Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The STATs of cancer — new molecular targets come of age

Key Points

  • Signal transducer and activator of transcription (STAT)-family proteins are latent cytoplasmic transcription factors that convey signals from cytokine and growth-factor receptors to the nucleus.

  • STAT proteins, particularly STAT3 and the STAT5 proteins, are frequently overactivated in a variety of human solid tumours and blood malignancies.

  • Continuous deregulation of nuclear gene expression by persistent STAT3 and STAT5 signalling promotes the growth and survival of tumour cells, thereby contributing to malignancy.

  • Persistent STAT3 signalling in tumour cells induces tumour angiogenesis and suppresses anti-tumour immune responses, further enhancing tumour progression.

  • Tumour cells that become dependent on persistent STAT3 signalling are more sensitive to STAT3 inhibitors than normal cells, providing a therapeutic window based on transient or partial inhibition of STAT3.

  • Proof-of-concept studies in cell-culture and animal models have validated STAT3 and STAT5 proteins as promising molecular targets for novel cancer therapies, including small-molecule inhibitors of STAT signalling.

Abstract

Tumour cells acquire the ability to proliferate uncontrollably, resist apoptosis, sustain angiogenesis and evade immune surveillance. STAT proteins — especially STAT3 and STAT5 — regulate all of these processes and are persistently activated in a surprisingly large number of human cancers. Consequently, STAT proteins are emerging — unexpectedly — as ideal targets for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The STAT family of proteins.
Figure 2: Signalling pathways that converge on STATs.
Figure 3: Control of cell growth and survival by STATs.
Figure 4: STAT signalling and angiogenesis.
Figure 5: STAT signalling and tumour immune evasion.

Similar content being viewed by others

References

  1. Bishop, J. M. The molecular genetics of cancer. Science 235, 305–311 (1987).

    CAS  PubMed  Google Scholar 

  2. Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    CAS  PubMed  Google Scholar 

  3. Hahn, W. C. & Weinberg, R. A. Rules for making human tumor cells. New England J. Med. 347, 1593–1603 (2002).

    CAS  Google Scholar 

  4. Cantley, L. C. The phosphoinositide 3-kinase pathway. Science 296, 1655–1657 (2002).

    CAS  PubMed  Google Scholar 

  5. Darnell, J. E. Jr Transcription factors as targets for cancer therapy. Nature Rev. Cancer 2, 740–749 (2002). Superb review that makes a persuasive case for targeting transcription factors for cancer therapy.

    CAS  Google Scholar 

  6. Egan, S. E. & Weinberg, R. A. The pathway to signal achievement. Nature 365, 781–783 (1993).

    CAS  PubMed  Google Scholar 

  7. Vivanco, I. & Sawyers, C. L. The phosphatidylinositol 3-kinase–AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    CAS  Google Scholar 

  8. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  9. Darnell, J. E. Jr, Kerr, I. M. & Stark, G. R. Jak–STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).

    CAS  PubMed  Google Scholar 

  10. Darnell, J. E. Jr STATs and gene regulation. Science 277, 1630–1635 (1997).

    CAS  PubMed  Google Scholar 

  11. Bromberg, J. & Darnell, J. E. Jr The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19, 2468–2473 (2000).

    CAS  PubMed  Google Scholar 

  12. Bowman, T., Garcia, R., Turkson, J. & Jove, R. STATs in oncogenesis. Oncogene 19, 2474–2488 (2000).

    CAS  PubMed  Google Scholar 

  13. Darnell, J. E. Jr Studies of IFN-induced transcriptional activation uncover the Jak–Stat pathway. Interferon Cytokine Res. 18, 549–554 (1998).

    CAS  Google Scholar 

  14. Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H. & Schreiber, R. D. How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264 (1998).

    CAS  PubMed  Google Scholar 

  15. Levitzki, A. Protein tyrosine kinase inhibitors as novel therapeutic agents. Pharmacol. Ther. 82, 231–239 (1999).

    CAS  PubMed  Google Scholar 

  16. Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science 287, 1969–1973 (2000).

    CAS  PubMed  Google Scholar 

  17. Buettner, R., Mora, L. B. & Jove, R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin. Cancer Res. 8, 945–954 (2002).

    CAS  PubMed  Google Scholar 

  18. Taga, T. & Kishimoto, T. gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 15, 797–819 (1997).

    CAS  PubMed  Google Scholar 

  19. Ihle, J. N. The Stat family in cytokine signaling. Curr. Opin. Cell Biol. 13, 211–217 (2001).

    CAS  PubMed  Google Scholar 

  20. Reddy, E. P., Korapati, A., Chaturvedi, P. & Rane, S. IL-3 signaling and the role of Src kinases, JAKs and STATs: a covert liaison unveiled. Oncogene 19, 2532–2547 (2000).

    CAS  PubMed  Google Scholar 

  21. Levy, D. E. & Darnell, J. E. Jr. Stats: transcriptional control and biological impact. Nature Rev. Mol. Cell Biol. 3, 651–662 (2002).

    CAS  Google Scholar 

  22. Hirano, T., Ishihara, K. & Hibi, M. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19, 2548–2556 (2000).

    CAS  PubMed  Google Scholar 

  23. Heinrich, P. C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Silvennoinen, O., Schindler, C., Schlessinger, J. & Levy, D. E. Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science 261, 1736–1739 (1993).

    CAS  PubMed  Google Scholar 

  25. Zhong, Z., Wen, Z. & Darnell, J. E. Jr Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95–98 (1994).

    CAS  PubMed  Google Scholar 

  26. Ruff-Jamison, S. et al. Epidermal growth factor and lipopolysaccharide activate Stat3 transcription factor in mouse liver. J. Biol. Chem. 269, 21933–21935 (1994).

    CAS  PubMed  Google Scholar 

  27. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    CAS  PubMed  Google Scholar 

  28. Parsons, J. T. & Parsons, S. J. Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr. Opin. Cell Biol. 9, 187–192 (1997).

    CAS  PubMed  Google Scholar 

  29. Irby, R. B. & Yeatman, T. J. Role of Src expression and activation in human cancer. Oncogene 19, 5636–5642 (2000).

    CAS  PubMed  Google Scholar 

  30. Danial, N. N. & Rothman, P. JAK-STAT signaling activated by Abl oncogenes. Oncogene 19, 2523–2531 (2000).

    CAS  PubMed  Google Scholar 

  31. Lin, T. S., Mahajan, S. & Frank, D. A. STAT signaling in the pathogenesis and treatment of leukemias. Oncogene 19, 2496–2504 (2000).

    CAS  PubMed  Google Scholar 

  32. Yu, C. L. et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269, 81–83 (1995). First report of persistent activation of STAT3 signalling by an oncoprotein.

    CAS  PubMed  Google Scholar 

  33. Garcia, R. et al. Constitutive activation of Stat3 in fibroblasts transformed by diverse oncoproteins and in breast carcinoma cells. Cell Growth Differ. 8, 1267–1276 (1997).

    CAS  PubMed  Google Scholar 

  34. Bromberg, J. F., Horvath, C. M., Besser, D., Lathem, W. W. & Darnell, J. E. Jr Stat3 activation is required for cellular transformation by v-src. Mol. Cell. Biol. 18, 2553–2558 (1998). References 34 and 35 provide the first evidence for a requirement of activated STAT3 signalling in cell transformation by an oncoprotein.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Turkson, J. et al. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol. Cell. Biol. 18, 2545–2552 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999). An activated STAT3 mutant provides genetic evidence for the intrinsic oncogenic potential of the STAT3 protein.

    CAS  PubMed  Google Scholar 

  37. Grandis, J. R. et al. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth in vitro. J. Clin. Invest. 102, 1385–1392 (1998). Demonstration that STAT3 signalling is required for growth of human head and neck cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Catlett-Falcone, R. et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10, 105–115 (1999). The first direct evidence that inhibition of persistent STAT3 signalling in human tumour cells induces apoptosis.

    CAS  PubMed  Google Scholar 

  39. Lou, W., Ni, Z., Dyer, K., Tweardy, D. J. & Gao, A. C. Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 42, 239–242 (2000).

    CAS  PubMed  Google Scholar 

  40. Mora, L. B. et al. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res. 62, 6659–6666 (2002).

    CAS  PubMed  Google Scholar 

  41. Song, J. I. & Grandis, J. R. STAT signaling in head and neck cancer. Oncogene 19, 2489–2495 (2000).

    CAS  PubMed  Google Scholar 

  42. Hung, W. & Elliott, B. Cooperative effect of c-Src tyrosine kinase and Stat3 in activation of hepatocyte growth factor expression in mammary carcinoma cells. J. Biol. Chem. 276, 12395–12403 (2001).

    CAS  PubMed  Google Scholar 

  43. Zhang, Y. W., Wang, L. M., Jove, R. & Vande Woude, G. F. Requirement of Stat3 signaling for HGF/SF-Met mediated tumorigenesis. Oncogene 21, 217–226 (2002).

    CAS  PubMed  Google Scholar 

  44. Garcia, R. et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene 20, 2499–2513 (2001).

    CAS  PubMed  Google Scholar 

  45. Niu, G. et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21, 7001–7010 (2002).

    CAS  PubMed  Google Scholar 

  46. Song, L., Turkson, J., Karras, J. G., Jove, R. & Haura, E. B. Activation of Stat3 by receptor tyrosine kinases and cytokines regulates survival in human non-small cell carcinoma cells. Oncogene 22, 4150–4165 (2003).

    CAS  PubMed  Google Scholar 

  47. Sriuranpong, V. et al. Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer Res. 63, 2948–2956 (2003).

    CAS  PubMed  Google Scholar 

  48. Xi, S. et al. Src kinases mediate STAT growth pathways in squamous cell carcinoma of the head and neck. J. Biol. Chem. 278, 31574–31583 (2003).

    CAS  PubMed  Google Scholar 

  49. Frank, D. A. STAT signaling in cancer: insights into pathogenesis and treatment strategies. Cancer Treat. Res. 115, 267–291 (2003).

    CAS  PubMed  Google Scholar 

  50. Schwaller, J. et al. Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol. Cell 6, 693–704 (2000).

    CAS  PubMed  Google Scholar 

  51. Huang, M. et al. Inhibition of Bcr–Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene 21, 8804–8816 (2002).

    CAS  PubMed  Google Scholar 

  52. Levis, M. et al. A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 99, 3885–3891 (2002).

    CAS  PubMed  Google Scholar 

  53. Onishi, M. et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol. Cell. Biol. 18, 3871–3879 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bromberg, J. F., Horvath, C. M., Wen, Z., Schreiber, R. D. & Darnell, J. E. Jr Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon α and interferon γ. Proc. Natl Acad. Sci. USA 93, 7673–7678 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    CAS  PubMed  Google Scholar 

  56. Catlett-Falcone, R., Dalton, W. S. & Jove, R. STAT proteins as novel targets for cancer therapy. Curr. Opin. Oncol. 11, 490–496 (1999).

    CAS  PubMed  Google Scholar 

  57. Turkson, J. & Jove, R. STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19, 6613–6626 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Sillaber, C., Gesbert, F., Frank, D. A., Sattler, M. & Griffin, J. D. STAT5 activation contributes to growth and viability in Bcr/Abl-transformed cells. Blood 95, 2118–2125 (2000).

    CAS  PubMed  Google Scholar 

  59. Grandis, J. R. et al. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc. Natl Acad. Sci. USA 97, 4227–4232 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gesbert, F. & Griffin, J. D. Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 96, 2269–2276 (2000).

    CAS  PubMed  Google Scholar 

  61. Horita, M. et al. Blockade of the Bcr–Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J. Exp. Med. 191, 977–984 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zamo, A. et al. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21, 1038–1047 (2002).

    CAS  PubMed  Google Scholar 

  63. Epling-Burnette, P. K. et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J. Clin. Invest. 107, 351–362 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Aoki, Y., Feldman, G. M. & Tosato, G. Inhibition of STAT3 signaling induces apoptosis and decreases survivin expression in primary effusion lymphoma. Blood 101, 1535–1542 (2003).

    CAS  PubMed  Google Scholar 

  65. Shen, Y., Devgan, G., Darnell, J. E. Jr & Bromberg, J. F. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc. Natl Acad. Sci. USA 98, 1543–1548 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Prendergast, G. C. Mechanisms of apoptosis by c-Myc. Oncogene 18, 2967–2987 (1999).

    CAS  PubMed  Google Scholar 

  68. Bowman, T. et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc. Natl Acad. Sci. USA 98, 7319–7324 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ramana, C. V. et al. Regulation of c-myc expression by IFN-γ through Stat1-dependent and-independent pathways. EMBO J. 19, 263–272 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Martino, A., Holmes, J. H., Lord, J. D., Moon, J. J. & Nelson, B. H. Stat5 and Sp1 regulate transcription of the cyclin D2 gene in response to IL-2. J. Immunol. 166, 1723–1729 (2001).

    CAS  PubMed  Google Scholar 

  71. Kijima, T. et al. STAT3 activation abrogates growth factor dependence and contributes to head and neck squamous cell carcinoma tumor growth in vivo. Cell Growth Differ. 13, 355–362 (2002).

    CAS  PubMed  Google Scholar 

  72. Masuda, M. et al. Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res. 62, 3351–3355 (2002).

    CAS  PubMed  Google Scholar 

  73. Sinibaldi, D. et al. Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 19, 5419–5427 (2000).

    CAS  PubMed  Google Scholar 

  74. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    CAS  PubMed  Google Scholar 

  75. Raman, V. et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405, 974–978 (2000).

    CAS  PubMed  Google Scholar 

  76. Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst. 82, 4–6 (1990).

    CAS  PubMed  Google Scholar 

  77. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    CAS  PubMed  Google Scholar 

  78. Folkman, J. in Cancer Medicine. (eds. Holland, J. F. et al.) 181–204. (Williams and Wilkins, Baltimore, 1997).

    Google Scholar 

  79. Rak, J., Yu, J. L., Klement, G. & Kerbel, R. S. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J. Investig. Dermatol. Symp. Proc. 5, 24–33 (2000).

    CAS  PubMed  Google Scholar 

  80. Grunstein, J., Roberts, W. G., Mathieu-Costello, O., Hanahan, D. & Johnson, R. S. Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res. 59, 1592–1598 (1999).

    CAS  PubMed  Google Scholar 

  81. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).

    CAS  PubMed  Google Scholar 

  82. Plate, K. H., Breier, G., Weich, H. A. & Risau, W. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    CAS  PubMed  Google Scholar 

  83. Veikkola, T. & Alitalo, K. VEGFs, receptors and angiogenesis. Semin. Cancer Biol. 9, 211–220 (1999).

    CAS  PubMed  Google Scholar 

  84. Veikkola, T., Karkkainen, M., Claesson-Welsh, L. & Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 60, 203–212 (2000).

    CAS  PubMed  Google Scholar 

  85. Niu, G. et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 21, 2000–2008 (2002). First report that VEGF is a direct target gene of STAT3.

    CAS  PubMed  Google Scholar 

  86. Wei, D. et al. Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22, 319–329 (2003).

    CAS  PubMed  Google Scholar 

  87. Wei, L. H. et al. Interleukin-6 promotes cervical tumor growth by VEGF-dependent angiogenesis via a STAT3 pathway. Oncogene 22, 1517–1527 (2003).

    CAS  PubMed  Google Scholar 

  88. Semenza, G. L. Involvement of hypoxia-inducible factor 1 in human cancer. Intern. Med. 41, 79–83 (2002).

    CAS  PubMed  Google Scholar 

  89. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    CAS  Google Scholar 

  90. Ravi, R. et al. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1 α. Genes Dev. 14, 34–44 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bartoli, M. et al. VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB J. 17, 1562–1564 (2003).

    CAS  PubMed  Google Scholar 

  92. Yahata, Y. et al. Nuclear translocation of phosphorylated STAT3 is essential for VEGF-induced human dermal microvascular endothelial cell migration and tube formation. J. Biol. Chem. 278, 40026–40031 (2003).

    CAS  PubMed  Google Scholar 

  93. Deo, D. D. et al. Phosphorylation of Stat-3 in response to basic fibroblast growth factor occurs through a mechanism involving platelet-activating factor, JAK-2, and Src in human umbilical vein endothelial cells: evidence for a dual kinase mechanism. J. Biol. Chem. 277, 21237–21245 (2002).

    CAS  PubMed  Google Scholar 

  94. Pardoll, D. M. Spinning molecular immunology into successful immunotherapy. Nature Rev. Immunol. 2, 227–238 (2002).

    CAS  Google Scholar 

  95. Pardoll, D. M. Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 21, 807–839 (2003). References 94 and 95 provide comprehensive reviews on the current understanding of the mechanisms of tumour immune evasion.

    CAS  PubMed  Google Scholar 

  96. Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10, 39–49 (1999).

    CAS  PubMed  Google Scholar 

  97. Lee, C. K. et al. Stat3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 17, 63–72 (2002).

    CAS  PubMed  Google Scholar 

  98. Welte, T. et al. STAT3 deletion during hematopoiesis causes Crohn's disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc. Natl Acad. Sci. USA 100, 1879–1884 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat3 signaling in tumor cells. Nature Med. 10, 48–54 (2004). Demonstration that persistent STAT3 activity in tumour cells suppresses anti-tumour immune responses.

    PubMed  Google Scholar 

  100. Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med. 2, 1096–1103 (1996).

    CAS  PubMed  Google Scholar 

  101. Yang, A. S. & Lattime, E. C. Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res. 63, 2150–2157 (2003).

    CAS  PubMed  Google Scholar 

  102. Ratta, M. et al. Dendritic cells are functionally defective in multiple myeloma: the role of interleukin-6. Blood 100, 230–237 (2002).

    CAS  PubMed  Google Scholar 

  103. Sombroek, C. C. et al. Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J. Immunol. 168, 4333–4343 (2002).

    CAS  PubMed  Google Scholar 

  104. Nefedova, Y. et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J. Immunol. 172, 464–474 (2004).

    CAS  PubMed  Google Scholar 

  105. Cheng, F. et al. A critical role for Stat3 signaling in immune tolerance. Immunity 19, 425–436 (2003).

    CAS  PubMed  Google Scholar 

  106. Niu, G. et al. Gene therapy with dominant-negative STAT3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res. 59, 5059–5063 (1999). The first validation of STAT3 as a target for cancer therapy in an animal model.

    CAS  PubMed  Google Scholar 

  107. Niu, G. et al. Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. Cancer Res. 61, 3276–3280 (2001).

    CAS  PubMed  Google Scholar 

  108. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA 94, 3801–3804 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Akira, S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene 19, 2607–2611 (2000).

    CAS  PubMed  Google Scholar 

  110. Liu, X. et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11, 179–186 (1997).

    CAS  PubMed  Google Scholar 

  111. Socolovsky, M., Fallon, A. E., Wang, S., Brugnara, C. & Lodish, H. F. Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-XL induction. Cell 98, 181–191 (1999).

    CAS  PubMed  Google Scholar 

  112. Teglund, S. et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).

    CAS  PubMed  Google Scholar 

  113. Battle, T. E. & Frank, D. A. The role of STATs in apoptosis. Curr. Mol. Med. 2, 381–392 (2002).

    CAS  PubMed  Google Scholar 

  114. Turkson, J. et al. Phosphotyrosyl peptides block Stat3-mediated DNA-binding activity, gene regulation and cell transformation. J. Biol. Chem. 276, 45443–45455 (2001). Proof of principle that small peptide molecules can disrupt STAT3 dimerization and block cell transformation.

    CAS  PubMed  Google Scholar 

  115. Blaskovich, M. A. et al. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res. 63, 1270–1279 (2003).

    CAS  PubMed  Google Scholar 

  116. Konnikova, L., Kotecki, M., Kruger, M. M. & Cochran, B. H. Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells. BMC Cancer 3, 23 (2003).

    PubMed  PubMed Central  Google Scholar 

  117. Leong, P. et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc. Natl Acad. Sci. USA 100, 4138–4143 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Starr, R. & Hilton, D. J. Negative regulation of the JAK/STAT pathway. Bioessays 21, 47–52 (1999).

    CAS  PubMed  Google Scholar 

  119. Naka, T., Fujimoto, M. & Kishimoto, T. Negative regulation of cytokine signaling: STAT-induced STAT inhibitor. Trends Biochem. Sci. 24, 394–398 (1999).

    CAS  PubMed  Google Scholar 

  120. Shuai, K. Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19, 2638–2644 (2000).

    CAS  PubMed  Google Scholar 

  121. Galm, O., Yoshikawa, H., Esteller, M., Osieka, R. & Herman, J. G. SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 101, 2784–2788 (2003).

    CAS  PubMed  Google Scholar 

  122. Yoshikawa, H. et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nature Genet. 28, 29–35 (2001).

    CAS  PubMed  Google Scholar 

  123. Chen, C. Y. et al. SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer 37, 300–305 (2003).

    CAS  PubMed  Google Scholar 

  124. Zhang, Q. et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immunol. 168, 466–474 (2002).

    CAS  PubMed  Google Scholar 

  125. Turkson, J. et al. Novel peptidomimetic inhibitors of Stat3 dimerization and biological activity. Mol. Cancer Ther. (in the press).

  126. Berg, T. et al. Small-molecular antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc. Natl Acad. Sci. USA 99, 3830–3835 (2002). First example of a small-molecule inhibitor of transcription-factor dimerization that blocks cell transformation.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratories for stimulating discussions, A. Levitzki for inspiring the title of this review, R. Buettner for assistance with references, J. Brugger for first drafts of the figures, and A. Bruce for secretarial assistance. Work in the authors' laboratories was supported by grants from the NIH, the Dr. Tsai-Fan Yu Endowment for Cancer Research and the Angela Musette Russo Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

head and neck cancer

leukaemia

lung cancer

melanoma

multiple myeloma

prostate cancer

LocusLink

ABL

AKT

BCL-X L

EGFR

FLT3

HGF

HIF1

IL-6

JAK family

MCL1

c-MET

c-MYC

p53

PDGFR

RAS

SRC

STAT1

STAT3

STAT5a

STAT5b

TGF-α

VEGF

Glossary

DANGER SIGNALS

Inflammatory mediators produced during viral or bacterial infection that alert the immune system to danger. These signals include cytokines, chemokines and other physiological mediators, such as nitric oxide.

T-CELL TOLERANCE

The inability of T cells to respond to danger signals. It is induced when T cells are initially exposed to antigens in the absence of danger signals. Tolerance results in the suppression of immune responses to tumours.

BYSTANDER EFFECT

The indirect inhibition or killing of tumour cells that are adjacent to those directly affected by gene therapy or pharmacological inhibitors. This could involve soluble factors that are released by apoptotic cancer cells or immune responses.

DECOY OLIGONUCLEOTIDE

A short stretch of synthetic DNA that contains the cognate DNA-binding site of a transcription factor and thereby serves to sequester and functionally inactivate that factor.

PEPTIDOMIMETICS

Small, organic molecules that mimic short stretches of amino acids and can be engineered to bind competitively to native proteins, and can therefore be used as drugs that disrupt protein function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Jove, R. The STATs of cancer — new molecular targets come of age. Nat Rev Cancer 4, 97–105 (2004). https://doi.org/10.1038/nrc1275

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing