Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer and the chemokine network

Key Points

  • Chemokines are a subset of cytokines that cause the directed migration of leukocytes along a chemical gradient of ligand, known as the chemokine gradient. More than 50 human chemokines and 18 chemokine receptors have been discovered so far.

  • Many cancers have a complex chemokine network that influences the immune-cell infiltration of a tumour, as well as tumour cell growth, survival and migration, and angiogenesis.

  • Immune cells, endothelial cells and tumour cells themselves express chemokine receptors and can respond to chemokine gradients.

  • Chemokines are a key determinant of the macrophage and lymphocyte infiltrate of human cancers and might contribute to T-helper 2 cell polarization.

  • Malignant cells from different cancer types have different profiles of chemokine-receptor expression, but CXCR4 is most commonly found; at the last count, cells from 23 different cancer types expressed this receptor.

  • Mutations in genes that alter levels of hypoxia-inducible factor, or gene-fusion events, can induce CXCR4 in cells that do not normally express this receptor. CXCR4 is also transiently increased by factors such as hypoxia, vascular endothelial growth factor and oestrogen in the tumour microenvironment.

  • Studies of human cancer biopsy sampler and mouse cancer models show that cancer cell chemokine-receptor expression is associated with increased metastatic capacity.

  • Preliminary laboratory data show that chemokine-receptor antagonists inhibit macrophage infiltrates, can induce tumour growth arrest or apoptosis, and prevent metastatic spread.

  • Research into the cancer chemokine network is revealing parallels between the pathology of inflammation and malignancy, parallels that enhance our understanding of both types of disease and indicate new approaches for treatment.

Abstract

A complex network of chemokines and their receptors influences the development of primary tumours and metastases. New information about the biological role of chemokines in these processes is providing insights into host–tumour interactions, such as the role of the leukocyte infiltrate, and into the mechanisms that determine the metastatic potential and site-specific spread of cancer cells. Chemokine-receptor antagonists are showing promise in animal models of inflammation and autoimmune disease. Could manipulating the local chemokine network have therapeutic benefits in malignant disease?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of a chemokine gradient in a cancer.
Figure 2: The chemokine wheel.
Figure 3: The chemokine network of human epithelial ovarian cancer.
Figure 4: The significance of chemokine-receptor expression on cancer cells.

Similar content being viewed by others

References

  1. Rossi, D. & Zlotnik, A. The biology of chemokines and their receptors. Annu. Rev. Immunol. 18, 217–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Murphy, P. M. et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52, 145–176 (2000). An encyclopedic review of the chemokine universe.

    CAS  PubMed  Google Scholar 

  3. Zlotnik, A. & Yoshie, O. Chemokines: a new classification system and their role in immunity. Immunity 12, 121–127 (2000).

    CAS  PubMed  Google Scholar 

  4. Locati, M. et al. Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J. Immunol. 168, 3557–3562 (2002).

    CAS  PubMed  Google Scholar 

  5. Gupta, S. K., Lysko, P. G., Pillarisetti, K., Ohlstein, E. & Stadel, J. M. Chemokine receptors in human endothelial cells. J. Biol. Chem. 273, 4282–4287 (1998).

    CAS  PubMed  Google Scholar 

  6. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001). Experiments on the involvement of chemokines and their receptors in metastasis.

    CAS  PubMed  Google Scholar 

  7. Scotton, C. J., Wilson, J. L., Milliken, D., Stamp, G. & Balkwill, F. R. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res. 61, 4961–4965 (2001).

    CAS  PubMed  Google Scholar 

  8. Balkwill, F. The significance of cancer cell expression of CXCR4. Semin. Cancer Biol. 14, 171–179 (2004).

    CAS  PubMed  Google Scholar 

  9. Balkwill, F. Chemokine biology in cancer. Semin. Immunol. 15, 49–55 (2003).

    CAS  PubMed  Google Scholar 

  10. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow. Lancet 357, 539–545 (2001).

    CAS  PubMed  Google Scholar 

  11. Brigati, C., Noonan, D. M., Albini, A. & Benelli, R. Tumors and inflammatory infiltrates: friends or foes? Clin. Exp. Metastasis 19, 247–258 (2002).

    CAS  PubMed  Google Scholar 

  12. Coussens, L. M. & Werb, Z. Cancer and inflammation. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Negus, R. P. M., Stamp, G. W. H., Hadley, J. & Balkwill, F. R. A quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am. J. Pathol. 150, 1723–1734 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pollard, J. W. Tumour-educated macrophages promote tumour progression and metastasis. Nature Rev. Cancer 4, 71–78 (2004).

    CAS  Google Scholar 

  15. Bottazzi, B. et al. Regulation of the macrophage content of neoplasms by chemoattractants. Science 220, 210–212 (1983).

    CAS  PubMed  Google Scholar 

  16. Negus, R. P. M. et al. The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J. Clin. Invest. 95, 2391–2396 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Milliken, D., Scotton, C., Raju, S., Balkwill, F. & Wilson, J. Analysis of chemokines and chemokine receptor expression in ovarian cancer ascites. Clin. Cancer Res. 8, 1108–1114 (2002).

    CAS  PubMed  Google Scholar 

  18. Skinnider, B. F. & Mak, T. W. The role of cytokines in classical Hodgkin lymphoma. Blood 99, 4283–4297 (2002).

    CAS  PubMed  Google Scholar 

  19. Scotton, C., Milliken, D., Wilson, J., Raju, S. & Balkwill, F. Analysis of CC chemokine and chemokine receptor expression in solid ovarian tumours. Br. J. Cancer 85, 891–897 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sica, A. et al. Defective expression of the monocyte chemotactic protein-1 receptor CCR2 in macrophages associated with human ovarian carcinoma. J. Immunol. 164, 733–738 (2000).

    CAS  PubMed  Google Scholar 

  21. Grimshaw, M. J. & Balkwill, F. R. Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation: a potential mechanism. Eur. J. Immunol. 31, 480–489 (2001).

    CAS  PubMed  Google Scholar 

  22. Sozzani, S. et al. The viral chemokine macrophage inflammatory protein-II is a selective TH2 chemoattractant. Blood 92, 4036–4039 (1998).

    CAS  PubMed  Google Scholar 

  23. Sica, A. et al. Autocrine production of IL-10 mediates defective IL-12 production and NF-κB activation in tumor-associated macrophages. J. Immunol. 164, 762–767 (2000).

    CAS  PubMed  Google Scholar 

  24. Gu, L. et al. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407–411 (2000).

    CAS  PubMed  Google Scholar 

  25. Zou, W. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nature Med. 7, 1339–1346 (2001).

    CAS  PubMed  Google Scholar 

  26. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002). Excellent review on macrophages and tumour progression.

    CAS  PubMed  Google Scholar 

  27. Robinson, S. C., Scott, K. A. & Balkwill, F. R. Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-α. Eur. J. Immunol. 32, 404–412 (2002).

    CAS  PubMed  Google Scholar 

  28. Bingle, L., Brown, N. J. & Lewis, C. E. The role of tumour associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 196, 254–265 (2002).

    CAS  PubMed  Google Scholar 

  29. Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S. & Ruco, L. The origin and function of tumor-associated macrophages. Immunol. Today 13, 265–270 (1992).

    CAS  PubMed  Google Scholar 

  30. Lin, E. Y., Nguyen, A. V., Russell, R. G. & Pollard, J. W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–739 (2001). Interesting paper indicating that tumour-associated macrophages might aid metastatic spread.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348, 203–213 (2003).

    CAS  PubMed  Google Scholar 

  32. Daniel, D. et al. Immune enhancement of skin carcinogenesis by CD4+ T cells. J. Exp. Med. 197, 1017–1028 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Azenshtein, E. et al. The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Res. 62, 1093–1102 (2002).

    CAS  PubMed  Google Scholar 

  34. Saji, H. et al. Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer 92, 1085–1091 (2001).

    CAS  PubMed  Google Scholar 

  35. Luboshits, G. et al. Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Res. 59, 4681–4687 (1999).

    CAS  PubMed  Google Scholar 

  36. Ohta, M. et al. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int. J. Cancer 102, 220–224 (2002).

    CAS  PubMed  Google Scholar 

  37. Nesbit, M., Schaider, H., Miller, T. H. & Herlyn, M. Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumour formation in nontumorigenic melanoma cells. J. Immunol. 166, 6483–6490 (2001).

    CAS  PubMed  Google Scholar 

  38. Monti, P. et al. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res. 63, 7451–7461 (2003).

    CAS  PubMed  Google Scholar 

  39. Moran, C. J. et al. RANTES expression is a predictor of survival in stage I lung adenocarcinoma. Clin. Cancer Res. 8, 3803–3812 (2002).

    CAS  PubMed  Google Scholar 

  40. Struyf, S. et al. PARC/CCL18 is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am. J. Pathol. 163, 2065–2075 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Murphy, P. M. Chemokines and molecular basis of cancer metastasis. N. Engl. J. Med. 354, 833–835 (2001).

    Google Scholar 

  42. Allavena, P. et al. The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol. Rev. 177, 141–149 (2000).

    CAS  PubMed  Google Scholar 

  43. Kijima, T. et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res. 62, 6304–6311 (2002).

    CAS  PubMed  Google Scholar 

  44. Corcione, A. et al. Stromal cell-derived factor-1 as a chemoattractant for follicular center lymphoma B cells. J. Natl Cancer Inst. 92, 628–635 (2000).

    CAS  PubMed  Google Scholar 

  45. Zhou, Y., Larsen, P. H., Hao, C. & Yong, V. W. CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J. Biol. Chem. 277, 49481–49487 (2002).

    CAS  PubMed  Google Scholar 

  46. Koshiba, T. et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin. Cancer Res. 6, 3530–3535 (2000).

    CAS  PubMed  Google Scholar 

  47. Scotton, C. J. et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res. 62, 5930–5938 (2002).

    CAS  PubMed  Google Scholar 

  48. Hwang, J. H. et al. CXC chemokine receptor 4 expression and function in human anaplastic thyroid cancer cells. J. Clin. Endocrinol. Metab. 88, 408–416 (2003).

    CAS  PubMed  Google Scholar 

  49. Geminder, H. et al. A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases and neuroblastoma. J. Immunol. 167, 4747–4757 (2001).

    CAS  PubMed  Google Scholar 

  50. Tachibana, K. et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594 (1998).

    CAS  PubMed  Google Scholar 

  51. Zou, Y. -R., Kottmann, A. H., Kuroda, M., Taniuchi, I. & Littman, D. R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    CAS  PubMed  Google Scholar 

  52. Lapidot, T. & Kollet, O. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2mnull mice. Leukemia 16, 1992–2003 (2002).

    CAS  PubMed  Google Scholar 

  53. Ara, T. et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J. Immunol. 170, 4649–4655 (2003).

    CAS  PubMed  Google Scholar 

  54. Egawa, T. et al. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B cell growth-stimulating factor. Immunity 15, 323–334 (2001).

    CAS  PubMed  Google Scholar 

  55. Sun, Y. -X. et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J. Cell Biochem. 89, 462–473 (2003). Comprehensive study of CXCR4 expression in one cancer type.

    CAS  PubMed  Google Scholar 

  56. Jordan, N. J. et al. Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. J. Clin. Invest. 104, 1061–1069 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bachelder, R. E., Wendt, M. A. & Mercurio, A. M. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 62, 7203–7206 (2002).

    CAS  PubMed  Google Scholar 

  58. Hall, J. M. & Korach, K. S. Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol. Endocrinol. 17, 792–803 (2003).

    CAS  PubMed  Google Scholar 

  59. Helbig, G. et al. NF-κB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem. 278, 21631–21638 (2003).

    CAS  PubMed  Google Scholar 

  60. Staller, P. et al. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425, 307–311 (2003). Fascinating observation that VHL mutations upregulate CXCR4 — a genetic explanation for chemokine-receptor expression by tumour cells.

    CAS  PubMed  Google Scholar 

  61. Schioppa, T. et al. Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198, 1391–1402 (2003). This paper complements reference 60. It provides an epigenetic explanation for CXCR4 expression on cancer cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Libura, J. et al. CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 100, 2597–2606 (2002).

    CAS  PubMed  Google Scholar 

  63. Kato, M., Kitayama, J., Kazama, S. & Nagawa, H. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res. 5, 144–150 (2003).

    Google Scholar 

  64. Darash-Yahana, M. et al. Human prostate cancer growth, vascularisation and metastasis is stimulated via high expression levels of the chemokine receptor CXCR4. Proc. Am. Assoc. Cancer Res. 44, 789 (2003).

    Google Scholar 

  65. Murakami, T. et al. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res. 62, 7328–7334 (2002).

    CAS  PubMed  Google Scholar 

  66. Cardones, A. R., Murakami, T. & Hwang, S. T. CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in viva via β-integrin. Cancer Res. 63, 6751–6757 (2003).

    CAS  PubMed  Google Scholar 

  67. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    CAS  PubMed  Google Scholar 

  68. Phillips, R. J. et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am. J. Respir. Crit. Care Med. 167, 1676–1686 (2003).

    PubMed  Google Scholar 

  69. Barbero, S. et al. Stromal cell-derived factor 1a stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res. 63, 1969–1974 (2003).

    CAS  PubMed  Google Scholar 

  70. Zeelenberg, I. S., Ruuls-Van Stalle, L. & Roos, E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res. 63, 3833–3839 (2003). Shows that cancer cells in which CXCR4 has been downregulated still spread to the lungs but they do not proliferate to form metastatic deposits.

    CAS  PubMed  Google Scholar 

  71. Moore, R. et al. Tumour necrosis factor-α deficient mice are resistant to skin carcinogenesis. Nature Med. 5, 828–831 (1999).

    CAS  PubMed  Google Scholar 

  72. Szlosarek, P. & Balkwill, F. Tumour necrosis factor-α: a potential target in the therapy of solid tumors. Lancet Oncol. 4, 565–573 (2003).

    CAS  PubMed  Google Scholar 

  73. Dick, J. E. & Lapidot, T. Stem cells take a shortcut to the bone marrow. Blood 101, 2901–2902 (2003).

    CAS  Google Scholar 

  74. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunol. 3, 687–694 (2002).

    CAS  Google Scholar 

  75. Levesque, J. -P., Hendy, J., Takamatsu, Y., Simmons, P. J. & Bendall, L. J. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J. Clin. Invest. 111, 187–196 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kollet, O. et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J. Clin. Invest. 112, 160–169 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. De Clercq, E. The bicyclam AMD3100 story. Nature Rev. Drug Discov. 2, 581–587 (2003).

    CAS  Google Scholar 

  78. Liles, W. C. et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102, 2728–2730 (2003).

    CAS  PubMed  Google Scholar 

  79. Schrader, A. J. et al. CXCR4/CXCL12 expression and signalling in kidney cancer. Br. J. Cancer 86, 1250–1256 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Mashino, K. et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res. 62, 2937–2941 (2002).

    CAS  PubMed  Google Scholar 

  81. Takanami, I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int. J. Cancer 105, 186–189 (2003).

    CAS  PubMed  Google Scholar 

  82. Ding, Y. et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin. Cancer Res. 9, 3406–3412 (2003).

    CAS  PubMed  Google Scholar 

  83. Till, K. J., Lin, K., Zuzel, M. & Cawley, J. C. The chemokine receptor CCR7 and α4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood 99, 2977–2984 (2002).

    CAS  PubMed  Google Scholar 

  84. Kleinhans, M. et al. Functional expression of the eotaxin receptor CCR3 in CD30+ cutaneous T-cell lymphoma. Blood 101, 1487–1493 (2003).

    CAS  PubMed  Google Scholar 

  85. Ishida, T. et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin. Cancer Res. 9, 3625–3634 (2003).

    CAS  PubMed  Google Scholar 

  86. Kleeff, J. et al. Detection and localization of MIP-3α/LARC/Exodus, a macrophage proinflammatory chemokine, and its CCR6 receptor in human pancreatic cancer. Int. J. Cancer 81, 650–657 (1999).

    CAS  PubMed  Google Scholar 

  87. Manes, S. et al. CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. J. Exp. Med. 198, 1381–1389 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dhawan, P. & Richmond, A. Role of CXCL1 in tumorigenesis of melanoma. J. Leukoc. Biol. 72, 9–18 (2002).

    CAS  PubMed  Google Scholar 

  89. Yang, T. Y. et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J. Exp. Med. 191, 445–453 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Murakami, T. et al. Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J. Exp. Med. 198, 1337–1347 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wiley, H. E., Gonzalez, E. B., Maki, S., Wu, M. -T. & Hwang, S. T. Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J. Natl Cancer Inst. 93, 1638–1643 (2001).

    CAS  PubMed  Google Scholar 

  92. Proudfoot, A. E. I. Chemokine receptors: multifaceted therapeutic targets. Nature Rev. Immunol. 2, 106–115 (2002).

    CAS  Google Scholar 

  93. Belperio, J. A. et al. CXC chemokines in angiogenesis. J. Leukoc. Biol. 68, 1–8 (2000).

    CAS  PubMed  Google Scholar 

  94. Proudfoot, A. E. et al. Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. J. Biol. Chem. 274, 32478–32485 (1999).

    CAS  PubMed  Google Scholar 

  95. Robinson, S. C. et al. A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res. 63, 8360–8365 (2003). Proof-of-principle study showing that chemokine-receptor antagonists inhibit the macrophage infiltrate in experimental tumours and slow down tumour growth.

    CAS  PubMed  Google Scholar 

  96. Zeelenberg, I. S., Ruuls-Van Stalle, L. & Roos, E. Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a cell hybridoma. J. Clin. Invest. 108, 269–277 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Bertolini, F. et al. CXCR4 neutralization, a novel therapeutic approach for non-Hodgkin's lymphoma. Cancer Res. 62, 3106–3112 (2002).

    CAS  PubMed  Google Scholar 

  98. Rubin, J. B. et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc. Natl Acad. Sci. USA 100, 13513–13518 (2003). Translational study showing that a chemokine-receptor antagonist acts directly on tumour cells to inhibit tumour growth in the brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Signore, A., Capriotti, G., Scopinaro, F., Bonanno, E. & Modesti, A. Radiolabelled lymphokines and growth factors for in vivo imaging of inflammation, infection and cancer. Trends Immunol. 24, 395–402 (2003).

    CAS  PubMed  Google Scholar 

  100. Homey, B., Muller, A. & Zlotnik, A. Chemokines: agents for the immunotherapy of cancer? Nature Rev. Immunol. 2, 175–184 (2002).

    CAS  Google Scholar 

  101. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank J. Wilson, H. Kulbe and V. Slettenaar for stimulating discussion.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Fran Balkwill is a consultant for Centocor Inc. — the manufacturer of Infliximab (an anti-TNF antibody), which is used in the treatment of inflammatory disease.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

chronic lymphocytic leukaemia

epithelial ovarian cancer

Hodgkin's lymphoma

Kaposi's sarcoma

neuroblastoma

non-small-cell lung cancer

pancreatic cancer

prostate cancer

renal-cell carcinoma

thyroid cancer

Entrez Gene

CCL2

CCL3

CCL4

CCL5

CCL8

CCL18

CCL20

CCL21

CCL22

CCR1

CCR6

CCR9

CDKN1A

CXCL1

CXCL2

CXCL8

CXCL12

CX3CR1

CXCR4

CXCR5

CXCR6

IL-10

MDM2

MMP9

VEGF

VHL

Glossary

CHEMOKINE

This term refers to a family of chemotactic cytokines. These small, inducible cytokines are leukocyte-subtype-selective chemoattractants. Some chemokines also have other cytokine-like actions on cells including stimulation of cell proliferation.

HYPOXIA

This term describes the low levels of oxygen that are found in many areas of advanced cancers and are associated with a poor prognosis.

ASCITES

An increased accumulation of fluid in the peritoneum owing to cancer, which both increases the accumulation of peritoneal fluid and inhibits its reabsorption. In some cancers, such as ovarian cancer, the ascitic fluid contains variable numbers of tumour cells and inflammatory leuokytes, as well as pico- to nanomolar levels of many cytokines and chemokines.

CD8+ T LYMPHOCYTE

A T cell bearing the CD8+ cell-surface glycoprotein, which recognizes major histocompatibility complex class I molecules on target cells. CD8+ T cells are usually cytotoxic T cells.

REED–STERNBERG CELLS

A clonal population of transformed germinal-centre B cells that forms the malignant component in Hodgkin's lymphoma.

TH2 CELLS

T-helper 2 (TH2) lymphocytes help B cells make antibody and suppress the action of cytotoxic T cells. Interleukin (IL)-4, IL-5, IL-10 and IL-13 are examples of TH2-produced cytokines.

TH1 CELLS

T-helper 1 (TH1) lymphocytes are at the other end of the functional spectrum to TH2 lymphocytes. They activate macrophages, produce TH1 cytokines — such as interferon-γ and interleukin 2 — and help in the production of specific cytotoxic T lymphocytes.

TYPE-2 MACROPHAGES

Also known as M2 macrophages. Type-2 macrophages have an important role in inflammatory circuits that promote tumour growth and progression. They are polarized cells that are induced by TH2 cytokines and make immunosuppressive cytokines, such as interleukin-10.

ANTIGEN-PRESENTING CELLS

(APCs). Cells that posses antigen and present antigen fragments to lymphocytes in order to initiate an immune response. Dendritic cells are the most potent APCs.

MATRIX METALLOPROTEINASES

A family of proteolytic enzymes that degrade the extracellular matrix and have important roles in tissue remodelling and tumour metastasis.

PROLIFERATIVE INDEX

Describes the numbers of cells that are proliferating in a tissue. Measured by staining cells with antibodies such as Ki67.

AUTOCRINE

A form of bioregulation in which a secretory factor affects the cell from which it was secreted.

RHABDOMYOSARCOMA

A highly lethal mesenchymal cancer of early childhood, which is most commonly found in the eye, head and neck region, and the genitourinary tract.

SCID

Severe combined immunodeficiency. Mice with this defect do not make T cell or antibody responses. Tumour cells from another species can be grown in these mice without rejection.

LEUKOCYTOSIS

The state of increased numbers of leukocytes circulating in the peripheral blood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balkwill, F. Cancer and the chemokine network. Nat Rev Cancer 4, 540–550 (2004). https://doi.org/10.1038/nrc1388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1388

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing