Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

Leukaemia stem cells and the evolution of cancer-stem-cell research

Abstract

Many cancers seem to depend on a small population of 'cancer stem cells' for their continued growth and propagation. The leukaemia stem cell (LSC) was the first such cell to be described. The origins of these cells are controversial, and their biology — like that of their normal-tissue counterpart, the haematopoietic stem cell (HSC) — is still not fully elucidated. However, the LSC is likely to be the most crucial target in the treatment of leukaemias, and a thorough understanding of its biology — particularly of how the LSC differs from the HSC — might allow it to be selectively targeted, improving therapeutic outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acute myelogenous leukaemia forms a stem-cell hierarchy.
Figure 2: Ontogeny of haematopoietic cells and candidate leukaemia stem cells.
Figure 3: The Notch signalling pathway.
Figure 4: Targeting leukaemia stem cells.

References

  1. Main, J. M. & Prehn, R. T. Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J. Natl Cancer Inst. 15, 1023–1029 (1955).

    CAS  PubMed  Google Scholar 

  2. Till, J. E. & McCulloch, E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213–222 (1961).

    Article  CAS  PubMed  Google Scholar 

  3. Pappenheim, A. Prinzipen der neuren morphologischen haematozytologie nach zytogenetischer grundlage. Folia Haematol. 21, 91–101 (1917).

    Google Scholar 

  4. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Blanpain, C., Lowry, W. E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Smith, G. H. & Medina, D. A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J. Cell Sci. 90 (Part 1), 173–183 (1988).

    Article  PubMed  Google Scholar 

  7. Kordon, E. C. & Smith, G. H. An entire functional mammary gland may comprise the progeny from a single cell. Development 125, 1921–1930 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Park, C. H., Bergsagel, D. E. & McCulloch, E. A. Mouse myeloma tumor stem cells: a primary cell culture assay. J. Natl Cancer Inst. 46, 411–422 (1971).

    CAS  PubMed  Google Scholar 

  9. Bruce, W. R. & Van Der Gaag, H. A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199, 79–80 (1963).

    Article  CAS  PubMed  Google Scholar 

  10. Sabbath, K. D., Ball, E. D., Larcom, P., Davis, R. B. & Griffin, J. D. Heterogeneity of clonogenic cells in acute myeloblastic leukemia. J. Clin. Invest. 75, 746–753 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Griffin, J. & Lowenberg, B. Clonogenic cells in acute myeloblastic leukemia. Blood 68, 1185–1195 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Hamburger, A. W. & Salmon, S. E. Primary bioassay of human tumor stem cells. Science 197, 461–463 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. Southam, C. & Brunschwig, A. Quantitative studies of autotransplantation of human cancer. Cancer 14, 461–463 (1961).

    Article  Google Scholar 

  14. Virchow, R. Editorial. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 3, 23 (1855).

    Google Scholar 

  15. Cohnheim, J. Ueber entzundung und eiterung. Path. Anat. Physiol. Klin. Med. 40, 1–79 (1867).

    Google Scholar 

  16. Beckwith, J. B., Kiviat, N. B. & Bonadio, J. F. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms' tumor. Pediatr. Pathol. 10, 1–36 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Wiemels, J. L. et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet 354, 1499–1503 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Gale, K. B. et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc. Natl Acad. Sci. USA 94, 13950–13954 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wiemels, J. L. et al. In utero origin of t(8;21) AML1ETO translocations in childhood acute myeloid leukemia. Blood 99, 3801–3805 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in childhood leukaemia. Nature Rev. Cancer 3, 639–649 (2003).

    Article  CAS  Google Scholar 

  21. Pierce, G. B. & Johnson, L. D. Differentiation and cancer. In Vitro 7, 140–145 (1971).

    Article  CAS  PubMed  Google Scholar 

  22. Potter, V. R. Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny. The 10th Walter Hubert Lecture. Br. J. Cancer 38, 1–23 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sell, S. & Pierce, G. B. Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab. Invest. 70, 6–22 (1994).

    CAS  PubMed  Google Scholar 

  24. Reya, T., Morrison, S., Clarke, M. & Weissman, I. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ibrahim, S. F. & van den Engh, G., High-speed cell sorting: fundamentals and recent advances. Curr. Opin. Biotechnol. 14, 5–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Herzenberg, L. A., Parks, D., Sahaf, B., Perez, O. & Roederer, M. The history and future of the fluorescence activated cell sorter and flow cytometry: a view from Stanford. Clin. Chem. 48, 1819–1827 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Fialkow, P., Gartler, S. M. & Yoshida, A. Clonal origin of chronic myelocytic leukemia in man. Proc. Natl Acad. Sci. USA 58, 1468–1471 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fialkow, P. et al. Acute nonlymphocytic leukemia: heterogeneity of stem cell origin. Blood 57, 1068–1073 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Fialkow, J. P., Faguet, G. B., Jacobson, R. J., Vaidya, K. & Murphy, S. Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 58, 916–919 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Fialkow, P. J., Jacobson, R. J. & Papayannopoulou, T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am. J. Med. 63, 125–130 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. McCune, J. M. et al. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241, 1632–1639 (1988).

    Article  CAS  PubMed  Google Scholar 

  34. Kamel-Reid, S. et al. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science 246, 1597–1600 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Sirard, C. et al. Normal and leukemic SCID-repopulating cells (SRC) coexist in the bone marrow and peripheral blood from CML patients in chronic phase, whereas leukemic SRC are detected in blast crisis. Blood 87, 1539–1548 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645–648 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Jordan, C. T. et al. The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14, 1777–1784 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89, 3104–3112 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Blair, A., Hogge, D. E. & Sutherland, H. J. Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34+/CD71/HLA–DR. Blood 92, 4325–4335 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Blair, A. & Sutherland, H. J. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp. Hematol. 28, 660–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Cobaleda, C. et al. A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 95, 1007–1013 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Cox, C. V. et al. Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104, 2919–2925 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Deininger, M., Goldman, J. & Melo, J. The molecular biology of chronic myeloid leukemia. Blood 96, 3343–3356 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Martin, P. J. et al. Involvement of the B-lymphoid system in chronic myelogenous leukaemia. Nature 287, 49–50 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl J. Med. 351, 657–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Al-Hajj, M., Wicha, M., Benito-Hernandez, A., Morrison, S. & Clarke, M. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988. (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  48. Hemmati, H. D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl Acad. Sci. USA 100, 15178–15183 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ignatova, T. N. et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39, 193–206 (2002).

    Article  PubMed  Google Scholar 

  50. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Chesier, S., Morrison, S., Liao, X. & Weissman, I. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl Acad. Sci. USA 96, 3120–3125 (1999).

    Article  Google Scholar 

  52. Bradford, G., Williams, B., Rossi, R. & Bertoncello, I. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp. Hematol. 25, 445–453 (1997).

    CAS  PubMed  Google Scholar 

  53. Lansdorp, P. Self-renewal of stem cells. Biol. Blood Marrow Transplant. 3, 171–178 (1997).

    CAS  PubMed  Google Scholar 

  54. Morrison, S., Prowse, K., Ho, P. & Weissman, I. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Manz, M. G., Miyamoto, T., Akashi, K. & Weissman, I. L. Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl Acad. Sci. USA 99, 11872–11877 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mehrotra, B. et al. Cytogenetically aberrant cells in the stem cell compartment (CD34+lin) in acute myeloid leukemia. Blood 86, 1139–1117 (1995).

    CAS  PubMed  Google Scholar 

  57. Haase, D. et al. Evidence for malignant transformation in acute myeloid leukemia at the level of early hematopoietic stem cells by cytogenetic analysis of CD34+ subpopulations. Blood 86, 2906–2912. (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Quijano, C. et al. Cytogenetically aberrant cells are present in the CD34+CD333819 marrow compartment in children with acute lymphoblastic leukemia. Leukemia 11, 1508–1515 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Passegue, E., Wagner, E. F. & Weissman, I. L. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Cell 119, 431–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol. 5, 738–743 (2004).

    Article  CAS  Google Scholar 

  61. Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huntly, B. J. P. et al. MOZ–TIF2, but not BCR–ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Ernst, P., Wang, J. & Korsmeyer, S. J. The role of MLL in hematopoiesis and leukemia. Curr. Opin. Hematol. 9, 282–287 (2002).

    Article  PubMed  Google Scholar 

  64. Deguchi, K. et al. MOZ–TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3, 259–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Huntly, B. J. & Gilliland, D. G. Blasts from the past: new lessons in stem cell biology from chronic myelogenous leukemia. Cancer Cell 6, 199–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Ohta, H. et al. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J. Exp. Med. 195, 759–770 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Muller-Tidow, C. et al. Translocation products in acute myeloid leukemia activate the Wnt signalling pathway in hematopoietic cells. Mol. Cell Biol. 24, 2890–2903 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Zheng, X. et al. γ-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood 103, 3535–3543 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nature Med 6, 1278–1281 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Karanu, F. N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med. 192, 1365–1372 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, Y. & Kalderon, D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410, 599–604 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Wechsler-Reya, R. J. & Scott, M. P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Sauvageau, G. et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev. 9, 1753–1765 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Thorsteinsdottir, U., Sauvageau, G. & Humphries, R. K. Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood 94, 2605–2612 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Antonchuk, J., Sauvageau, G. & Humphries, R. K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Pardal, R., Clarke, M. F. & Morrison, S. J. Applying the principles of stem-cell biology to cancer. Nature Rev. Cancer 3, 895–902 (2003).

    Article  CAS  Google Scholar 

  80. Valk-Lingbeek, M. E., Bruggeman, S. W. & van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell 118, 409–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Schweisguth, F. Notch signaling activity. Curr. Biol. 14, R129–R138 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Hitoshi, S. et al. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 16, 846–858 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Radtke, F., Wilson, A., Mancini, S. J. & MacDonald, H. R. Notch regulation of lymphocyte development and function. Nature Immunol. 5, 247–253 (2004).

    Article  CAS  Google Scholar 

  86. Weng, A. P. & Aster, J. C. Multiple niches for Notch in cancer: context is everything. Curr. Opin. Genet. Dev. 14, 48–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Radtke, F. & Raj, K. The role of Notch in tumorigenesis: oncogene or tumour suppressor?. Nature Rev. Cancer 3, 756–767 (2003).

    Article  CAS  Google Scholar 

  88. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Aster, J. C. et al. Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol. Cell. Biol. 20, 7505–7515 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hoemann, C. D., Beaulieu, N., Girard, L., Rebai, N. & Jolicoeur, P. Two distinct Notch1 mutant alleles are involved in the induction of T-cell leukemia in c-myc transgenic mice. Mol. Cell. Biol. 20, 3831–3842 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Berry, L. W., Westlund, B. & Schedl, T. Germ-line tumor formation caused by activation of glp-1, a Caenorhabditis elegans member of the Notch family of receptors. Development 124, 925–936 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Pineault, N., Helgason, C. D., Lawrence, H. J. & Humphries, R. K. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp. Hematol. 30, 49–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Lawrence, H. J. et al. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 89, 1922–1930 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Kappen, C. Disruption of the homeobox gene Hoxb-6 in mice results in increased numbers of early erythrocyte progenitors. Am. J. Hematol. 65, 111–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Thorsteinsdottir, U. et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99, 121–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Krosl, J., Beslu, N., Mayotte, N., Humphries, R. K. & Sauvageau, G. The competitive nature of HOXB4-transduced HSC is limited by PBX1: the generation of ultra-competitive stem cells retaining full differentiation potential. Immunity 18, 561–571 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Look, A. Oncogenic transcription factors in the human acute leukaemias. Science 278, 1059–1064 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Borrow, J. et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nature Genet. 12, 159–167 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Raza-Egilmez, S. Z. et al. NUP98HOXD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res. 58, 4269–4273 (1998).

    CAS  PubMed  Google Scholar 

  102. Hatano, M., Roberts, C. W., Minden, M., Christ, W. M. & Korsmeyer, S. J. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 253, 79–82 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Ferrando, A. A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Sauvageau, G. et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 6, 13–22 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Perkins, A., Kongsuwan, K., Visvader, J., Adams, J. M. & Cory, S. Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. Proc. Natl Acad. Sci. USA 87, 8398–8402 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Thorsteinsdottir, U. et al. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol. Cell. Biol. 17, 495–505 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yu, B. D., Hess, J. L., Horning, S. E., Brown, G. A. & Korsmeyer, S. J. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 378, 505–508 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Ayton, P. M. & Cleary, M. L. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20, 5695–5707 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Daser, A. & Rabbitts, T. H. Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes Dev. 18, 965–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Armstrong, S. A., Golub, T. R. & Korsmeyer, S. J. MLL-rearranged leukemias: insights from gene expression profiling. Semin. Hematol. 40, 268–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  112. Davidson, A. J. et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425, 300–306 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Mlodzik, M. & Gehring, W. J. Expression of the caudal gene in the germ line of Drosophila: formation of an RNA and protein gradient during early embryogenesis. Cell 48, 465–478 (1987).

    Article  CAS  PubMed  Google Scholar 

  114. Chase, A. et al. Fusion of ETV6 to the caudal-related homeobox gene CDX2 in acute myeloid leukemia with the t(12;13)(p13;q12). Blood 93, 1025–1031 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Rawat, V. P. et al. Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12;13)(p13;q12) acute myeloid leukemia. Proc. Natl Acad. Sci. USA 101, 817–822 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ayton, P. & Cleary, M. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 20, 5695–5707 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Kelly, L. & Gilliland, D. Genetics of myeloid leukemias. Annu. Rev. Genomics Hum. Genet. 3, 179–198 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Hanahan, D. & Weinberg, R. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Guzman, M. L. et al. Preferential induction of apoptosis for primary human leukemic stem cells. Proc. Natl Acad. Sci. USA 99, 16220–16225 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Guzman, M. et al. The sesquiterpene lactone parthenolide induces apoptosis of human acute leukemia stem and progenitor cells. Blood 1 Feb 2005 (10.1182/blood-2004-10-4135).

  121. Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43, 404–409 (1972).

    Article  CAS  PubMed  Google Scholar 

  122. Czitrom, A. A. et al. The function of antigen-presenting cells in mice with severe combined immunodeficiency. J. Immunol. 134, 2276–2280 (1985).

    CAS  PubMed  Google Scholar 

  123. Prochazka, M., Gaskins, H. R., Shultz, L. D. & Leiter, E. H. The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc. Natl Acad. Sci. USA 89, 3290–3294 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Dick, J. E. Human stem cell assays in immune-deficient mice. Curr. Opin. Hematol. 3, 405–409 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature Med. 2, 1329–1337 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Wang, J. C. et al. High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase. Blood 91, 2406–2414 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the members of the Gilliland lab for helpful discussion. D.G.G. is an Investigator of the Howard Hughes Medical Institute and is a Doris Duke Distinguished Clinical Scientist. B.J.P.H is a Senior Clinical Fellow of the Leukaemia Research Fund (UK).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Cancer.gov

acute lymphoblastic leukaemia

acute myelogenous leukaemia

chronic myelogenous leukaemia

Entrez Gene

ABL

BCR

HOX11

HOX11L2

HOXA9

HOXB4

HOXD13

NOTCH1

NUP98

FURTHER INFORMATION

Gilliland laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huntly, B., Gilliland, D. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5, 311–321 (2005). https://doi.org/10.1038/nrc1592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc1592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing