Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs

Abstract

Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies. For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish these genomes to a high standard. Nowadays, this is not feasible for most projects, and the quality of genomes is generally of a much lower standard. This protocol describes software (PAGIT) that is used to improve the quality of draft genomes. It offers flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes (if available) in order to improve scaffolding and generating annotations. The protocol is most accessible for bacterial and small eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. Applying PAGIT to an E. coli assembly takes 24 h: it doubles the average contig size and annotates over 4,300 gene models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The 182 scaffolds in the E. coli assembly contain 342 gaps after being mapped to the reference genome.
Figure 3
Figure 4: The basic workflow of the protocol is shown for two common use-cases: for de novo assembly and when a reference genome is available.
Figure 5: Output of the PAGIT test script displayed in ACT.
Figure 6: Example of models in the E. coli example that were not transferred in RATT displayed in ACT.
Figure 7: View of an example of a frameshift in a gene model, visualized using ACT.

Similar content being viewed by others

References

  1. Chain, P.S. et al. Genome project standards in a new era of sequencing. Science 326, 236–237 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  3. Brent, M.R. Steady progress and recent breakthroughs in the accuracy of automated genome annotation. Nat. Rev. Genet. 9, 62–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Pruitt, K.D., Tatusova, T., Brown, G.R. & Maglott, D.R. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 40, D130–D135 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Salzberg, S.L. et al. GAGE: a critical evaluation of genome assemblies and assembly algorithms. Genome Res. 22, 557–567 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Narzisi, G. & Mishra, B. Comparing de novo genome assembly: the long and short of it. PLos ONE 6, e19175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, J., Chiodini, R., Badr, A. & Zhang, G. The impact of next-generation sequencing on genomics. J. Genet. Genomics 38, 95–109 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alkan, C., Sajjadian, S. & Eichler, E.E. Limitations of next-generation genome sequence assembly. Nat. Methods 8, 61–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Miller, J.R., Koren, S. & Sutton, G. Assembly algorithms for next-generation sequencing data. Genomics 6, 315–327 (2010).

    Article  CAS  Google Scholar 

  11. Treangen, T.J., Sommer, D.D., Angly, F.E., Koren, S. & Pop, M. Next generation sequence assembly with AMOS. Curr. Protoc. Bioinform. 33, 11.8.1–11.8.18 (2011).

    Article  Google Scholar 

  12. Zerbino, D.R. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinform. 31, 11.5.1–11.5.12 (2010).

    Article  Google Scholar 

  13. Assefa, S., Keane, T.M., Otto, T.D., Newbold, C. & Berriman, M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics 25, 1968–1969 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tsai, I.J., Otto, T.D. & Berriman, M. Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biol. 11, R41 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Otto, T.D., Sanders, M., Berriman, M. & Newbold, C. Iterative correction of reference nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 26, 1704–1707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Otto, T.D., Dillon, G.P., Degrave, W.S. & Berriman, M. RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res. 39, e57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Croucher, N.J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Downing, T. et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res. 21, 2143–2156 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rogers, M.B.H. et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res. 21, 2129–2142 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Protasio, A. et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis. 6, e1455 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kikuchi, T. et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog. 7, e1002219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olson, P.D., Zarowiecki, M., Kiss, F. & Brehm, K. Cestode genomics—progress and prospects for advancing basic and applied aspects of flatworm biology. Parasite Immunol. 34, 130–150 (2011).

    Article  CAS  Google Scholar 

  23. Heilbronner, S. et al. Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. FEMS Microbiol. Lett. 322, 60–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Omer, H. et al. Genotypic and phenotypic modifications of Neisseria meningitidis after an accidental human passage. PLoS One 6, e17145 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Petty, N.K. et al. Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux. PLoS Pathog. 7, e1002018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stabler, R.A. et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol. 10, R102 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kurtz, S. et al. Verstile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carver, T.B. et al. Artemis and ACT viewing, annotation and comparing sequences stored in relational database. Bioinformatics 24, 2672–2676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Koressaar, T. & Remm, M. Enhancements and modifications for primer design program Primer3. Bioinformatics 23, 1289–1291 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Galardini, M., Biondi, G., Bazzicalupo, M. & Mengoni, A. CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code Biol. Med. 6, 11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. van Hijum, S., Zomer, A., Kuipers, O. & Kok, J. Projector 2: contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies. Nucleic Acid Res. 33, W560–W566 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Richter, D., Schuster, S. & Huson, D. OSLay: optimal syntenic layout of unfinished assemblies. Bioinformatics 23, 1573–1579 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Husemann, P. & Stoye, J. r2cat: synteny plots and comparative assembly. Bioinformatics 26, 570–571 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Yao, G. et al. Graph accordance of next-generation sequence assemblies. Bioinformatics 28, 13–16 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Zimin, A.V., Smith, D.R., Sutton, G. & Yorke, J.A. Assembly reconciliation. Bioinformatics 24, 42–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, X., Medvin, D., Narasimham, G., Yoder-Himes, D. & Lory, S. CloG: a pipeline for closing gaps in a draft assembly using short reads. in 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (Orlando, Florida) 202–207 (IEEE, 2011).

  38. Pop, M., Kosack, D. & Salzberg, S. Hierarchical scaffolding with bambus. Genome Res. 14, 149–159 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dayarian, A., Michael, T. & Sengupta, A. SOPRA: scaffolding algorithm for paired reads via statistical optimization. BMC Bioinformatics 11, 345 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Boetzer, M., Henkel, C., Jansen, H., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Gao, S., Nagarajan, H. & Sung, W. Opera: reconstructing optimal genomic scaffolds using pair-end sequences. Res. Comput. Mol. Biol. 6577, 437–451 (2011).

    Article  CAS  Google Scholar 

  42. Ronaghi, M. Pyrosequencing sheds light on DNA sequencing. Genome Res. 11, 3–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Ning, Z., Cox, A. & Mullikin, J. SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1724–1729 (2001).

    Article  Google Scholar 

  44. Manske, H. & Kwiatkowski, D. SNP-o-matic. Bioinformatics 25, 2434–2435 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gajer, P.S., Schatz, M. & Salzberg, S.L. Automated correction of genome sequence errors. Nucleic Acids Res. 32, 562–569 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dutilh, B.H., Huynen, M.A. & Strous, M. Increasing the coverage of a metapopulation consensus genome by iterative read mapping assembly. Bioinformatics 25, 2878–2881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hubbard, T.J. et al. Ensembl 2009. Nucleic Acid Res. 37, D690–D697 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Davila, S.M. et al. GARSA: genomic analysis resources for sequence annotation. Bioinformatics 21, 4302–4303 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Almeida, L. et al. A system for automated bacterial (genome) integrated annotation—SABIA. Bioinformatics 20, 2832–2833 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Markowitz, V.M. et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 38, D382–D390 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 22, W465–W467 (2005).

    Article  CAS  Google Scholar 

  52. Thomson, N.R.H. et al. Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res. 18, 161–171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zerbino, D.R. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18, 821–829 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Phillippy, A., Schatz, M.C. & Pop, M. Genome assembly forensics: finding the elusive mis-assembly. Genome Biol. 9, R55 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Chappel for testing and checking the protocol; T. Carver for helping with the installation of the Virtual Machine; and M. Hunt for testing the virtual machine. T.D.O. was supported by the European Union 7th framework European Virtual Institute of Malaria Research (EVIMalaR); I.J.T., S.A.A. and M.B. were supported by the Wellcome Trust (grant number: 098051).

Author information

Authors and Affiliations

Authors

Contributions

M.T.S., T.D.O., C.N. and M.B. conceived and executed the examples. T.D.O., M.T.S., I.J.T. and S.A.A. conceived and wrote the installation procedures. All authors were involved with the writing of the manuscript.

Corresponding author

Correspondence to Thomas D Otto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Methods

PAGIT: two worked examples. Here we give a synopsis of the work-flow used for the two examples discussed in the "Anticipated Results" section. (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, M., Tsai, I., Assefa, S. et al. A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs. Nat Protoc 7, 1260–1284 (2012). https://doi.org/10.1038/nprot.2012.068

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2012.068

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research