Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Innovation
  • Published:

High-intensity focused ultrasound in the treatment of solid tumours

Abstract

Traditionally, surgery has been the only cure for many solid tumours. Technological advances have catalysed a shift from open surgery towards less invasive techniques. Laparoscopic surgery and minimally invasive techniques continue to evolve, but for decades high-intensity focused ultrasound has promised to deliver the ultimate objective — truly non-invasive tumour ablation. Only now, however, with recent improvements in imaging, has this objective finally emerged as a real clinical possibility.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic showing the principles of high-intensity focused ultrasound.
Figure 2: The principles of inertial cavitation.
Figure 3: Ablation of a liver metastasis with high-intensity focused ultrasound.

Similar content being viewed by others

References

  1. Vogl, T. J., Straub, R., Eichler, K., Sollner, O. & Mack, M. G. Colorectal carcinoma metastases in liver: laser–induced interstitial thermotherapy: local tumor control rate and survival data. Radiology 230, 450–458 (2003).

    Article  Google Scholar 

  2. Nagaoka, Y., Nakayama, R. & Iwata, M. Cutaneous seeding following percutaneous ethanol injection therapy for hepatocellular carcinoma. Intern. Med. 43, 268–269 (2004).

    Article  Google Scholar 

  3. Liu, C., Frilling, A., Dereskewitz, C. & Broelsch, C. E. Tumor seeding after fine needle aspiration biopsy and percutaneous radiofrequency thermal ablation of hepatocellular carcinoma. Dig. Surg. 20, 460–463 (2003).

    Article  Google Scholar 

  4. Thuroff, S. et al. High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study. J. Endourol. 17, 673–677 (2003).

    Article  Google Scholar 

  5. Kennedy, J. E. et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics 42, 931–935 (2004).

    Article  CAS  Google Scholar 

  6. Wu, F. et al. Extracorporeal focused ultrasound surgery for treatment of human solid carcinomas: early Chinese clinical experience. Ultrasound Med. Biol. 30, 245–260 (2004).

    Article  Google Scholar 

  7. Gianfelice, D., Khiat, A., Boulanger, Y., Amara, M. & Belblidia, A. Feasibility of magnetic resonance imaging-guided focused ultrasound surgery as an adjunct to tamoxifen therapy in high-risk surgical patients with breast carcinoma. J. Vasc. Interv. Radiol. 14, 1275–1282 (2003).

    Article  Google Scholar 

  8. Wu, F. et al. Preliminary experience using high intensity focused ultrasound for the treatment of patients with advanced stage renal malignancy. J. Urol. 170, 2237–2240 (2003).

    Article  Google Scholar 

  9. Chen, L. et al. Histological changes in rat liver tumours treated with high-intensity focused ultrasound. Ultrasound Med. Biol. 19, 67–74 (1993).

    Article  CAS  Google Scholar 

  10. ter Haar, G., Clarke, R. L., Vaughan, M. G. & Hill, C. R. Trackless surgery using focused ultrasound: technique and case report. Minimally Invasive Therapy 1, 13–19 (1991).

    Article  Google Scholar 

  11. Hill, C. R. & ter Haar, G. R. High intensity focused ultrasound: potential for cancer treatment. Br. J. Radiol. 68, 1296–1303 (1995).

    Article  CAS  Google Scholar 

  12. Wu, F. et al. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med. Biol. 27, 1099–1106 (2001).

    Article  CAS  Google Scholar 

  13. Chen, L., ter Haar, G. & Hill, C. R. Influence of ablated tissue on the formation of high-intensity focused ultrasound lesions. Ultrasound Med. Biol. 23, 921–931 (1997).

    Article  CAS  Google Scholar 

  14. Billard, B. E., Hynynen, K. & Roemer, R. B. Effects of physical parameters on high temperature ultrasound hyperthermia. Ultrasound Med. Biol. 16, 409–420 (1990).

    Article  CAS  Google Scholar 

  15. Chen, L. et al. Effect of blood perfusion on the ablation of liver parenchyma with high-intensity focused ultrasound. Phys. Med. Biol. 38, 1661–1673 (1993).

    Article  CAS  Google Scholar 

  16. Rouviere, O. et al. Can color doppler predict the uniformity of HIFU-induced prostate tissue destruction? Prostate 60, 289–297 (2004).

    Article  Google Scholar 

  17. Oosterhof, G. O. N., Cornel, E. B., Smits, G. A. H. J., Debruyne, F. M. J. & Schalken, J. A. Influence of high-intensity focused ultrasound on the development of metastases. Eur. Urol. 32, 91–95 (1997).

    CAS  PubMed  Google Scholar 

  18. Wu, F. et al. Circulating tumor cells in patients with solid malignancy treated by high-intensity focused ultrasound. Ultrasound Med. Biol. 30, 511–517 (2004).

    Article  Google Scholar 

  19. Vallejo, R., Hord, E. D., Barna, S. A., Santiago-Palma, J. & Ahmed, S. Perioperative immunosuppression in cancer patients. J. Environ. Pathol. Toxicol. Oncol. 22, 139–146 (2003).

    Article  Google Scholar 

  20. Mafune, K. & Tanaka, Y. Influence of multimodality therapy on the cellular immunity of patients with esophageal cancer. Ann. Surg. Oncol. 7, 609–616 (2000).

    Article  CAS  Google Scholar 

  21. Wu, F. et al. Activated anti-tumor immunity in cancer patients after high intensity focused ultrasound ablation. Ultrasound Med. Biol. 30, 1217–1222 (2004).

    Article  Google Scholar 

  22. den Brok, M. H. et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res. 64, 4024–4029 (2004).

    Article  CAS  Google Scholar 

  23. Schueller, G. et al. Expression of heat shock proteins in human hepatocellular carcinoma after radiofrequency ablation in an animal model. Oncol. Rep. 12, 495–499 (2004).

    CAS  PubMed  Google Scholar 

  24. Kramer, G. et al. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate 58, 109–120 (2004).

    Article  CAS  Google Scholar 

  25. Visioli, A. G. et al. Preliminary results of a phase I dose escalation clinical trial using focused ultrasound in the treatment of localised tumours. Eur. J. Ultrasound 9, 11–18 (1999).

    Article  CAS  Google Scholar 

  26. Vallancien, G., Harouni, M., Guillonneau, B., Veillon, B. & Bougaran, J. Ablation of superficial bladder tumors with focused extracorporeal pyrotherapy. Urology 47, 204–207 (1996).

    Article  CAS  Google Scholar 

  27. Stewart, E. A. et al. Focused ultrasound treatment of uterine fibroid tumors: safety and feasibility of a noninvasive thermoablative technique. Am. J. Obstet. Gynecol. 189, 48–54 (2003).

    Article  Google Scholar 

  28. Thuroff, S. & Chaussy, C. High-intensity focused ultrasound: complications and adverse events. Mol. Urol. 4, 183–187 (2000).

    CAS  PubMed  Google Scholar 

  29. Fry, W. J., Mosberg, W. H., Barnard, J. W. & Fry, F. J. Production of focal destructive lesions in the central nervous system with ultrasound. J. Neurosurg. 11, 471–478 (1954).

    Article  CAS  Google Scholar 

  30. Blana, A., Walter, B., Rogenhofer, S. & Wieland, W. F. High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience. Urology 63, 297–300 (2004).

    Article  Google Scholar 

  31. Uchida, T. et al. Transrectal high-intensity focused ultrasound for treatment of patients with stage T1b-2n0m0 localized prostate cancer: a preliminary report. Urology 59, 394–398 (2002).

    Article  Google Scholar 

  32. Gelet, A. et al. Local recurrence of prostate cancer after external beam radiotherapy: early experience of salvage therapy using high-intensity focused ultrasonography. Urology 63, 625–629 (2004).

    Article  Google Scholar 

  33. Kohrmann, K. U., Michel, M. S., Gaa, J., Marlinghaus, E. & Alken, P. High intensity focused ultrasound as noninvasive therapy for multilocal renal cell carcinoma: case study and review of the literature. J. Urol. 167, 2397–2403 (2002).

    Article  Google Scholar 

  34. Gianfelice, D., Khiat, A., Amara, M., Belblidia, A. & Boulanger, Y. MR imaging-guided focused US ablation of breast cancer: histopathologic assessment of effectiveness — initial experience. Radiology 227, 849–855 (2003).

    Article  Google Scholar 

  35. McDannold, N. et al. MRI-guided focused ultrasound surgery in the brain: tests in a primate model. Magn. Reson. Med. 49, 1188–1191 (2003).

    Article  Google Scholar 

  36. Pernot, M., Aubry, J. F., Tanter, M., Thomas, J. L. & Fink, M. High power transcranial beam steering for ultrasonic brain therapy. Phys. Med. Biol. 48, 2577–2589 (2003).

    Article  CAS  Google Scholar 

  37. Wu, F. et al. A randomised clinical trial of high-intensity focused ultrasound ablation for the treatment of patients with localised breast cancer. Br. J. Cancer 89, 2227–2233 (2003).

    Article  CAS  Google Scholar 

  38. Marberger, M., Schatzl, G., Cranston, D. & Kennedy, J. E. Extracorporeal ablation of renal tumors with high intensity focused ultrasound. BJU Int 95 (Suppl. 2), 52–55 (2005).

    Article  Google Scholar 

  39. Wu, F. et al. High intensity focused ultrasound ablation combined with transcatheter arterial embolisation in the treatment of advanced hepatocellular carcinoma. Radiology (in the press).

  40. Moore, W. E. et al. Evaluation of high-intensity therapeutic ultrasound irradiation in the treatment of experimental hepatoma. J. Pediatr. Surg. 24, 30–33 (1989).

    Article  CAS  Google Scholar 

  41. Bohris, C. et al. MR monitoring of focused ultrasound surgery in a breast tissue model in vivo. Magn. Reson. Imaging 19, 167–175 (2001).

    Article  CAS  Google Scholar 

  42. Sedelaar, J. P. et al. The application of three-dimensional contrast-enhanced ultrasound to measure volume of affected tissue after HIFU treatment for localized prostate cancer. Eur. Urol. 37, 559–568 (2000).

    Article  CAS  Google Scholar 

  43. Kennedy, J. E. et al. Contrast-enhanced ultrasound assessment of tissue response to high-intensity focused ultrasound. Ultrasound Med. Biol. 30, 851–854 (2004).

    Article  Google Scholar 

  44. Goldberg, S. N. et al. Image-guided tumor ablation: proposal for standardization of terms and reporting criteria. Radiology 228, 335–345 (2003).

    Article  Google Scholar 

  45. Anderson, G. S., Brinkmann, F., Soulen, M. C., Alavi, A. & Zhuang, H. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin. Nucl. Med. 28, 192–197 (2003).

    PubMed  Google Scholar 

  46. Cannon, J. W. et al. Real-time three-dimensional ultrasound for guiding surgical tasks. Comput. Aided Surg. 8, 82–90 (2003).

    Article  Google Scholar 

  47. Righetti, R. et al. Elastographic characterization of HIFU-induced lesions in canine livers. Ultrasound Med. Biol. 25, 1099–1113 (1999).

    Article  CAS  Google Scholar 

  48. Wu, T., Felmlee, J. P., Greenleaf, J. F., Riederer, S. J. & Ehman, R. L. Assessment of thermal tissue ablation with MR elastography. Magn. Reson. Med. 45, 80–87 (2001).

    Article  CAS  Google Scholar 

  49. Penney, G. P. et al. Registration of freehand 3D ultrasound and magnetic resonance liver images. Med. Image Anal. 8, 81–91 (2004).

    Article  CAS  Google Scholar 

  50. Miller, D. L. & Song, J. Tumor growth reduction and DNA transfer by cavitation-enhanced high-intensity focused ultrasound in vivo. Ultrasound Med. Biol. 29, 887–893 (2003).

    Article  Google Scholar 

  51. Goldberg, S. N. et al. Large-volume tissue ablation with radio frequency by using a clustered, internally cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology 209, 371–379 (1998).

    Article  CAS  Google Scholar 

  52. Sotsky, T. K. & Ravikumar, T. S. Cryotherapy in the treatment of liver metastases from colorectal cancer. Semin. Oncol. 29, 183–191 (2002).

    Article  Google Scholar 

  53. Shingleton, W. B. & Sewell, P. E. Jr. Cryoablation of renal tumours in patients with solitary kidneys. BJU Int. 92, 237–239 (2003).

    Article  CAS  Google Scholar 

  54. Johnson, D. B. & Nakada, S. Y. Cryoablation of renal and prostate tumors. J. Endourol. 17, 627–632 (2003).

    Article  Google Scholar 

  55. Nikfarjam, M. & Christophi, C. Interstitial laser thermotherapy for liver tumours. Br. J. Surg. 90, 1033–1047 (2003).

    Article  CAS  Google Scholar 

  56. Kohrmann, K. U. et al. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound. BJU Int. 90, 248–252 (2002).

    Article  CAS  Google Scholar 

  57. Mougenot, C., Salomir, R., Palussiere, J., Grenier, N. & Moonen, C. T. Automatic spatial and temporal temperature control for MR-guided focused ultrasound using fast 3D MR thermometry and multispiral trajectory of the focal point. Magn. Reson. Med. 52, 1005–1015 (2004).

    Article  Google Scholar 

  58. Jolesz, F. A. & Hynynen, K. Magnetic resonance image-guided focused ultrasound surgery. Cancer J. 8 (Suppl. 1), 100–112 (2002).

    Google Scholar 

Download references

Acknowledgements

I would like to thank the following individuals for their helpful comments during the preparation of this review: D. Cranston, G. ter Haar, R. Illing and F. Wu. The research into HIFU at the Churchill Hospital has been supported by grants from Ultrasound Therapeutics Limited, Stockport, UK. I would also like to acknowledge the Nuffield Department of Surgery, University of Oxford and the Cancer Research UK Medical Oncology Unit, Oxford, for their ongoing support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Between 2001 and 2004, salary for the author was funded through a research grant provided by Ultrasound Therapeutics Limited, Stockport, UK. The company continue to support the research programme in the HIFU unit, Churchill Hospital, Oxford.

Related links

Related links

DATABASES

National Cancer Institute

bladder cancer

bone cancer

brain tumours

breast cancer

kidney cancer

liver cancer

pancreatic cancer

prostate cancer

renal-cell cancer

soft-tissue sarcoma

FURTHER INFORMATION

International Society for Therapeutic Ultrasound

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, J. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 5, 321–327 (2005). https://doi.org/10.1038/nrc1591

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1591

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing