Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The CXCL12–CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies

Abstract

Dose-dense adjuvant breast cancer chemotherapy is a new treatment strategy that aims to improve tumour control by using more frequent cytotoxic dosing together with continuous granulocyte colony-stimulating factor (G-CSF) to minimize neutropaenia. In addition to stimulating neutrophil proliferation, G-CSF mobilizes neutrophils from the bone marrow through proteolytic disruption of the chemokine receptor CXCR4 and its chemotactic ligand CXCL12. As breast cancers also express CXCR4 and oestrogen induces CXCL12, the success of dose-dense treatment could partly reflect inhibition of CXCR4-dependent micrometastatic homing and/or paracrine survival, and suggests a benefit of adjuvant oestrogen suppression for patients with oestrogen-receptor-negative, CXCR4-positive disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiology of neutrophil mobilization.
Figure 2: Tissue-homing effects of cell-surface CXCR4 expression in normal and malignant contexts.
Figure 3: Proposed mechanisms for the divergent effects of chemotherapy and/or G-CSF in different transplant (donor cell) and adjuvant therapy (tumour cell) contexts.
Figure 4: Comparison of tumour-centric versus tissue-based models of hormonal action in the adjuvant setting.

Similar content being viewed by others

References

  1. Bonadonna, G., Rossi, A., Valagussa, P., Banfi, A. & Veronesi, U. The CMF program for operable breast cancer with positive axillary nodes. Cancer 39, 2904–2915 (1977).

    CAS  PubMed  Google Scholar 

  2. McGuire, W. L., Osborne, C. K., Clark, G. M. & Knight, W. A. Steroid hormone receptors and carcinoma of the breast. Am. J. Physiol. 243, E99–E102 (1982).

    CAS  PubMed  Google Scholar 

  3. Rose, C. et al. Beneficial effect of adjuvant tamoxifen therapy in primary breast cancer patients with high oestrogen receptor values. Lancet 1, 16–19 (1985).

    CAS  PubMed  Google Scholar 

  4. Powles, T. J. et al. Failure of chemotherapy to prolong survival in a group of patients with metastatic breast cancer. Lancet 1, 580–582 (1980).

    CAS  PubMed  Google Scholar 

  5. Early Breast Cancer Trialists Collaborative Group. Effects of adjuvant tamoxifen and of cytotoxic therapy on mortality in early breast cancer. N. Engl. J. Med. 319, 1681–1692 (1988).

  6. Kubota, M. Generation of DNA damage by antineoplastic agents. Anticancer Drugs 2, 531–541 (1991).

    CAS  PubMed  Google Scholar 

  7. Howell, S. & Shalet, S. Gonadal damage from chemotherapy and radiotherapy. Endoc. Metab. Clin. North Am. 27, 927–943 (1998).

    CAS  Google Scholar 

  8. Mehta, R. R., Beattie, C. W. & Das Gupta, T. K. Endocrine profile in breast cancer patients receiving chemotherapy. Breast Cancer Res. Treat. 20, 125–132 (1992).

    CAS  PubMed  Google Scholar 

  9. Padmanabhan, N., Howell, A. & Rubens, R. D. Mechanism of action of adjuvant chemotherapy in early breast cancer. Lancet 2, 411–414 (1986).

    CAS  PubMed  Google Scholar 

  10. Poikonen, P., Saarto, T., Elomaa, I., Joensuu, H. & Blomqvist, C. Prognostic effect of amenorrhoea and elevated serum gonadotropin levels induced by adjuvant chemotherapy in premenopausal node-positive breast cancer patients. Eur. J. Cancer 36, 43–48 (2000).

    CAS  PubMed  Google Scholar 

  11. Goldhirsch, A., Gelber, R. D. & Castiglione, M. The magnitude of endocrine effects of adjuvant chemotherapy for premenopausal breast cancer patients. Ann. Oncol. 1, 183–188 (1990).

    CAS  PubMed  Google Scholar 

  12. Early Breast Cancer Trialists Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomized trials. Lancet 352, 930–942 (1998).

  13. Farquhar, C., Basser, R., Marjoribanks, J. & Lethaby, A. High dose chemotherapy and autologous bone marrow or stem cell transplantation versus conventional chemotherapy for women with early poor prognosis breast cancer. Cochrane Database Syst. Rev. 1, CD003139 (2003).

    Google Scholar 

  14. Budman, D. R. et al. Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. J. Natl Cancer Inst. 90, 1205–1211 (1998).

    CAS  PubMed  Google Scholar 

  15. Mikhak, B. et al. Long term follow-up of women treated with 16-week dose-intensive adjuvant chemotherapy for high risk breast cancer. Cancer 85, 899–904 (1999).

    CAS  PubMed  Google Scholar 

  16. Kasimir-Bauer, S. et al. Survival of tumor cells in stem cell preparations and bone marrow of patients with high-risk or metastatic breast cancer after receiving dose-intensive or high-dose chemotherapy. Clin. Cancer Res. 7, 1582–1589 (2001).

    CAS  PubMed  Google Scholar 

  17. Braun, S. et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J. Clin. Oncol. 18, 80–86 (2000).

    CAS  PubMed  Google Scholar 

  18. Gyllenberg, M. & Webb, G. F. Quiescence as an explanation of Gompertzian tumor growth. Growth Dev. Aging 53, 25–33 (1989).

    CAS  PubMed  Google Scholar 

  19. Pittillo, R. F., Schabel, F. M. & Skipper, H. E. The 'sensitivity' of resting and dividing cells. Cancer Chemother. Rep. 54, 137–142 (1970).

    CAS  PubMed  Google Scholar 

  20. Coldman, A. J. & Goldie, J. H. Impact of dose-intense chemotherapy on the development of permanent drug resistance. Semin. Oncol. 14, 29–33 (1987).

    CAS  PubMed  Google Scholar 

  21. Mayers, C., Panzarella, T. & Tannock I. F. Analysis of the prognostic effects of inclusion in a clinical trial and of myelosuppression on survival after adjuvant chemotherapy for breast carcinoma. Cancer 91, 2246–2257 (2001).

    CAS  PubMed  Google Scholar 

  22. Leonard, R. C., Miles, D., Thomas, R. & Nussey, F. Impact of neutropaenia on delivering planned adjuvant chemotherapy. Br. J. Cancer 89, 2062–2068 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cameron, D. A., Massie, C., Kerr, G. & Leonard, R. C. F. Moderate neutropenia with adjuvant CMF confers improved survival in early breast cancer. Br. J. Cancer 89, 1837–1842 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ellis, G. K., Livingston, R. B., Gralow, J. R., Green, S. J. & Thompson, T. Dose-dense anthracycline-based chemotherapy for node-positive breast cancer. J. Clin. Oncol. 20, 3637–3643 (2002).

    CAS  PubMed  Google Scholar 

  25. Citron, M. L. et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer. J. Clin. Oncol. 21, 1431–1439 (2003).

    CAS  PubMed  Google Scholar 

  26. Chen, Y. M. et al. Serum cytokine level fluctuations in chemotherapy-induced myelosuppression. Jpn J. Clin. Oncol. 26, 18–23 (1996).

    CAS  PubMed  Google Scholar 

  27. Wiik, H., Syrjala, H., Karttunen, R., Bloigu, A. & Haukipuro, K. Neutrophil adhesion molecules in colorectal surgery: effect of filgastrim given postoperatively. Eur. J. Surg. 167, 700–704 (2001).

    CAS  PubMed  Google Scholar 

  28. Bocchietto, E. et al. Proliferative and migratory responses of murine microvascular endothelial cells to G-CSF. J. Cell Physiol. 155, 89–95 (1993).

    CAS  PubMed  Google Scholar 

  29. Liu, F., Poursine-Laurent, J. & Link, D. C. The G-CSF receptor is required for the mobilization of murine haemopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8. Blood 90, 2522–2528 (1997).

    CAS  PubMed  Google Scholar 

  30. Levesque, J. P. et al. Mobilization by either cyclophosphamide or G-CSF transforms the bone marrow into a highly proteolytic environment. Exp. Hematol. 30, 440–449 (2002).

    CAS  PubMed  Google Scholar 

  31. Hunter, M. G., Druhan, L. J., Massullo, P. R. & Avalos, B. R. Proteolytic cleavage of G-CSF and its receptor by neutrophil elastase induces growth inhibition and decreased cell surface expression of the G-CSF receptor. Am. J. Hematol. 74, 149–155 (2003).

    CAS  PubMed  Google Scholar 

  32. Levesque, J. P., Takamatsu, Y., Nilsson, S. K., Haylock, D. N. & Simmons, P. J. Vascular cell adhesion molecule-1 is cleaved by neutrophil proteases in the bone marrow following haematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98, 1289–1297 (2001).

    CAS  PubMed  Google Scholar 

  33. Gazitt, Y. & Akay, C. Mobilization of myeloma cells involves SDF-1/CXCR4 signalling and downregulation of VLA-4. Stem Cells 22, 65–73 (2004).

    CAS  PubMed  Google Scholar 

  34. Christopherson, K. W., Cooper, S., Hangoc, G. & Broxmeyer, H. E. CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26−/− mice. Exp. Hematol. 31, 1126–1134 (2003).

    CAS  PubMed  Google Scholar 

  35. Pethiyagoda, C. L., Welch, D. R. & Fleming, T. P. Dipeptidyl peptidase IV inhibits cellular invasion of melanoma cells. Clin. Exp. Metastasis 18, 391–400 (2000).

    CAS  PubMed  Google Scholar 

  36. Kajiyama, H. et al. Dipeptidyl peptidase IV overexpression induces upregulation of E-cadherin and TIMPs, resulting in decreased invasion in ovarian carcinoma cells. Cancer Res. 63, 2278–2283 (2003).

    CAS  PubMed  Google Scholar 

  37. Eddlestone, J., Christiansen, S. C. & Zuraw, B. L. Functional expression of the CXC chemokine receptor CXCR4 by human bronchial epithelial cells: regulation by proinflammatory mediators. J. Immunol. 169, 6445–6451 (2002).

    Google Scholar 

  38. Helbig, G. et al. NF-κB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem. 278, 21631–21638 (2003).

    CAS  PubMed  Google Scholar 

  39. Castellone, M. D. et al. Functional expression of the CXCR4 chemokine receptor is induced by RET/PTC oncogenes and is a common event in human papillary thyroid carcinomas. Oncogene 23, 5958–5967 (2004).

    CAS  PubMed  Google Scholar 

  40. Moser, B., Wolf, M., Walz, A. & Loetscher, P. Chemokines: multiple levels of leukocyte migration control. Trends Immunol. 25, 75–84 (2004).

    CAS  PubMed  Google Scholar 

  41. Sadir, R., Imberty, A., Baleux, F. & Lortat-Jacob, H. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF–1/CXCL12) against proteolysis induced by CD26/DPPIV. J. Biol. Chem. (in the press).

  42. Netelenbos, T. et al. Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells. Leukemia 17, 175–184 (2003).

    CAS  PubMed  Google Scholar 

  43. Gouwy, M., Struyf, S., Catusse, J., Proost, P. & Van Damme, J. Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J. Leuk. Biol. 76, 185–194 (2004).

    CAS  Google Scholar 

  44. Suratt, B. T. et al. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 104, 565–571 (2004).

    CAS  PubMed  Google Scholar 

  45. Cherla, R. P. & Ganju, R. K. Stromal cell-derived factor 1α-induced chemotaxis in T cells is mediated by nitric oxide signaling pathways. J. Immunol. 66, 3067–3074 (2001).

    Google Scholar 

  46. Shen, W., Bendall, L. J., Gottlieb, D. J. & Bradstock, K. F. The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor B cells in the bone marrow. Exp. Hematol. 29, 1439–1447 (2001).

    CAS  PubMed  Google Scholar 

  47. Dominguez, F. et al. Hormonal and embryonic regulation of chemokine receptors CXCR1, CXCR4, CCR5 and CCR2B in the human endometrium and the human blastocyst. Mol. Hum. Reprod. 9, 189–198 (2003).

    CAS  PubMed  Google Scholar 

  48. Bartolome, R. A. et al. Stromal cell-derived factor 1α promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res. 64, 2534–2543 (2004).

    CAS  PubMed  Google Scholar 

  49. Mori, T. et al. CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Mol. Cancer Ther. 3, 29–37 (2004).

    CAS  PubMed  Google Scholar 

  50. Herrera, C. et al. Comodulation of CXCR4 and CD26 in human lymphocytes. J. Biol. Chem. 276, 19532–19539 (2001).

    CAS  PubMed  Google Scholar 

  51. Wesley, U. V., Tiwari, S. & Houghton, A. N. Role for dipeptidyl peptidase IV in tumor suppression of human non small cell lung carcinoma cells. Int. J. Cancer 109, 855–866 (2004).

    CAS  PubMed  Google Scholar 

  52. Chen, Y., Stamatoyannopoulos, G. & Song, C. Z. Downregulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res. 63 4801–4804 (2003).

    CAS  PubMed  Google Scholar 

  53. Tanabe, S. et al. Expression of mRNA of chemokine receptor CXCR4 in feline mammary adenocarcinoma. Vet. Rec. 151, 729–733 (2002).

    CAS  PubMed  Google Scholar 

  54. Schmid, B. C., Rudas, M., Rezniczek, G. A., Leodolter, S. & Zeillinger, S. CXCR4 is expressed in ductal carcinoma in situ of the breast and in atypical ductal hyperplasia. Breast Cancer Res. Treat. 84, 247–250 (2004).

    CAS  PubMed  Google Scholar 

  55. Christopherson, K. W., Cooper, S. & Broxmeyer, H. E. Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 101, 4680–4686 (2003).

    CAS  PubMed  Google Scholar 

  56. Gazitt, Y. & Liu, Q. Plasma levels of SDF-1 and expression of SDF-1 receptor on CD34+ cells in mobilized peripheral blood of non-Hodgkin's lymphoma patients. Stem Cells 19, 37–45 (2001).

    CAS  PubMed  Google Scholar 

  57. Nagase, H. et al. Cytokine-mediated regulation of CXCR4 expression in human neutrophils. J. Leuk. Biol. 71, 711–717 (2002).

    CAS  Google Scholar 

  58. Rutella, S. et al. Homogeneous expression of CXCR4 on G-CSF-mobilized peripheral blood CD34+ cells. Blood 95, 4015–4016 (2000).

    CAS  PubMed  Google Scholar 

  59. Levesque, J. P., Hendy, J., Takamatsu, Y., Simmons, P. J. & Bendall, L. J. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by G-CSF or cyclophosphamide. J. Clin. Invest. 111, 187–196 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Psenak, O., Sefc, L., Sykora, V., Chang, K. T. & Necas, E. Cytokine gene expression in regenerating haematopoietic tissues of mice after cyclophosphamide treatment. Acta Haematologica 109, 68–75 (2003).

    CAS  PubMed  Google Scholar 

  61. Laver, J. H., Xu, F., Barredo, J. C. & Abboud, M. R. Effects of radiation and 4-hydroperoxycyclophosphamide on production of G- and GM-CSF by stromal cells. Bone Marrow Transplant. 10, 529–533 (1992).

    CAS  PubMed  Google Scholar 

  62. To, L. B. et al. A comparative study of the phenotype and proliferative capacity of peripheral blood CD34+ cells mobilized by four different protocols. Blood 84, 2930–2939 (1994).

    CAS  PubMed  Google Scholar 

  63. Scotton, C. J. et al. Multiple actions of the chemokine CXCL12 on epithelial tumour cells in human ovarian cancer. Cancer Res. 62, 5930–5938 (2002).

    CAS  PubMed  Google Scholar 

  64. Zeelenberg, I. S., Ruuls-Van Stalle, L. & Roos, E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res. 63, 3833–3839 (2003).

    CAS  PubMed  Google Scholar 

  65. Fernandis, A. Z., Prasad, A., Band, H., Klosel, R. & Ganju, R. K. Regulation of CXCR4-mediated chemotaxis and chemoinvasion of breast cancer cells. Oncogene 23, 157–167 (2004).

    CAS  PubMed  Google Scholar 

  66. Barbero, S. et al. SDF-1 stimulates human glioblastoma cell growth through the activation of both Erk-1/2 and Akt. Cancer Res. 63, 1969–1974 (2003).

    CAS  PubMed  Google Scholar 

  67. Lee, B. C., Lee, T. H., Avraham, S. & Avraham, H. K. Involvement of the chemokine receptor CXCR4 and its ligand SDF-1 in breast cancer cell migration through human brain microvascular endothelial cells. Mol. Cancer Res. 2, 327–338 (2004).

    CAS  PubMed  Google Scholar 

  68. Kijowski, J. et al. The SDF-1–CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 19, 453–466 (2001).

    CAS  PubMed  Google Scholar 

  69. Scheurer, S. B., Rybak, J. N., Rosli, C., Neri, D. & Elia, G. Modulation of gene expression by hypoxia in human umbilical cord vein endothelial cells: a transcriptomic and proteomic study. Proteomics 4, 1737–1760 (2004).

    CAS  PubMed  Google Scholar 

  70. Hitchon, C. et al. Hypoxia-induced production of SDF-1 (CXCL12) and VEGF by synovial fibroblasts. Arthr. Rheum. 46, 2587–2597 (2002).

    CAS  Google Scholar 

  71. Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    CAS  Google Scholar 

  72. Kanda, S., Mochizuki, Y. & Kanetake, H. SDF-1 induces tube-like structural formation of endothelial cells through phosphatidylinositol 3′-kinase. J. Biol. Chem. 278, 257–262 (2003).

    CAS  PubMed  Google Scholar 

  73. Feil, C. & Augustin, H. G. Endothelial cells differentially express functional CXCR4 under the control of autocrine activity and exogenous cytokines. Biochem. Biophys. Res. Comm. 247, 38–45 (1998).

    CAS  PubMed  Google Scholar 

  74. Bachelder, R. E., Wendt, M. A. & Mercurio, A. M. VEGF promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 62, 7203–7206 (2002).

    CAS  PubMed  Google Scholar 

  75. Staller, P. et al. Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425, 307–311 (2003).

    CAS  PubMed  Google Scholar 

  76. Taichman, R. S. et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62, 1832–1837 (2002).

    CAS  PubMed  Google Scholar 

  77. Phillips, R. J. et al. The stromal derived factor-1/SXCR4 biological axis in non-small cell lung cancer metastases. Am. J. Respir. Crit. Care Med. 167, 1676–1686 (2003).

    PubMed  Google Scholar 

  78. Burger, M. et al. Functional expression of CXCR4 on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene 22, 8093–8101 (2003).

    CAS  PubMed  Google Scholar 

  79. Koshiba, T. et al. Expression of stromal cell-derived factor 1 and CXCR4 ligand receptor system in pancreatic cancer: a possible role for tumor progression. Clin. Cancer Res. 6, 3530–3535 (2000).

    CAS  PubMed  Google Scholar 

  80. Libura, J. et al. CXCR4–SDF1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis and adhesion. Blood 100, 2597–2606 (2002).

    CAS  PubMed  Google Scholar 

  81. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    CAS  PubMed  Google Scholar 

  82. Kato, M., Kitayama, J., Kazama, S. & Nagawa, H. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res. Treat. 5, R144–R150 (2003).

    CAS  Google Scholar 

  83. Oonuma, T. et al. Role of CXCR4 and SDF-1 in mammary tumor metastasis in the cat. J. Vet. Med. Sci. 65, 1069–1073 (2003).

    CAS  PubMed  Google Scholar 

  84. Schmitz, L. L. et al. Morphologic and quantitative changes in blood and marrow following growth factor therapy. Am. J. Clin. Pathol. 101, 67–75 (1994).

    CAS  PubMed  Google Scholar 

  85. Sakamoto, C. et al. Antiapoptotic effect of G-CSF, GM-CSF and cAMP on human neutrophils. Int. J. Hematol. 77, 60–70 (2003).

    CAS  PubMed  Google Scholar 

  86. Ogawa, Y. et al. Sudden termination of G-CSF injection leads to apoptosis of a large proportion of increased granulocytes. Oncol. Rep. 8, 1027–1029 (2001).

    CAS  PubMed  Google Scholar 

  87. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-88 and upregulating CXCR4. Nature Immunol. 3, 687–694 (2002).

    CAS  Google Scholar 

  88. Malanski, N. A., Mul, F. P., van Buul, J. D., Roos, D. & Kuijpers, T. W. G-CSF inhibits the mitochondria-dependent activation of caspase-3 in neutrophils. Blood 99, 672–679 (2002).

    Google Scholar 

  89. Boxio, R., Bossenmeyer-Pourie, C., Steinckwich, N., Dournon, C. & Nusse, O. Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leuk. Biol. 75, 604–611 (2004).

    CAS  Google Scholar 

  90. Gaugler, M., Squiban, C., Mouthon, M., Gourmelon, P. & van der Meeren, A. Irradiation enhances the support of haemopoietic cell transmigration, proliferation and differentiation by endothelial cells. Br. J. Haematol. 113, 940–950 (2001).

    CAS  PubMed  Google Scholar 

  91. Ponomaryov, T. et al. Induction of the chemokine SDF-1 following DNA damage improves human stem cell function. J. Clin. Invest. 106, 1331–1339 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Nagler, A. et al. Low-intensity conditioning is sufficient to ensure engraftment in matched unrelated bone marrow transplantation. Exp. Hematol. 29, 362–370 (2001).

    CAS  PubMed  Google Scholar 

  93. Bornhauser, M. et al. Dose-reduced conditioning for allogeneic blood stem cell transplantation: durable engraftment without antithymocyte globulin. Bone Marrow Transplant. 26, 119–125 (2000).

    CAS  PubMed  Google Scholar 

  94. Miralbell, R. et al. Conditioning the leukemic patient before allogeneic BMT: value of intensifying immunosuppression in the context of different levels of T lymphocyte depletion of the graft. Bone Marrow Transplant. 11, 447–451 (1993).

    CAS  PubMed  Google Scholar 

  95. Tomita, Y., Sachs, D. H. & Sykes M. Myelosuppressive conditioning is required to achieve engraftment of pluripotent stem cells contained in moderate doses of syngeneic bone marrow. Blood 83, 939–948 (1994).

    CAS  PubMed  Google Scholar 

  96. Xu, H. et al. A delay in bone marrow transplantation after partial conditioning improves engraftment. Transplantation 77, 819–826 (2004).

    PubMed  Google Scholar 

  97. Norton, L. & Simon, R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317 (1977).

    CAS  PubMed  Google Scholar 

  98. Baumann, I. et al. Mobilisation kinetics of primitive haemopoietic cells following G-CSF with or without chemotherapy in advanced breast cancer. Ann. Oncol. 7, 1051–1057 (1996).

    CAS  PubMed  Google Scholar 

  99. Gazitt, Y. Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently. Leukemia 18, 1–10 (2004).

    CAS  PubMed  Google Scholar 

  100. Glimm, H., Tang, P., Clark-Lewis, I., von Kalle, C. & Eaves, C. Ex vivo treatment of proliferating human cord blood stem cells with SDF-1 enhances their ability to engraft NOD/SCID mice. Blood 99, 3454–3457 (2002).

    CAS  PubMed  Google Scholar 

  101. Plett, P. A., Frankovitz, S. M., Wolber, F. M., Abonour, R. & Orschell-Traycoff, C. M. Treatment of circulating CD34+ cells with SDF-1 or anti-CXCR4 antibody enhances migration and NOD/SCID repopulating potential. Exp. Hematol. 30, 1061–1069 (2002).

    CAS  PubMed  Google Scholar 

  102. Broxmeyer, H. E. et al. SDF-1/CXCL12 directly enhances survival/antiapoptosis of myeloid progenitor cells through CXCR4 and G-proteins and enhances engraftment of competitive, repopulating stem cells. J. Leuk. Biol. 73, 630–638 (2003).

    CAS  Google Scholar 

  103. Kahn, J. et al. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration and NOD/SCID repopulation. Blood 103, 2942–2949 (2004).

    CAS  PubMed  Google Scholar 

  104. Christopherson, K. W., Hangoc, G., Mantel, C. R. & Broxmeyer, H. E. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305, 1000–1003 (2004).

    CAS  PubMed  Google Scholar 

  105. Pituch-Norowolska, A. et al. Circulating CXCR4-positive stem/progenitor cells compete for SDF-1-positive niches in bone marrow, muscle and neural tissues: an alternative hypothesis to stem cell plasticity. Folia Histochem. Cytobiol. 41, 13–21 (2003).

    Google Scholar 

  106. Cristofanilli, M. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 351, 781–791 (2004).

    CAS  PubMed  Google Scholar 

  107. Cooper, B. W., Moss, T. J., Ross, A. A., Ybanez, J. & Lazarus, H. M. Occult tumor contamination of hematopoietic stem-cell products does not affect clinical outcome of autologous transplantation in patients with metastatic breast cancer. J. Clin. Oncol. 16, 3509–3517 (1998).

    CAS  PubMed  Google Scholar 

  108. Valkovic, T. et al. Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinomas. Virchows Arch. 440, 583–588 (2002).

    CAS  PubMed  Google Scholar 

  109. Liu, C. Y. et al. Apoptotic neutrophils undergoing secondary necrosis induce human lung epithelial cell detachment. J. Biomed. Sci. 10, 746–756 (2003).

    PubMed  Google Scholar 

  110. Hall, J. M. & Korach, K. S. Stromal cell derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. J. Mol. Endocrinol. 17, 792–803 (2003).

    CAS  Google Scholar 

  111. Coser, K. R., Chesnes, J., Hur, J., Isselbacher, K. J. & Shioda, T. Global analysis of ligand sensitivity of estrogen-inducible and -suppressible genes in MCF7/BUS breast cancer cells by DNA microarray. Proc. Natl Acad. Sci. USA 100, 13994–13999 (2003).

    CAS  PubMed  Google Scholar 

  112. Hess, K. R., Pusztai, L., Buzdar, A. U. & Hortobagyi, G. N. Estrogen receptors and distinct patterns of breast cancer relapse. Breast Cancer Res. Treat. 78, 105–118 (2003).

    CAS  PubMed  Google Scholar 

  113. Colleoni, M. et al. Identifying breast cancer patients at high risk for bone metastases. J. Clin. Oncol. 18, 3925–3935 (2000).

    CAS  PubMed  Google Scholar 

  114. Morgan, L. R. et al. Therapeutic use of tamoxifen in advanced breast cancer: correlation with biochemical parameters. Cancer Treat. Rep. 60, 1437–1443 (1976).

    PubMed  Google Scholar 

  115. Buzzoni, R. et al. Combination goserelin and tamoxifen therapy in premenopausal advanced breast cancer. Br. J. Cancer 71, 1111–1114 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Valagussa, P. et al. Adjuvant CMF effect on site of first recurrence in operable breast cancer with positive axillary nodes. Breast Cancer Res. Treat. 1, 349–356 (1981).

    CAS  PubMed  Google Scholar 

  117. Kaufmann, M. et al. Goserelin, a depot GnRH agonist in the treatment of premenopausal patients with metastatic breast cancer. J. Clin. Oncol. 7, 1113–1119 (1989).

    CAS  PubMed  Google Scholar 

  118. Moseson, D. L. et al. The use of antiestrogens tamoxifen and nafoxidine in the treatment of human breast cancer in correlation with estrogen receptor values. Cancer 41, 797–802 (1978).

    CAS  PubMed  Google Scholar 

  119. Klijn, J. G., de Jong, F. H., Lamberts, S. W. & Blankenstein, M. A. LHRH-agonist treatment in clinical and experimental human breast cancer. J. Steroid Biochem. 23, 867–873 (1985).

    CAS  PubMed  Google Scholar 

  120. Coradini, D. et al. Relationship between steroid receptors as continuous variables and response to adjuvant treatments in postmenopausal women with node-positive breast cancer. Int. J. Biol. Markers 14, 60–67 (1999).

    CAS  PubMed  Google Scholar 

  121. Sainsbury, R. Aromatase inhibition in the treatment of advanced breast cancer: is there a relationship between potency and clinical efficacy? Br. J. Cancer 90, 1733–1739 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ellis, M. J., Rosen, E., Dressman, H. & Marks, J. Neoadjuvant comparisons of aromatase inhibitors and tamoxifen: pretreatment determinants of response and on-treatment effect. J. Steroid Biochem. Mol. Biol. 86, 301–307 (2003).

    CAS  PubMed  Google Scholar 

  123. Dowsett, M. et al. HER-2 amplification impedes the antiproliferative effects of hormone therapy in estrogen receptor-positive primary breast cancer. Cancer Res. 61, 8452–8458 (2001).

    CAS  PubMed  Google Scholar 

  124. Shou, J. et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu crosstalk in ER/HER2-positive breast cancer. J. Natl Cancer Inst. 96, 926–935 (2004).

    CAS  PubMed  Google Scholar 

  125. Love, R. R. et al. Her-2/neu overexpression and response to oophorectomy plus tamoxifen adjuvant therapy in estrogen receptor-positive premenopausal women with operable breast cancer. J. Clin. Oncol. 21, 453–457 (2003).

    CAS  PubMed  Google Scholar 

  126. Santen, R. J. et al. Estrogen production via the aromatase enzyme in breast carcinoma: which cell type is responsible? J. Steroid Biochem. Mol. Biol. 61, 267–271 (1997).

    CAS  PubMed  Google Scholar 

  127. Smithers, D. W. An attack on cytologism. Lancet 1, 493–499 (1962).

    CAS  PubMed  Google Scholar 

  128. Watson, J. V. What does “response” in cancer chemotherapy really mean? Br. Med. J. 283, 34–37 (1981).

    CAS  Google Scholar 

  129. Onuffer, J. J. & Horuk, R. Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends Pharmacol. Sci. 23, 459–467 (2002).

    CAS  PubMed  Google Scholar 

  130. Hatse, S., Princen, K., Bridger, G., De Clercq, E. & Schols, D. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett. 527, 255–262 (2002).

    CAS  PubMed  Google Scholar 

  131. Zhang, L., Kharbanda, S., Hanfelt, J. & Kern, F. G. Both autocrine and paracrine effects of transfected acidic fibroblast growth factor are involved in the estrogen-independent and antiestrogen-resistant growth of MCF-7 breast cancer cells. Cancer Res. 58, 352–361 (1998).

    CAS  PubMed  Google Scholar 

  132. Bogdanos, J. et al. Endocrine/paracrine/autocrine survival factor activity of bone microenvironment participates in the development of androgen ablation and chemotherapy refractoriness of prostate cancer metastasis in skeleton. Endocr. Rel. Cancer 10, 279–289 (2003).

    CAS  Google Scholar 

  133. Kouniavsky, G. et al. Stromal extracellular matrix reduces chemotherapy-induced apoptosis in colon cancer cell lines. Clin. Exp. Metastasis 19, 55–60 (2002).

    CAS  PubMed  Google Scholar 

  134. Fortney, J. E., Zhao, W., Wenger, S. L. & Gibson L. F. Bone marrow stromal cells regulate caspase 3 activity in leukemic cells during chemotherapy. Leuk. Res. 25, 901–907 (2001).

    CAS  PubMed  Google Scholar 

  135. Pietras, K. et al. Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 62, 5476–5484 (2002).

    CAS  PubMed  Google Scholar 

  136. Zondor, S. D. & Medina, P. J. Bevacizumab: an angiogenesis inhibitor with efficacy in colorectal and other malignancies. Ann. Pharmacother. 38, 1258–1264 (2004).

    CAS  PubMed  Google Scholar 

  137. Liang, Z. et al. Inhibition of breast cancer metastasis by selective synthetic peptides against CXCR4. Cancer Res. 64, 4302–4308 (2004).

    CAS  PubMed  Google Scholar 

  138. Tamamura, H. et al. T140 analogs as CXCR4 antagonists identified as antimetastatic agents in the treatment of breast cancer. FEBS Lett. 550, 79–83 (2003).

    CAS  PubMed  Google Scholar 

  139. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    CAS  PubMed  Google Scholar 

  140. Erster, S., Mihara, M., Kim, R. H., Petrenko, O. & Mol, U. M. In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol. Cell. Biol. 24, 6728–6741 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks are due to B.S. Mann of the Center for Drug Evaluation and Research, FDA, Rockville, Maryland, USA, and to J.C. Chim from the Division of Haematology/Oncology, Queen Mary Hospital, Hong Kong, for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

AKT

β-catenin

cathepsin G

CXCL12

CXCR4

DPPIV

E-cadherin

ERBB2

FAK

G-CSF

p53

VCAM1

VHL

National Cancer Institute

breast cancer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, R. The CXCL12–CXCR4 chemotactic pathway as a target of adjuvant breast cancer therapies. Nat Rev Cancer 4, 901–909 (2004). https://doi.org/10.1038/nrc1473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing