Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Getting to the stem of chronic myeloid leukaemia

Key Points

  • The use of tyrosine-kinase inhibitors (TKIs) in chronic myeloid leukaemia (CML) is one of the greatest single advances in the targeted treatment of cancer but, in most cases, TKI therapy suppresses but does not eliminate the leukaemia.

  • Primitive CML cells are refractory to TKI therapy because of their acquisition of the complete physiology of stemness, which leads to relative quiescence and a protected reservoir for the breakpoint cluster region (BCR)–ABL (Abelson kinase) fusion. By contrast, progeny cells that persevere in the face of TKI therapy are resistant cells that might still be suppressed by second-generation TKIs or changes in doses of TKIs.

  • At the onset, carcinogenesis in CML is driven by BCR–ABL and is completely dependent on this mutation — an example of oncogenic addiction. Over time, the effects of BCR–ABL on the behaviour of the cell disrupt cellular homeostasis and promote genomic instability, leading to a point at which CML may progress irrespective of BCR–ABL. Beyond this anaplastic threshold, TKI therapy becomes less reliable, indicating transition to advanced-stage CML.

  • In advanced disease, it is genomic instability within the progeny cells that creates the disease phenotype, whereas the BCR–ABL fusion seems to simply persevere as a potential within the CML stem cell, implying that the fusion requires an increased rate of proliferation to exert its destabilizing effect. In fact, the relative quiescence might protect CML stem cells from TKI therapy, in so far as a minimum replicative index is required to actualize the pro-apoptotic effects of TKIs on the cell.

  • There may be two distinct cell types capable of self renewal in different phases of CML: first, a long-term haematopoietic stem cell with the BCR–ABL mutation, or CML stem cell, which maintains the more indolent chronic-phase disease, providing proliferative and survival advantages and, second, a leukaemic granulocyte macrophage progenitor responsible for rapid cell expansion in advanced disease.

Abstract

Tyrosine kinase inhibitor (TKI) therapy for chronic myeloid leukaemia (CML) is the consummate success story for targeted therapy, yet relapse is a nearly inevitable consequence of cessation or interruption of therapy. Primitive TKI-refractory CML stem cells are the likely source of these relapses, as they provide sanctuary for the Philadelphia chromosome. In advanced disease, their progressively anaplastic progeny ultimately maintain CML independently of the CML haematopoietic stem cell (HSC). Interestingly, there are at least two distinct cell types capable of self-renewal in different phases of CML: first, a primitive HSC with BCR–ABL mutation, which maintains the more indolent chronic-phase disease and, second, a coexisting mutated progenitor cell which acquires stem cell characteristics responsible for rapid cell expansion in advanced disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of oncogenic addiction in chronic myeloid leukaemia (CML).
Figure 2: Chronic myeloid leukaemia (CML) cell stemness.
Figure 3: Epigenetically mediated cell growth-senescence pathways in normal Ableson kinase (ABL) cells versus those with breakpoint cluster region (BCR)–ABL fusion protein.

Similar content being viewed by others

References

  1. Nowell, P. & Hungerford, D. A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497–1499 (1960).

    Google Scholar 

  2. Bartram, C. R. et al. Translocation of c-ab1 oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature 306, 277–280 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Frank, D. A. & Varticovski, L. BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 10, 1724–1730 (1996).

    CAS  PubMed  Google Scholar 

  4. Krebs, D. L. & Hilton, D. J. SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19, 378–387 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Neshat, M. S., Raitano, A. B., Wang, H. G., Reed, J. C. & Sawyers, C. L. The survival function of the Bcr–Abl oncogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf. Mol. Cell Biol. 20, 1179–1186 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neubauer, H. et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Puil, L. et al. Bcr–Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J. 13, 764–773 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sattler, M. et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1, 479–492 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Sattler, M. et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol. Cell Biol. 19, 7473–7480 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kantarjian, H. M., Talpaz, M., Giles, F., O'Brien, S. & Cortes, J. New insights into the pathophysiology of chronic myeloid leukemia and imatinib resistance. Ann. Intern. Med. 145, 913–923 (2006).

    Article  PubMed  Google Scholar 

  11. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Einhorn, L. H. & Williams, S. D. The role of cis-platinum in solid-tumor therapy. N. Engl. J. Med. 300, 289–291 (1979).

    Article  CAS  PubMed  Google Scholar 

  13. Goldman, J., Gordon, M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk. Lymphoma 47, 1–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hughes, T. P. et al. Frequency of major molecular responses to imatinib or interferon α plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 349, 1423–1432 (2003). This was the first large analysis to reveal lack of complete molecular response in majority of cytogenetic responses.

    Article  CAS  PubMed  Google Scholar 

  15. Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myelogenous leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Roy, L. et al. Survival advantage from imatinib compared with the combination interferon-α plus cytarabine in chronic-phase chronic myelogenous leukemia: historical comparison between two phase 3 trials. Blood 108, 1478–1484 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Deininger, M. W., Goldman, J. M. & Melo, J. V. The molecular biology of chronic myeloid leukemia. Blood 96, 3343–3356 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, X., Saw, K. M., Eaves, A. & Eaves, C. Instability of BCR–ABL gene in primary and cultured chronic myeloid leukemia stem cells. J. Natl Cancer Inst. 99, 680–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Roche-Lestienne, C. et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 100, 1014–1018 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Hochhaus, A. et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood 109, 2303–2309 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. le Coutre, P. et al. Nilotinib (formerly AMN107), a highly selective BCR–ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111, 1834–1839 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Cortes, J., O'Brien, S. & Kantarjian, H. Discontinuation of imatinib therapy after achieving a molecular response. Blood 104, 2204–2205 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Usuki, K., Iijima, K., Iki, S. & Urabe, A. CML cytogenetic relapse after cessation of imatinib therapy. Leuk. Res. 29, 237–238 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Piazza, R. G. et al. Imatinib dose increase up to 1200 mg daily can induce new durable complete cytogenetic remissions in relapsed Ph+ chronic myeloid leukemia patients. Leukemia 19, 1985–1987 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Kantarjian, H. et al. High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia. Blood 103, 2873–2878 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Talpaz, M. et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 354, 2531–2541 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Kantarjian, H. et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N. Engl. J. Med. 354, 2542–2551 (2006).

    Article  PubMed  Google Scholar 

  28. Kaeda, J., Chase, A. & Goldman, J. M. Cytogenetic and molecular monitoring of residual disease in chronic myeloid leukaemia. Acta Haematol. 107, 64–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Kiel, M. J., He, S., Ashkenazi R., et al. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449, 238–242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morrison, S. J., Hemmati, H. D., Wandycz, A. M. & Weissman, I. L. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl Acad. Sci. USA 92, 10302–10306 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray, L. et al. Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin subpopulation from mobilized peripheral blood. Blood 85, 368–378 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Uchida, N. & Weissman, I. L. Searching for hematopoietic stem cells: evidence that Thy-1.1lo LinSca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184 (1992). One of a series of seminal early studies that edified the concept that flow cytometry could be used to prospectively isolate haematopoietic stem cells.

    Article  CAS  PubMed  Google Scholar 

  33. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Wolf, N. S., Kone, A., Priestley, G. V. & Bartelmez SH . In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp. Hematol. 21, 614–622 (1993).

    CAS  PubMed  Google Scholar 

  35. Morrison, S. J., Uchida, N. & Weissman, I. L. The biology of hematopoietic stem cells. Annu. Rev. Cell Dev. Biol. 11, 35–71 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Hogan, C. J., Shpall, E. J. & Keller, G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc. Natl Acad. Sci. USA 99, 413–418 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dick, J. E., Bhatia, M., Gan, O., Kapp, U. & Wang, J. C. Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 15 (Suppl. 1), 199–203; discussion 204–207 (1997).

    Article  PubMed  Google Scholar 

  38. McKenzie, J. L., Gan, O. I., Doedens, M., Wang, J. C. & Dick, J. E. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nature Immunol. 7, 1225–1233 (2006).

    Article  CAS  Google Scholar 

  39. Hogge, D. E., Lansdorp, P. M., Reid, D., Gerhard, B. & Eaves, C. J. Enhanced detection, maintenance, and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human steel factor, interleukin-3, and granulocyte colony-stimulating factor. Blood 88, 3765–3773 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Baum, C. M., Weissman, I. L., Tsukamoto, A. S., Buckle, A. M. & Peault, B. Isolation of a candidate human hematopoietic stem-cell population. Proc. Natl Acad. Sci. USA 89, 2804–2808 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yin, A. H. et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90, 5002–5012 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Moreb, J. S. et al. Interleukin-1 and tumor necrosis factor alpha induce class 1 aldehyde dehydrogenase mRNA and protein in bone marrow cells. Leuk. Lymphoma 20, 77–84 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. McKenzie, J. L., Takenaka, K., Gan, O. I., Doedens, M. & Dick, J. E. Low Rhodamine123 retention identifies long-term human hematopoietic stem cells within the LinCD34+CD38- population. Blood 109, 543–545 (2006).

    Article  PubMed  CAS  Google Scholar 

  44. Jamieson, C. H. et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N. Engl. J. Med. 351, 657–667 (2004). Jamieson et al . redefined the cancer stem cell model by illustrating the presence of stem cell-like qualities in committed progenitors of advanced disease.

    Article  CAS  PubMed  Google Scholar 

  45. Cammenga, J. Gatekeeper pathways and cellular background in the pathogenesis and therapy of AML. Leukemia 19, 1719–1728 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Huntly, B. J. & Gilliland, D. G. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nature Rev. Cancer 5, 311–321 (2005).

    Article  CAS  Google Scholar 

  47. Bonnet, D. & Dick, J. E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 3, 730–737 (1997). Leukaemic C34+CD38 cells were shown to have preferential capacity to recapitulate leukaemia in a xenograft transplantation model.

    Article  CAS  PubMed  Google Scholar 

  48. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Hope, K. J., Jin, L. & Dick, J. E. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nature Immunol. 5, 738–743 (2004).

    Article  CAS  Google Scholar 

  50. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh, S. K., Clarke, I. D., Hide, T. & Dirks, P. B. Cancer stem cells in nervous system tumors. Oncogene 23, 7267–7273 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, C. et al. Identification of pancreatic cancer stem cells. Cancer Res. 67, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Guzman, M. L. et al. Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1, 2, 4-thiadiazolidine, 3, 5 dione (TDZD-8). Blood 110, 4436–4444 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guzman, M. L. et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110, 4427–4435 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Fialkow, P. J., Jacobson, R. J. & Papayannopoulou, T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am. J. Med. 63, 125–130 (1977). A seminal work from 1977 that recognized that CML was a clonal disease.

    Article  CAS  PubMed  Google Scholar 

  59. Udomsakdi, C. et al. Rapid decline of chronic myeloid leukemic cells in long-term culture due to a defect at the leukemic stem cell level. Proc. Natl Acad. Sci. USA 89, 6192–6196 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jaiswal, S. et al. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc. Natl Acad. Sci. USA 100, 10002–10007 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jiang, X., Lopez, A., Holyoake, T., Eaves, A. & Eaves, C. Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA 96, 12804–12809 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jordan, C. T. & Guzman, M. L. Mechanisms controlling pathogenesis and survival of leukemic stem cells. Oncogene 23, 7178–7187 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Copland, M., Hamilton, A. & Holyoake, T. L. Response: Conventional Western blotting techniques will not reliably quantify p210 BCR–ABL. Blood 109, 1336 (2007).

    Article  CAS  Google Scholar 

  64. Jiang, X. et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR–ABL targeted therapies. Leukemia 21, 926–935 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Chu, S. et al. Detection of BCR–ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 105, 2093–2098 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR–ABL gene mutation or amplification. Science 293, 876–880 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Jorgensen, H. G. et al. Lonafarnib reduces the resistance of primitive quiescent CML cells to imatinib mesylate in vitro. Leukemia 19, 1184–1191 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Copland, M. et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML, but does not eliminate the quiescent fraction. Blood 107, 4532–4539 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Copland, M., Fraser, A. R., Harrison, S. J. & Holyoake, T. L. Targeting the silent minority: emerging immunotherapeutic strategies for eradication of malignant stem cells in chronic myeloid leukaemia. Cancer Immunol. Immunother. 54, 297–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Copland, M., Jorgensen, H. G. & Holyoake, T. L. Evolving molecular therapy for chronic myeloid leukaemia — are we on target? Hematology 10, 349–359 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Deininger, M. et al. No evidence for persistence of BCR–ABL-positive cells in patients in molecular remission after conventional allogenic transplantation for chronic myeloid leukemia. Blood 96, 779–780 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Shah, N. P. et al. Multiple BCR–ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2, 117–125 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Al-Ali, H. K. et al. High incidence of BCR–ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol. J. 5, 55–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Azam, M., Latek, R. R. & Daley, G. Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR–ABL. Cell 112, 831–843 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Corbin, A. S., La Rosee, P., Stoffregen, E. P., Druker, B. J. & Deininger, M. W. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 101, 4611–4614 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Nagar, B. et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 62, 4236–4243 (2002).

    CAS  PubMed  Google Scholar 

  78. Schindler, T. et al. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289, 1938–1942 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Morel, F. et al. Double minutes containing amplified BCR–ABL fusion gene in a case of chronic myeloid leukemia treated by imatinib. Eur. J. Haematol. 70, 235–239 (2003).

    Article  PubMed  Google Scholar 

  80. Shah, N. P. et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305, 399–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Bartholomeusz, G. A. et al. Activation of a novel Bcr/Abl destruction pathway by WP1130 induces apoptosis of chronic myelogenous leukemia cells. Blood 109, 3470–3478 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cong, P. et al. IPI-504, a novel, orally active HSP90 inhibitor, prolongs survival of mice with BCR–ABL T315I CML and B-ALL. Blood 108, Abstract 2183 (2006).

    Article  Google Scholar 

  83. Giles, F. J. et al. MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR–ABL mutation. Blood 109, 500–502 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Harrington, E. A. et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Med. 10, 262–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. O'Hare, T. et al. Inhibition of T315I BCR–ABL and other imatinib-resistant BCR–ABL mutants by the selective ABL kinase inhibitor SGX70393. Blood 108, Abstract 1373 (2006).

    Article  Google Scholar 

  86. Shakespeare, W. et al. Orally active inhibitors of the imatinib resistant BCR–ABL mutant T315I. Blood 108, Abstract 2180 (2006).

  87. White, D. L. et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108, 697–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. White, D. et al. In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood 106, 2520–2526 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Danhauser-Riedl, S., Warmuth, M., Druker, B. J., Emmerich, B. & Hallek, M. Activation of Src kinases p53/56lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res. 56, 3589–3596 (1996).

    CAS  PubMed  Google Scholar 

  90. Donato, N. J. et al. BCR–ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 101, 690–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Wilson, M. B., Schreiner, S. J., Choi, H. J., Kamens, J. & Smithgall, T. E. Selective pyrrolo-pyrimidine inhibitors reveal a necessary role for Src family kinases in Bcr–Abl signal transduction and oncogenesis. Oncogene 21, 8075–8088 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Michor, F. et al. Dynamics of chronic myeloid leukaemia. Nature 435, 1267–1270 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Jordanides, N. E., Jorgensen, H. G., Holyoake, T. L. & Mountford, J. C. Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 108, 1370–1373 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Radich, J. P. et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc. Natl Acad. Sci. USA (2006). An important recent microarray analysis of the genes upregulated in different phases of CML, which highlights the presence of variable genetic signatures in different phases of the disease.

  96. Roeder, I. et al. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nature Med. 12, 1181–1184 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Weinstein, I. B. et al. Disorders in cell circuitry associated with multistage carcinogenesis: exploitable targets for cancer prevention and therapy. Clin. Cancer Res. 3, 2696–2702 (1997).

    CAS  PubMed  Google Scholar 

  98. Weinstein, I. B. Cancer. Addiction to oncogenes — the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Sharma, S. V., Fischbach, M. A., Haber, D. A. & Settleman, J. “Oncogenic shock”: explaining oncogene addiction through differential signal attenuation. Clin. Cancer Res. 12, 4392s–4395s (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Sharma, S. V. et al. A common signaling cascade may underlie “addiction” to the Src, BCR–ABL, and EGF receptor oncogenes. Cancer Cell 10, 425–435 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chu, S., Holtz, M., Gupta, M. & Bhatia, R. BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 103, 3167–3174 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Deacon, K., Mistry, P., Chernoff, J., Blank, J. L. & Patel, R. p38 mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol. Biol. Cell 14, 2071–2087 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Losa, J. H. et al. Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene 22, 3998–4006 (2003).

    Article  CAS  Google Scholar 

  104. Puri, P. L. et al. Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev. 14, 574–584 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lahaye, T. et al. Response and resistance in 300 patients with BCR–ABL-positive leukemias treated with imatinib in a single center: a 4.5-year follow-up. Cancer 103, 1659–1669 (2005).

    Article  PubMed  Google Scholar 

  106. Lange, T., Park, B., Willis, S. G. & Deininger, M. W. BCR–ABL kinase domain mutations in chronic myeloid leukemia: not quite enough to cause resistance to imatinib therapy? Cell Cycle 4, 1761–1766 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Corey, S. J. et al. Requirement of Src kinase Lyn for induction of DNA synthesis by granulocyte colony-stimulating factor. J. Biol. Chem. 273, 3230–3235 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Donato, N. J. et al. Imatinib mesylate resistance through BCR–ABL independence in chronic myelogenous leukemia. Cancer Res. 64, 672–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Tipping, A. J., Deininger, M. W., Goldman, J. M. & Melo, J. V. Comparative gene expression profile of chronic myeloid leukemia cells innately resistant to imatinib mesylate. Exp. Hematol. 31, 1073–1080 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Walkley, C. R. et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor γ deficiency. Cell 129, 1097–1110 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Walkley, C. R., Shea, J. M., Sims, N. A., Purton, L. E. & Orkin, S. H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Krause, D. S., Lazarides, K., von Andrian, U. H. & Van Etten, R. A. Requirement for CD44 in homing and engraftment of BCR–ABL-expressing leukemic stem cells. Nature Med. 12, 1175–1180 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Rossi, D. J. et al.Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447, 725–729 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Krivtsov, A. V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9. Nature 442, 818–822 (2006). Kristov et al . illustrated the capacity to recapitulate stem cell features in progeny cells by viral transfection of a powerful oncogene.

    Article  CAS  PubMed  Google Scholar 

  115. Huntly, B. J. et al. MOZ–TIF2, but not BCR–ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6, 587–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Cozzio, A. et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev. 17, 3029–3035 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. So, C. W. et al. MLL–GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 3, 161–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Marley, S. B., Deininger, M. W., Davidson, R. J., Goldman, J. M. & Gordon, M. Y. The tyrosine kinase inhibitor STI571, like interferon-α, preferentially reduces the capacity for amplification of granulocyte-macrophage progenitors from patients with chronic myeloid leukemia. Exp. Hematol. 28, 551–557 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Gordon, M. Y. et al. Treatment with interferon-α preferentially reduces the capacity for amplification of granulocyte-macrophage progenitors (CFU-GM) from patients with chronic myeloid leukemia but spares normal CFU-GM. J. Clin. Invest. 102, 710–715 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Somervaille, T. C. & Cleary, M. L. Identification and characterization of leukemia stem cells in murine MLL–AF9 acute myeloid leukemia. Cancer Cell 10, 257–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Arce, L., Yokoyama, N. N. & Waterman, M. L. Diversity of LEF/TCF action in development and disease. Oncogene 25, 7492–7504 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Scheller, M. et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nature Immunol. 7, 1037–1047 (2006).

    Article  CAS  Google Scholar 

  124. Kirstetter, P., Anderson, K., Porse, B. T., Jacobsen, S. E. & Nerlov, C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunol. 7, 1048–1056 (2006).

    Article  CAS  Google Scholar 

  125. Lawson, N. D. et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128, 3675–3683 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Maillard, I., He, Y. & Pear, W. S. From the yolk sac to the spleen: New roles for Notch in regulating hematopoiesis. Immunity 18, 587–589 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Pui, J. C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  129. Park, I. K. et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423, 302–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Sauvageau, G. et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl Acad. Sci. USA 91, 12223–12227 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hess, J. L., Yu, B. D., Li, B., Hanson, R. & Korsmeyer, S. J. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90, 1799–1806 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Ernst, P. et al. Definitive hematopoiesis requires the mixed-lineage leukemia gene. Dev. Cell 6, 437–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Steidl, U. et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nature Genet. 38, 1269–1277 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Lessard, J. & Sauvageau, G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Mansour, M. R., Linch, D. C., Foroni, L., Goldstone, A. H. & Gale, R. E. High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 20, 537–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Tohda, S., Kogoshi, H., Murakami, N., Sakano, S. & Nara, N. Diverse effects of the Notch ligands Jagged1 and Delta1 on the growth and differentiation of primary acute myeloblastic leukemia cells. Exp. Hematol. 33, 558–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Sengupta, A. et al. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia 21, 949–955 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Aguirre-Ghiso, J. A., Ossowski, L. & Rosenbaum, S. K. Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res. 64, 7336–7345 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Pruitt, K., Pruitt, W. M., Bilter, G. K., Westwick, J. K. & Der, C. J. Raf-independent deregulation of p38 and JNK mitogen-activated protein kinases are critical for Ras transformation. J. Biol. Chem. 277, 31808–31817 (2002).

    Article  CAS  PubMed  Google Scholar 

  140. Molofsky, A. V. et al. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425, 962–967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Voncken, J. W. et al. MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J. Biol. Chem. 280, 5178–5187 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Mohty, M., Yong, A. S., Szydlo, R. M., Apperley, J. F. & Melo, J. V. The polycomb group BMI-1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood 110, 380–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Melo, J. V. & Barnes, D. J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nature Rev. Cancer 7, 441–453 (2007).

    Article  CAS  Google Scholar 

  144. Angstreich, G. R. et al. Effects of imatinib and interferon on primitive chronic myeloid leukaemia progenitors. Br. J. Haematol. 130, 373–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Talpaz, M. et al. Persistence of dormant leukemic progenitors during interferon-induced remission in chronic myelogenous leukemia. Analysis by polymerase chain reaction of individual colonies. J. Clin. Invest. 94, 1383–1389 (1994). A PCR analysis illustrating the presence of dormant leukaemic progenitors in an interferon-α -induced remission, and thereby suggesting a role of induced immunosurvellience, rather than eradication of CML, with interferon-α therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rousselot, P. et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 109, 58–60 (2007). Use of imatinib after previous interferon-α treatment resulted in long-term responses without any type of maintenance therapy. This raised the question of potentially reevaluating the use of interferon-α in modern treatment of CML.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize for omissions of citations as the manuscript limits restrict us from discussing and acknowledging some important works in this field. We would like to thank S. J. Morrison for assistance with generation of Figure 3; and J. P. Fossum for her tireless administrative assistance throughout the production of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Savona or Moshe Talpaz.

Related links

Related links

DATABASES

National cancer institute

acute myeloid leukaemia

chronic myeloid leukaemia

glioma

National cancer institute Drug Dictionary

dasatinib

imatinib mesylate

nilotinib

FURTHER INFORMATION

M. Talpaz's homepage

Glossary

Karyotype analysis

The preparation and study of chromosomes in dividing metaphase bone marrow cells to determine whether the normal human chromosomal complement (46) is present.

SLAM markers

The signalling lymphocyte attractant molecule (SLAM) family of markers are differentially expressed on haematopoietic cells, and certain combinations (for example, CD150+CD48CD41) reveal highly purified populations of primitive haematopoietic stem cells.

Anaplastic threshold

A point in the progression of CML at which the disease is no longer dependent on BCR–ABL and has the capacity to progress, if necessary, in the absence of the oncogene to which it was originally addicted

Replicative index

The relative rate at which cells divide, essentially interchangeable with the proliferative index. An HSC, for example, has a low replicative index, and a leukaemic blast has a comparably high index.

Self-renewal signature

A proposed set of genes which normally have a role in self-renewal in stem cells, and may be seen upregulated in malignant progeny cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savona, M., Talpaz, M. Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer 8, 341–350 (2008). https://doi.org/10.1038/nrc2368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2368

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing