Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumour stem cells and drug resistance

Key Points

  • Stem-cell populations have been identified in a range of haematopoietic and solid tumours, and might represent the cell of origin of these tumours.

  • Normal and cancer stem cells express high levels of ATP-binding cassette (ABC) transporters, such as ABCB1, which encodes P-glycoprotein, and the half-transporter ABCG2, which was originally identified in mitoxantrone-resistant cells.

  • The drug-transporting property of stem cells conferred by ABC transporters is the basis for the 'side-population' phenotype that arises from the exclusion of the fluorescent dye Hoechst 33342.

  • Cancer stem cells are likely to share many of the properties of normal stem cells that provide for a long lifespan, including relative quiescence, resistance to drugs and toxins through the expression of several ABC transporters, an active DNA-repair capacity and a resistance to apoptosis. Therefore, tumours might have a built-in population of drug-resistant pluripotent cells that can survive chemotherapy and repopulate the tumour.

Abstract

The contribution of tumorigenic stem cells to haematopoietic cancers has been established for some time, and cells possessing stem-cell properties have been described in several solid tumours. Although chemotherapy kills most cells in a tumour, it is believed to leave tumour stem cells behind, which might be an important mechanism of resistance. For example, the ATP-binding cassette (ABC) drug transporters have been shown to protect cancer stem cells from chemotherapeutic agents. Gaining a better insight into the mechanisms of stem-cell resistance to chemotherapy might therefore lead to new therapeutic targets and better anticancer strategies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cancer stem cells and tumour progression.
Figure 2: Models of tumour drug resistance.
Figure 3: Mouse models for testing tumour-stem-cell therapies.

Similar content being viewed by others

References

  1. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I. & Clarke, M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev. 14, 43–47 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Morrison, S. J., Wandycz, A. M., Hemmati, H. D., Wright, D. E. & Weissman, I. L. Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929–1939 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Dontu, G., Al-Hajj, M., Abdallah, W. M., Clarke, M. F. & Wicha, M. S. Stem cells in normal breast development and breast cancer. Cell Prolif. 36 (Suppl. 1), 59–72 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development 125, 1921–1930 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Price, J. E. & Tarin, D. Low incidence of tumourigenicity in agarose colonies from spontaneous murine mammary tumours. Differentiation 41, 202–207 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Gioanni, J. et al. In vitro clonogenicity in relation to kinetic and clinicopathological features of breast cancer. Bull. Cancer 75, 285–290 (1988).

    CAS  PubMed  Google Scholar 

  8. Southam, C. M. & Brunschwig, A. Quantitative studies of autotransplantation of human cancer. Cancer 14, 971–978 (1960).

    Article  Google Scholar 

  9. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994). Original report demonstrating the existence of stem cells in leukaemia.

    Article  CAS  PubMed  Google Scholar 

  10. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol. 5, 738–43 (2004).

    Article  CAS  Google Scholar 

  12. Dick, J. E. Breast cancer stem cells revealed. Proc. Natl Acad. Sci. USA 100, 3547–3549 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jamieson, C. H. et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Andrews, P. W. From teratocarcinomas to embryonic stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 405–417 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Damjanov, I. Teratocarcinoma stem cells. Cancer Surv. 9, 303–319 (1990).

    CAS  PubMed  Google Scholar 

  16. Sell, S. Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol. 51, 1–28 (2004).

    Article  PubMed  Google Scholar 

  17. Mintz, B. & Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl Acad. Sci. USA 72, 3585–3589 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003). Demonstrates a population of cells in breast cancers possessing markers in common with normal breast stem cells. Small numbers of these cancer stem cells could generate tumours in mice, whereas the non-cancer stem cells could not.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA 101, 4158–4163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Hemmati, H. D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA 100, 15178–15183 (2003). Describes the isolation of tumour stem cells from paediatric brain cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. Oncogene 23, 7267–7273 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  24. Richardson, G. D. et al. CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci. 117, 3539–3545 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Yu, S., Zhang, J. Z., Zhao, C. L., Zhang, H. Y. & Xu, Q. Isolation and characterization of the CD133+ precursors from the ventricular zone of human fetal brain by magnetic affinity cell sorting. Biotechnol. Lett. 26, 1131–1136 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, X. et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am. J. Physiol. Heart Circ. Physiol. 287, H480–H487 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-Renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Scharenberg, C. W., Harkey, M. A. & Torok-Storb, B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99, 507–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2002).

    Article  CAS  Google Scholar 

  31. Kim, M. et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin. Cancer Res. 8, 22–28 (2002).

    CAS  PubMed  Google Scholar 

  32. Allikmets, R., Schriml, L. M., Hutchinson, A., Romano-Spica, V. & Dean, M. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res. 58, 5337–5339 (1998).

    CAS  PubMed  Google Scholar 

  33. Miyake, K. et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res. 59, 8–13 (1999).

    CAS  PubMed  Google Scholar 

  34. Doyle, L. A. et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc. Natl Acad. Sci. USA 95, 15665–15670 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dean, M., Rzhetsky, A. & Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 11, 1156–1166 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Schinkel, A. H. et al. Disruption of the mouse Mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77, 491–502 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, S., Zong, Y., Lu, T. & Sorrentino, B. P. Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques 35, 1248–1252 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, S. et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc. Natl Acad. Sci. USA 99, 12339–12344 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jonker, J. W. et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc. Natl Acad. Sci. USA 99, 15649–15654 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. & Mulligan, R. C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Summer, R. et al. Side population cells and Bcrp1 expression in lung. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L97–L104 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Alvi, A. J. et al. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res. 5, R1–R8 (2003).

    Article  PubMed  Google Scholar 

  43. Zhou, S. et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Med. 7, 1028–1034 (2001). Shows that ABCG2 is highly expressed in normal stem cells and is responsible for the low retention of fluorescent dyes used to identify the SP population.

    Article  CAS  PubMed  Google Scholar 

  44. Lassalle, B. et al. 'Side Population' cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 131, 479–487 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Asakura, A. & Rudnicki, M. A. Side population cells from diverse adult tissues are capable of in vitro hematopoietic differentiation. Exp. Hematol. 30, 1339–1345 (2002).

    Article  PubMed  Google Scholar 

  46. Martin, C. M. et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol. 265, 262–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Lechner, A., Leech, C. A., Abraham, E. J., Nolan, A. L. & Habener, J. F. Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem. Biophys. Res. Commun. 293, 670–674 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Terunuma, A., Jackson, K. L., Kapoor, V., Telford, W. G. & Vogel, J. C. Side population keratinocytes resembling bone marrow side population stem cells are distinct from label-retaining keratinocyte stem cells. J. Invest. Dermatol. 121, 1095–1103 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Hirschmann-Jax, C. et al. A distinct 'side population' of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA 101, 14228–14233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kondo, T., Setoguchi, T. & Taga, T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl Acad. Sci. USA 101, 781–786 (2004). Shows that long-established cancer cell lines contain a small population of SP cells that behave as cancer stem cells. Like cancer stem cells isolated from brain tumours, these SP cells can give rise to the multiple differentiated cell types found in the cell line.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mizoguchi, T. et al. Expression of the MDR1 gene in human gastric and colorectal carcinomas. J. Natl Cancer Inst. 82, 1679–1683 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Nishiyama, K. et al. Expression of the multidrug transporter, P-glycoprotein, in renal and transitional cell carcinomas. Cancer 71, 3611–3619 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Bates, S. E. et al. Expression of a drug resistance gene in human neuroblastoma cell lines: modulation by retinoic acid-induced differentiation. Mol. Cell. Biol. 9, 4337–4344 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mickley, L. A. et al. Modulation of the expression of a multidrug resistance gene (mdr-1/P-glycoprotein) by differentiating agents. J. Biol. Chem. 264, 18031–18040 (1989).

    Article  CAS  PubMed  Google Scholar 

  55. Knutsen, T. et al. Cytogenetic and molecular characterization of random chromosomal rearrangements activating the drug resistance gene, MDR1/ P-glycoprotein, in drug-selected cell lines and patients with drug refractory ALL. Genes Chromosom. Cancer 23, 44–54 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Mickley, L. A., Spengler, B. A., Knutsen, T. A., Biedler, J. L. & Fojo, T. Gene rearrangement: a novel mechanism for MDR-1 gene activation. J. Clin. Invest. 99, 1947–1957 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sato, N., Leopold, P. L. & Crystal, R. G. Effect of adenovirus-mediated expression of Sonic hedgehog gene on hair regrowth in mice with chemotherapy-induced alopecia. J. Natl Cancer Inst. 93, 1858–1864 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Cotsarelis, G. & Millar, S. E. Towards a molecular understanding of hair loss and its treatment. Trends Mol. Med. 7, 293–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Houghton, P. J. et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 64, 2333–2337 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Ozvegy-Laczka, C. et al. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol. Pharmacol. 65, 1485–1495 (2004).

    Article  PubMed  Google Scholar 

  61. Burger, H. et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104, 2940–2942 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Hofmann, W. K. et al. Presence of the BCR–ABL mutation Glu255Lys prior to STI571 (imatinib) treatment in patients with Ph+ acute lymphoblastic leukemia. Blood 102, 659–661 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).

    CAS  PubMed  Google Scholar 

  65. Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Holtz, M. S. et al. Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 99, 3792–3800 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Paterson, S. C., Smith, K. D., Holyoake, T. L. & Jorgensen, H. G. Is there a cloud in the silver lining for imatinib? Br. J. Cancer 88, 983–987 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. La Rosee, P., Shen, L., Stoffregen, E. P., Deininger, M. & Druker, B. J. No correlation between the proliferative status of Bcr–Abl positive cell lines and the proapoptotic activity of imatinib mesylate (Gleevec/Glivec). Hematol. J. 4, 413–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Agrawal, M. et al. Increased 99mTc-sestamibi accumulation in normal liver and drug-resistant tumors after the administration of the glycoprotein inhibitor, XR9576. Clin. Cancer Res. 9, 650–656 (2003).

    CAS  PubMed  Google Scholar 

  70. Bakker, M. et al. 99mTc-Sestamibi scanning with SDZ PSC 833 as a functional detection method for resistance modulation in patients with solid tumours. AntiCancer Res. 19, 2349–2353 (1999).

    CAS  PubMed  Google Scholar 

  71. Bates, S. E. et al. A phase I/II study of infusional vinblastine with the P-glycoprotein antagonist valspodar (PSC 833) in renal cell carcinoma. Clin. Cancer Res. 10, 4724–4733 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Peck, R. A. et al. Phase I and pharmacokinetic study of the novel MDR1 and MRP1 inhibitor biricodar administered alone and in combination with doxorubicin. J. Clin. Oncol. 19, 3130–3141 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Rabindran, S. K., Ross, D. D., Doyle, L. A., Yang, W. & Greenberger, L. M. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res. 60, 47–50 (2000).

    CAS  PubMed  Google Scholar 

  74. Allen, J. D. et al. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol. Cancer Ther. 1, 417–425 (2002).

    CAS  PubMed  Google Scholar 

  75. Cisternino, S., Mercier, C., Bourasset, F., Roux, F. & Scherrmann, J. M. Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood–brain barrier. Cancer Res. 64, 3296–3301 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Weisenthal, L. M. & Lippman, M. E. Clonogenic and nonclonogenic in vitro chemosensitivity assays. Cancer Treat. Rep. 69, 615–632 (1985).

    CAS  PubMed  Google Scholar 

  77. Secchi, G. C. Cancer chemotherapy. Ann. Ital. Med. Int. 5, 288–295 (1990).

    CAS  PubMed  Google Scholar 

  78. Dean, M. Towards a unified model of tumor suppression: lessons learned from the human patched gene. Biochimica et Biophysica Acta 1332, M43–M52 (1997).

    CAS  PubMed  Google Scholar 

  79. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  80. Hahn, H. et al. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental anomalies. J. Biol. Chem. 271, 12125–12128 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85, 841–851 (1996). Positional cloning of PTCH as the tumour-suppressor gene responsible for the nevoid basal-cell carcinoma syndrome. Established a role for the HH–PTCH pathway in cancer.

    Article  CAS  PubMed  Google Scholar 

  82. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the Basal Cell Nevus Syndrome. Science 272, 1668–1671 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Berman, D. M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Berman, D. M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Watkins, D. N. et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422, 313–317 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Karhadkar, S. S. et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Dalton, W. S. et al. A phase III randomized study of oral verapamil as a chemosensitizer to reverse drug resistance in patients with refractory myeloma. A Southwest Oncology Group study. Cancer 75, 815–820 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Belpomme, D. et al. Verapamil increases the survival of patients with anthracycline-resistant metastatic breast carcinoma. Ann. Oncol. 11, 1471–1476 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Millward, M. J. et al. Oral verapamil with chemotherapy for advanced non-small cell lung cancer: a randomised study. Br. J. Cancer 67, 1031–1035 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Milroy, R. A randomised clinical study of verapamil in addition to combination chemotherapy in small cell lung cancer. West of Scotland Lung Cancer Research Group, and the Aberdeen Oncology Group. Br. J. Cancer 68, 813–818 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wishart, G. C. et al. Quinidine as a resistance modulator of epirubicin in advanced breast cancer: mature results of a placebo-controlled randomized trial. J. Clin. Oncol. 12, 1771–1777 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Sonneveld, P. et al. Cyclosporin A combined with vincristine, doxorubicin and dexamethasone (VAD) compared with VAD alone in patients with advanced refractory multiple myeloma: an EORTC-HOVON randomized phase III study (06914). Br. J. Haematol. 115, 895–902 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. List, A. F. et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 98, 3212–3220 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Greenberg, P. L. et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J. Clin. Oncol. 22, 1078–1086 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Baer, M. R. et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 100, 1224–1232 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Rago, R. P. et al. Safety and efficacy of the MDR inhibitor Incel (biricodar, VX-710) in combination with mitoxantrone and prednisone in hormone-refractory prostate cancer. Cancer Chemother. Pharmacol. 51, 297–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Seiden, M. V. et al. A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecol. Oncol. 86, 302–310 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Toppmeyer, D. et al. Safety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel. Clin. Cancer Res. 8, 670–678 (2002).

    CAS  PubMed  Google Scholar 

  100. Bramwell, V. H. et al. Safety and efficacy of the multidrug-resistance inhibitor biricodar (VX-710) with concurrent doxorubicin in patients with anthracycline-resistant advanced soft tissue sarcoma. Clin. Cancer Res. 8, 383–393 (2002).

    CAS  PubMed  Google Scholar 

  101. Sparreboom, A. et al. Clinical pharmacokinetics of doxorubicin in combination with GF120918, a potent inhibitor of MDR1 P-glycoprotein. Anticancer Drugs 10, 719–728 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. van Zuylen, L. et al. The orally administered P-glycoprotein inhibitor R101933 does not alter the plasma pharmacokinetics of docetaxel. Clin. Cancer Res. 6, 1365–1371 (2000).

    CAS  PubMed  Google Scholar 

  103. Sandler, A. et al. A Phase I trial of a potent P-glycoprotein inhibitor, zosuquidar trihydrochloride (LY335979), administered intravenously in combination with doxorubicin in patients with advanced malignancy. Clin. Cancer Res. 10, 3265–3272 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Guns, E. S., Denyssevych, T., Dixon, R., Bally, M. B. & Mayer, L. Drug interaction studies between paclitaxel (Taxol) and OC144-093 — a new modulator of MDR in cancer chemotherapy. Eur. J. Drug Metab. Pharmacokinet. 27, 119–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Oldham, R. K., Barnett, D. & Ramos, Z. A phase II study of paclitaxel/CBT–1, an MDR modulator. Proc. Am. Soc. Clin. Oncol. 22, 148 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dean.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez Gene

ABCB1

ABCC1

ABCG2

ABL

BCR

CD133

HH

PTCH

National Cancer Institute

breast cancer

chronic myelogenous leukaemia

renal-cell cancer

OMIM

nevoid basal-cell carcinoma syndrome

FURTHER INFORMATION

ABC transporters

Glossary

TERATOCARCINOMAS

Malignant germ-cell tumours that exhibit cell phenotypes that are derived from more than one of the three primary germ-cell layers (endoderm, mesoderm, ectoderm).

BLAST CRISIS

In patients with chronic myelogenous leukaemia, this term describes the progression of the disease to an acute advanced phase, evidenced by an increased number of immature white blood cells in the circulating blood.

MULTIDRUG RESISTANCE

Simultaneous resistance to several structurally unrelated drugs that do not necessarily have a common mechanism of action.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, M., Fojo, T. & Bates, S. Tumour stem cells and drug resistance. Nat Rev Cancer 5, 275–284 (2005). https://doi.org/10.1038/nrc1590

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing