26. Volosov, A., Napoli, K.L. & Soldin, S.J. Simultaneous simple and fast quantification of three major immunosuppressants by liquid chromatography-tandem mass spectrometry. Clin. Biochem. 34, 285–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Vogeser, M., Zachoval, R., Spöhrer, U. & Jacob, K. Potential lack of specificity using electrospray tandem-mass spectrometry for the analysis of mycophenolic acid in serum. Ther. Drug Monit. 23, 722–724 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, Z. & Wang, S. Recent development in application of high performance liquid chromatography-tandem mass spectrometry in therapeutic drug monitoring of immunosuppressants. J. Immunol. Methods 336, 98–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, S., Magill, J.E. & Vicente, F.B. A fast and simple high-performance liquid chromatography/mass spectrometry method for simultaneous measurement of whole blood tacrolimus and sirolimus. Arch. Pathol. Lab. Med. 129, 661–665 (2005).

    CAS  PubMed  Google Scholar 

  30. Salm, P. et al. Evaluation of a fluorescent polarization immunoassay for whole blood everolimus determination using samples from renal transplant recipients. Clin. Biochem. 39, 732–738 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Napoli, K.L. Is microparticle enzyme-linked immunoassay (MEIA) reliable for use in tacrolimus TDM? Comparison of MEIA to liquid chromatography with mass spectrometric detection using longitudinal trough samples from transplant recipients. Ther. Drug Monit. 28, 491–504 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Keevil, B.G., McCann, S.J., Cooper, D.P. & Morris, M.R. Evaluation of a rapid micro-scale assay for tacrolimus by liquid chromatography-tandem mass spectrometry. Ann. Clin. Biochem. 39, 487–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Napoli, K.L. Organic solvents compromise performance of internal standard in proficiency testing of mass spectrometry-based assays for tacrolimus. Clin. Chem. 52, 765–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Annesley, T.M. Methanol-associated matrix effects in electrospray ionization tandem mass spectrometry. Clin. Chem. 53, 1827–1834 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Ekberg, H. et al. Reduced exposure to calcineurin inhibitors in renal transplantation. N. Engl. J. Med. 357, 2562–2575 (2007).

    Article  CAS  Google Scholar 

  36. Vogeser, M. & Spoehrer, U. Pitfall in the high-throughput quantification of whole blood cyclosporin A using liquid chromatography-tandem mass spectrometry. Clin. Chem. Lab. Med. 43, 400–402 (2005).

    CAS  PubMed  Google Scholar 

  37. Seger, C., Bock, M., Tentschert, K. & Griesmacher, A. Evaluating co–medication and matrix interference influence on ion yields: a key step in TDM HPLC-MS/MS assay validation. Ann. Transplant. 13 (Supp 1): 38 (2008).

    Google Scholar 

  38. Bland, J.M. & Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327, 307–310 (1986).

    Article  Google Scholar 

  39. Stoeckl, D., Cabaleiro, D.R., Van Uytfanghe, K. & Thienpont, L.M. Interpreting method comparison studies by use of the Bland-Altman plot: Reflecting the importance of sample size by incorporating confidence limits and predefined error limits in the graphic. Clin. Chem. 50, 2216–2218 (2004).

    Article  CAS  Google Scholar 

  40. Pfisterer, H., Seger, C., Griesmacher, A. & Schmid, R. Comparison of different HPLC-MS/MS based assays for sirolimus TDM—data from an inter-laboratory study. Ther. Drug Monit. 29, 507 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Seger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seger, C., Tentschert, K., Stöggl, W. et al. A rapid HPLC-MS/MS method for the simultaneous quantification of cyclosporine A, tacrolimus, sirolimus and everolimus in human blood samples. Nat Protoc 4, 526–534 (2009). https://doi.org/10.1038/nprot.2009.25

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2009.25

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing