Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Time-resolved fluorescence ligand binding for G protein–coupled receptors

Abstract

G protein–coupled receptors (GPCRs) and their ligands are traditionally characterized by radioligand-binding experiments. These experiments yield excellent quantitative data, but have low temporal and spatial resolution. In addition, the use of radioligands presents safety concerns. Here we provide a general procedure for an alternative approach with high temporal and spatial resolution, based on Tb+-labeled fluorescent receptor ligands and time-resolved fluorescence resonance energy transfer (TR-FRET). This protocol and its design are detailed here for the parathyroid hormone receptor, a class B GPCR, and its fluorescently labeled 34-amino acid peptide ligand, but it can be easily modified for other receptors and their appropriately labeled ligands. We discuss three protocol options that use Tb+-labeled fluorescent ligands: a time-resolved fluorescence separation option that works on native receptors but requires separation of bound and unbound ligand; a TR-FRET option using SNAP-tag-labeled receptors for high-throughput screening; and a TR-FRET option that uses fluorescently labeled antibodies directed against an epitope engineered into the Flag-labeled receptors' N terminus. These protocol options can be used as standard procedures with very high signal-to-background ratios in order to characterize ligands and their receptors in living cells and in cell membranes via straightforward plate-reader measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of time-resolved ligand-binding protocol formats for PTHRs.
Figure 2: Confocal imaging of [C13-d2]PTH′(1–34) on living cells.
Figure 3: Binding of Tb3+-cryptate-labeled PTH measured by TRFS protocols.
Figure 4: TR-FRET/SNAP.
Figure 5: TR-FRET/Ab.

Similar content being viewed by others

References

  1. Lundstrom, K. Structural genomics of GPCRs. Trends Biotechnol. 23, 103–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Overington, J.P., Al-Lazikani, B. & Hopkins, A.L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Rask-Andersen, M., Almen, M.S. & Schioth, H.B. Trends in the exploitation of novel drug targets. Nat. Rev. Drug Discov. 10, 579–590 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Bjarnadottir, T.K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein–coupled receptors in human and mouse. Genomics 88, 263–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Foord, S.M. et al. International Union of Pharmacology. XLVI. G protein–coupled receptor list. Pharmacol Rev. 57, 279–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Lagerstrom, M.C. & Schioth, H.B. Structural diversity of G protein–coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Pin, J.P. & Acher, F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr. Drug Targets CNS Neurol. Disord. 1, 297–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Lefkowitz, R.J. Historical review: a brief history and personal retrospective of seven transmembrane receptors. Trends Pharmacol. Sci. 25, 413–422 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. May, L.T. & Christopoulos, A. Allosteric modulators of G-protein–coupled receptors. Curr. Opin. Pharmacol. 3, 551–556 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Birdsall, N.J. Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol. Sci. 31, 499–508 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Christopoulos, A. & Kenakin, T. G protein–coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Hoyer, D., Schoeffter, P., Waeber, C. & Palacios, J.M. Serotonin 5-HT1D receptors. Ann. N Y Acad. Sci. 600, 168–181 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Palacios, J.M., Mengod, G., Vilaro, M.T. & Ramm, P. Recent trends in receptor analysis techniques and instrumentation. J. Chem. Neuroanat. 4, 343–353 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Amenta, F., Ferrante, F. & Ricci, A. Pharmacological characterisation and autoradiographic localisation of dopamine receptor subtypes in the cardiovascular system and in the kidney. Hypertens Res. 18 (suppl. 1), S23–S27 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Katugampola, S.D., Kuc, R.E., Maguire, J.J. & Davenport, A.P. G-protein–coupled receptors in human atherosclerosis: comparison of vasoconstrictors (endothelin and thromboxane) with recently de-orphanized (urotensin-II, apelin and ghrelin) receptors. Clin. Sci. (Lond) 103 (suppl. 48), 171S–175S (2002).10.1042/CS103S171S

    Article  CAS  Google Scholar 

  16. Lohse, M.J., Nuber, S. & Hoffmann, C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein–coupled receptor activation and signaling. Pharmacol. Rev. 64, 299–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Selvin, P.R. Principles and biophysical applications of lanthanide-based probes. Annu. Rev. Biophys. Biomol. Struct. 31, 275–302 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Degorce, F. et al. HTRF: a technology tailored for drug discovery—a review of theoretical aspects and recent applications. Curr. Chem. Genomics 3, 22–32 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. (Leipzig) 2, 55–75 (1948).

    Article  Google Scholar 

  20. Handl, H.L. & Gillies, R.J. Lanthanide-based luminescent assays for ligand-receptor interactions. Life Sci. 77, 361–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Hu, L.A., Zhou, T., Hamman, B.D. & Liu, Q. A homogeneous G protein–coupled receptor ligand binding assay based on time-resolved fluorescence resonance energy transfer. Assay Drug Dev. Technol. 6, 543–550 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Albizu, L. et al. Toward efficient drug screening by homogeneous assays based on the development of new fluorescent vasopressin and oxytocin receptor ligands. J. Med. Chem. 50, 4976–4985 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Zwier, J.M. et al. A fluorescent ligand-binding alternative using Tag-lite technology. J. Biomol. Screen 15, 1248–1259 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Leyris, J.P. et al. Homogeneous time-resolved fluorescence-based assay to screen for ligands targeting the growth hormone secretagogue receptor type 1a. Anal. Biochem. 408, 253–262 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Inglese, J. et al. Chemokine receptor-ligand interactions measured using time-resolved fluorescence. Biochemistry 37, 2372–2377 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Gao, X. et al. Europium-labeled melanin-concentrating hormone analogues: ligands for measuring binding to melanin-concentrating hormone receptors 1 and 2. Anal. Biochem. 328, 187–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Carter, P.H. et al. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-alpha. Proc. Natl. Acad. Sci. USA 98, 11879–11884 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazor, O. et al. Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies. Anal. Biochem. 301, 75–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Takeuchi, T., Nishikawa, T., Matsukawa, R. & Matsui, J. Nonisotopic receptor assay for benzodiazepine drugs using time-resolved fluorometry. Anal. Chem. 67, 2655–2658 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Handl, H.L., Vagner, J., Yamamura, H.I., Hruby, V.J. & Gillies, R.J. Lanthanide-based time-resolved fluorescence of in cyto ligand-receptor interactions. Anal. Biochem. 330, 242–250 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Maurel, D. et al. Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal. Biochem. 329, 253–262 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Kern, A., Albarran-Zeckler, R., Walsh, H.E. & Smith, R.G. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 73, 317–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cottet, A. & Kontos, T. Spin quantum bit with ferromagnetic contacts for circuit QED. Phys. Rev. Lett. 105, 160502 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Jares-Erijman, E.A. & Jovin, T.M. FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Miyawaki, A. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer. Annu. Rev. Biochem. 80, 357–373 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Börner, S. et al. FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat. Protoc. 6, 427–438 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Baker, J.G. et al. Synthesis and characterization of high-affinity 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-labeled fluorescent ligands for human β-adrenoceptors. J. Med. Chem. 54, 6874–6887 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nomura, W. et al. Fluorophore labeling enables imaging and evaluation of specific CXCR4-ligand interaction at the cell membrane for fluorescence-based screening. Bioconjug. Chem. 19, 1917–1920 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Kecskes, M., Kumar, T.S., Yoo, L., Gao, Z.G. & Jacobson, K.A. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: application to a fluorescence polarization-based receptor binding assay. Biochem. Pharmacol. 80, 506–511 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kozma, E. et al. Novel fluorescent antagonist as a molecular probe in A3 adenosine receptor binding assays using flow cytometry. Biochem. Pharmacol. 83, 1552–1561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sletten, E.M. & Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48, 6974–6998 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Daly, C.J. & McGrath, J.C. Fluorescent ligands, antibodies, and proteins for the study of receptors. Pharmacol. Ther. 100, 101–118 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Bazin, H., Trinquet, E. & Mathis, G. Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. J. Biotechnol. 82, 233–250 (2002).

    CAS  PubMed  Google Scholar 

  44. Alpha, B., Lehn, J.M. & Mathis, G. Energy-transfer luminescence of europium(iii) and terbium(iii) cryptates of macrobicyclic polypyridine ligands. Angew. Chem. Int. Edit. 26, 266–267 (1987).

    Article  Google Scholar 

  45. Kobilka, B.K. G protein–coupled receptor structure and activation. Biochim. Biophys. Acta. 1768, 794–807 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Castro, M., Nikolaev, V.O., Palm, D., Lohse, M.J. & Vilardaga, J.P. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc. Natl. Acad. Sci. USA 102, 16084–16089 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoffmann, C. et al. A FlAsH-based FRET approach to determine G protein–coupled receptor activation in living cells. Nat. Methods 2, 171–176 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Maurel, D. et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods 5, 561–567 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Albizu, L. et al. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat. Chem. Biol. 6, 587–594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weiland, G.A. & Molinoff, P.B. Quantitative analysis of drug-receptor interactions: I. Determination of kinetic and equilibrium properties. Life Sci. 29, 313–330 (1981).

    Article  CAS  PubMed  Google Scholar 

  52. Lohse, M.J. et al. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX)—a selective high-affinity antagonist radioligand for A1 adenosine receptors. Naunyn. Schmiedebergs Arch. Pharmacol. 336, 204–210 (1987).

    Article  CAS  PubMed  Google Scholar 

  53. Klotz, K.N. et al. 2-Chloro-N6-[3H]cyclopentyladenosine ([3H]CCPA)—a high-affinity agonist radioligand for A1 adenosine receptors. Naunyn. Schmiedebergs Arch. Pharmacol. 340, 679–683 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Weber, R.G., Jones, C.R., Lohse, M.J. & Palacios, J.M. Autoradiographic visualization of A1 adenosine receptors in rat brain with 3H8-cyclopentyl-1,3-dipropylxanthine. J. Neurochem. 54, 1344–1353 (1990).

    Article  CAS  PubMed  Google Scholar 

  55. Abou-Samra, A.B. et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc. Natl. Acad. Sci. USA 89, 2732–2736 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Raisz, L.G., Lorenzo, J., Gworek, S., Kream, B. & Rosenblatt, M. Comparison of the effects of a potent synthetic analog of bovine parathyroid hormone with native bPTH-(1–84) and synthetic bPTH-(1–34) on bone resorption and collagen synthesis. Calcif. Tissue Int. 29, 215–218 (1979).

    Article  CAS  PubMed  Google Scholar 

  57. Rosenblatt, M. & Potts, J.T. Jr. Design and synthesis of parathyroid hormone analogues of enhanced biological activity. Endocr. Res. Commun. 4, 115–133 (1977).

    Article  CAS  PubMed  Google Scholar 

  58. Pioszak, A.A. & Xu, H.E. Molecular recognition of parathyroid hormone by its G protein–coupled receptor. Proc. Natl. Acad. Sci. USA 105, 5034–5039 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jin, L. et al. Crystal structure of human parathyroid hormone 1–34 at 0.9-A resolution. J. Biol. Chem. 275, 27238–27244 (2000).

    CAS  PubMed  Google Scholar 

  60. Potts, J.T. Parathyroid hormone: past and present. J. Endocrinol. 187, 311–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Xu, J. et al. Octadentate cages of Tb(III) 2-hydroxyisophthalamides: a new standard for luminescent lanthanide labels. J. Am. Chem. Soc. 133, 19900–19910 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kupcho, K.R. et al. Simultaneous monitoring of discrete binding events using dual-acceptor terbium-based LRET. J. Am. Chem. Soc. 129, 13372–13373 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Dean, T., Vilardaga, J.P., Potts, J.T. Jr. & Gardella, T.J. Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol. Endocrinol. 22, 156–166 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Vilardaga, J.P., Bunemann, M., Krasel, C., Castro, M. & Lohse, M.J. Measurement of the millisecond activation switch of G protein–coupled receptors in living cells. Nat. Biotechnol. 21, 807–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Seifert, R., Wenzel-Seifert, K., Gether, U. & Kobilka, B.K. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. J. Pharmacol. Exp. Ther. 297, 1218–1226 (2001).

    CAS  PubMed  Google Scholar 

  66. Lee, C. et al. Role of the extracellular regions of the parathyroid hormone (PTH)/PTH-related peptide receptor in hormone binding. Endocrinology 135, 1488–1495 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. McGrath, J.C., Arribas, S. & Daly, C.J. Fluorescent ligands for the study of receptors. Trends Pharmacol. Sci. 17, 393–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Daly, C.J. et al. Fluorescent ligand binding reveals heterogeneous distribution of adrenoceptors and 'cannabinoid-like' receptors in small arteries. Br. J. Pharmacol. 159, 787–796 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lea, W.A. & Simeonov, A. Fluorescence polarization assays in small molecule screening. Expert. Opin. Drug Discov. 6, 17–32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. de Jong, L.A., Uges, D.R., Franke, J.P. & Bischoff, R. Receptor-ligand binding assays: technologies and applications. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 829, 1–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Gagne, A., Banks, P. & Hurt, S.D. Use of fluorescence polarization detection for the measurement of fluopeptidetm binding to G protein–coupled receptors. J. Recept. Signal Transduct. Res. 22, 333–343 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Briddon, S.J. & Hill, S.J. Pharmacology under the microscope: the use of fluorescence correlation spectroscopy to determine the properties of ligand-receptor complexes. Trends Pharmacol. Sci. 28, 637–645 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rose, R.H., Briddon, S.J. & Hill, S.J. A novel fluorescent histamine H1 receptor antagonist demonstrates the advantage of using fluorescence correlation spectroscopy to study the binding of lipophilic ligands. Br. J. Pharmacol. 165, 1789–1800 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar, S. et al. FLIM FRET technology for drug discovery: automated multiwell-plate high-content analysis, multiplexed readouts and application in situ. Chemphyschem 12, 609–626 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Waller, A. et al. Techniques: GPCR assembly, pharmacology and screening by flow cytometry. Trends Pharmacol. Sci. 25, 663–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Dicker, F., Quitterer, U., Winstel, R., Honold, K. & Lohse, M.J. Phosphorylation-independent inhibition of parathyroid hormone receptor signaling by G protein–coupled receptor kinases. Proc. Natl. Acad. Sci. USA 96, 5476–5481 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Motulsky, H.J. & Neubig, R.R. Analyzing binding data. Curr. Protoc. Neurosci. 52, 7.5.1–7.5.65 (2010).10.1002/0471142301.ns0705s52

  78. Motulsky, H.J. & Christopoulos, A. Fitting models to biological data using linear and nonlinear regression—a practical guide to curve fitting. Graphpad Software (2003).

  79. Lohse, M.J., Lenschow, V. & Schwabe, U. Two affinity states of Ri adenosine receptors in brain membranes. Analysis of guanine nucleotide and temperature effects on radioligand binding. Mol. Pharmacol. 26, 1–9 (1984).

    CAS  PubMed  Google Scholar 

  80. De Lean, A., Hancock, A.A. & Lefkowitz, R.J. Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol. Pharmacol. 21, 5–16 (1982).

    CAS  PubMed  Google Scholar 

  81. Nagasaki, K. et al. In vitro and in vivo antagonists against parathyroid hormone-related protein. Biochem. Biophys. Res. Commun. 158, 1036–1042 (1989).

    Article  CAS  PubMed  Google Scholar 

  82. Gardella, T.J., Luck, M.D., Fan, M.H. & Lee, C. Transmembrane residues of the parathyroid hormone (PTH)/PTH-related peptide receptor that specifically affect binding and signaling by agonist ligands. J. Biol. Chem. 271, 12820–12825 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratory is supported by the DFG (grant no. SFB 487 to M.J.L.) and the Bayerische Forschungsstiftung (fellowship to A.E.-N.).

Author information

Authors and Affiliations

Authors

Contributions

A.E.-N., T.R. and M.L. performed the experiments and analyzed the data; L.L. and E.B. labeled PTHs; A.E.-N., E.T. and M.J.L. wrote the paper.

Corresponding author

Correspondence to Martin J Lohse.

Ethics declarations

Competing interests

E.B., M.L., L.L., T.R. and E.T. are employees of Cisbio Bioassays.

Supplementary information

Supplementary Figure 1

cAMP accumulation by [C13-Tb3+]PTH'(1-34) and dissociation of [C35-d2]PTH'(1-34) from SNAP-PTHR. (a) cAMP accumulation by [C13-Tb3+]PTH'(1-34). [C13-Tb3+]PTH'(1-34) was tested in a cell-based cAMP radioimmuno assay. PTHR expressing HEK 293 ad cells generated similar cAMP amounts upon stimulation with 100 pM [C13-Tb3+]PTH'(1-34) or PTH'(1-34). Error bars represent SEM, n=3. (b) Dissociation of [C35-d2]PTH'(1-34) from SNAP-PTHR. SNAP-PTHR expressing HEK 293 ad cells were grown on 96-well plates, labeled with benzylguanine-Tb3+-cryptate and incubated with 5 nM [C35-d2]PTH'(1-34) for 4 h at 20 °C. Cells were washed three times with 100 μl Tag-lite medium within 3 min and 100 μl Tag-Lite labeling medium (assay buffer) or 100 μl assay buffer containing 1 μM PTH'(1-34) was added. Cells were incubated at 20 °C and TR-FRET ratios were measured at indicated time intervals using the Envision reader at 5 point scan mode. A representative experiment is shown. Error bars represent SEM of quadruplicates. (PDF 900 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emami-Nemini, A., Roux, T., Leblay, M. et al. Time-resolved fluorescence ligand binding for G protein–coupled receptors. Nat Protoc 8, 1307–1320 (2013). https://doi.org/10.1038/nprot.2013.073

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2013.073

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing