Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The ADAMs: signalling scissors in the tumour microenvironment

Key Points

  • ADAMs (a disintegrin and metalloproteinase) are membrane-associated metalloproteinases with a complex multi-domain structure. About half of the family have proteolytic potential, as well as domains with adhesive properties and a cytoplasmic domain involved in cell signalling.

  • The upregulation of proteolytic ADAMs has been documented for a number of cancers, with some correlation to parameters of disease progression.

  • The 'shedding' activities of ADAMs — cleaving transmembrane proteins and solubilizing the complete ectodomain of cytokines, growth factors, receptors and adhesion molecules — places them in pivotal positions in the extracellular regulation of cellular signalling. They can potentially regulate many activities within the tumour microenvironment, including inflammatory responses, immune regulation, angiogenesis, and cell migration and proliferation.

  • ADAM proteolysis has been implicated in key signalling pathways identified in many tumour cells. The generation of soluble ligands for the family of Erbb receptors, including in response to the activation of G-protein-coupled receptors and leading to epidermal growth factor receptor transactivation, have been described. ADAM sheddase activity appears to modulate the process of regulated intramembrane proteolysis (RIPping) by γ-secretase: the intracellular portions of transmembrane proteins are released either into proteasomal degradation pathways or into the cytosol prior to nuclear trafficking where they function as transcription factors.

  • ADAM activity is regulated in part by cellular trafficking and changes in the interaction with the membrane-bound substrate. Numerous protein adaptors and modulators that alter either enzyme activity or substrate availability have been documented and these may build specificity into ADAM sheddase activities in vivo.

  • The data from cell and animal models of cancer indicate that ADAM proteolytic activities could drive aspects of tumorigenesis. Before their consideration as therapeutic targets it will be necessary to further define the correlation of their expression in relation to different aspects of tumour development, and the mechanism by which they do this. Furthermore, the design of specific inhibitors, possibly targeting extracatalytic sites or adaptor proteins, will be essential.

Abstract

Over the last few years disintegrin metalloproteinases of the Adam (a disintegrin and metalloproteinase) family have been associated with the process of proteolytic 'shedding' of membrane-associated proteins and hence the rapid modulation of key cell signalling pathways in the tumour microenvironment. Furthermore, numerous members of the Adam family have been associated with tumorigenesis and tumour progression. The question now arises of whether pharmacological manipulation of their functions would be a useful adjunct to therapies targeting intercellular communications. To learn from the lessons of matrix metalloproteinase inhibitors as anticancer agents, there are many facets of the biological and clinical relevance of the ADAMs that need to be understood before embarking with confidence on such an approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zinc metalloproteinases.
Figure 2: Schematic diagram of the domain structure of the Adam (a disintegrin and metalloproteinase) family.
Figure 3: Shedding and RIPping.
Figure 4: ADAMs (a disintegrin and metalloproteinase): cellular interactions.

Similar content being viewed by others

References

  1. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002). The first major review documenting the problems of tackling metalloproteinases as therapeutic targets in cancer and the way forward.

    Article  CAS  PubMed  Google Scholar 

  2. Lopez-Otin, C. & Matrisian, L. M. Emerging roles of proteases in tumour suppression. Nature Rev. Cancer 7, 800–808 (2007).

    Article  CAS  Google Scholar 

  3. Stöcker, W. & Bode, W. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr. Opin. Struct. Biol. 5, 383–390 (1995).

    Article  PubMed  Google Scholar 

  4. Cuniasse, P. et al. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Biochimie 87, 393–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Singh, R. J. et al. Cytokine stimulated vascular cell adhesion molecule-1 (VCAM-1) ectodomain release is regulated by TIMP-3. Cardiovasc. Res. 67, 39–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Lambert, D. W., Clarke, N. E., Hooper, N. M. & Turner, A. J. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett. 582, 385–390 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Hart, S., Fischer, O. M. & Ullrich, A. Cannabinoids induce cancer cell proliferation via tumor necrosis factor a-converting enzyme (TACE/ADAM17)-mediated transactivation of the epidermal growth factor receptor. Cancer Res. 64, 1943–1950 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Fox, J. W. & Serrano, S. M. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 45, 969–985 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Rocks, N. et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90, 369–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Cho, C., Primakoff, P., White, J. M. & Myles, D. G. Chromosomal assignment of four testis-expressed mouse genes from a new family of transmembrane proteins (ADAMs) involved in cell–cell adhesion and fusion. Genomics 34, 413–417 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Mochizuki, S. & Okada, Y. ADAMs in cancer cell proliferation and progression. Cancer Sci. 98, 621–628 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Garton, K. J., Gough, P. J. & Raines, E. W. Emerging roles for ectodomain shedding in the regulation of inflammatory responses. J. Leukoc. Biol. 79, 1105–1116 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Holgate, S. T. et al. The genetics of asthma: ADAM33 as an example of a susceptibility gene. Proc. Am. Thorac. Soc. 3, 440–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Deuss, M., Reiss, K. & Hartmann, D. Part-time α-secretases: the functional biology of ADAM 9, 10 and 17. Curr. Alzheimer Res. 5, 187–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Gilpin, B. J. et al. A novel secreted form of human ADAM 12 (Meltrin a) provokes myogenesis in vivo. J. Biol. Chem. 273, 157–166 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Powell, R. M., Wicks, J., Holloway, J. W., Holgate, S. T. & Davies, D. E. The splicing and fate of ADAM33 transcripts in primary human airways fibroblasts. Am. J. Respir. Cell. Mol. Biol. 31, 13–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Mazzocca, A. et al. A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res. 65, 4728–4738 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Blanchot-Jossic, F. et al. Up-regulated expression of ADAM17 in human colon carcinoma: co-expression with EGFR in neoplastic and endothelial cells. J. Pathol. 207, 156–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Peduto, L. et al. ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression. Oncogene 25, 5462–5466 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Kuefer, R. et al. ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia 8, 319–329 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo, J. et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61, 4683–4688 (2001).

    CAS  PubMed  Google Scholar 

  22. McCulloch, D. R., Akl, P., Samaratunga, H., Herington, A. C. & Odorico, D. M. Expression of the disintegrin metalloprotease, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor in the prostate cancer cell model LNCaP. Clin. Cancer Res. 10, 314–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Arima, T. et al. Nuclear translocation of ADAM-10 contributes to the pathogenesis and progression of human prostate cancer. Cancer Sci. (2007).

  24. Fritzsche, F. R. et al. ADAM9 expression is a significant and independent prognostic marker of PSA relapse in prostate cancer. Eur. Urol. 54, 1106–1107 (2007).

    Google Scholar 

  25. Peduto, L., Reuter, V. E., Shaffer, D. R., Scher, H. I. & Blobel, C. P. Critical function for ADAM9 in mouse prostate cancer. Cancer Res. 65, 9312–9319 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. McGowan, P. M. et al. ADAM-17 predicts adverse outcome in patients with breast cancer. Ann. Oncol. 19, 1075–1081 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Borrell-Pages, M., Rojo, F., Albanell, J., Baselga, J. & Arribas, J. TACE is required for the activation of the EGFR by TGF-α in tumors. EMBO J. 22, 1114–1124 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Shea, C. et al. Expression of ADAM-9 mRNA and protein in human breast cancer. Int. J. Cancer 105, 754–761 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Dyczynska, E., Syta, E., Sun, D. & Zolkiewska, A. Breast cancer-associated mutations in metalloprotease disintegrin ADAM12 interfere with the intracellular trafficking and processing of the protein. Int. J. Cancer 122, 2634–2640 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999). The first paper describing the role of a metalloproteinase activity in EGFR transactivation by GPCRs.

    Article  CAS  PubMed  Google Scholar 

  32. Blobel, C. P. ADAMs: key components in EGFR signalling and development. Nature Rev. Mol. Cell. Biol. 6, 32–43 (2005). A summary of the most important findings on the ADAMs with roles in the regulation of EGFR signalling.

    Article  CAS  Google Scholar 

  33. Zheng, Y., Saftig, P., Hartmann, D. & Blobel, C. Evaluation of the contribution of different ADAMs to tumor necrosis factor α (TNFα) shedding and of the function of the TNFα ectodomain in ensuring selective stimulated shedding by the TNFα convertase (TACE/ADAM17). J. Biol. Chem. 279, 42898–42906 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 25, 409–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Schulte, M. et al. ADAM10 regulates FasL cell surface expression and modulates FasL-induced cytotoxicity and activation-induced cell death. Cell Death Differ. 14, 1040–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Edwards, D. R., Handsley, M. M. & Pennington, C. J. The ADAM metalloproteinases. Mol. Aspects Med. 29, 258–259 (2008). The most up-to-date and comprehensive review of all aspects of ADAM biology and involvement in human diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rose-John, S., Scheller, J., Elson, G. & Jones, S. A. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J. Leukoc. Biol. 80, 227–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Garton, K. J. et al. Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 276, 37993–38001 (2001).

    CAS  PubMed  Google Scholar 

  39. Tousseyn, T., Jorissen, E., Reiss, K. & Hartmann, D. (Make) stick and cut loose — disintegrin metalloproteases in development and disease. Birth Defects Res. C Embryo Today 78, 24–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. White, J. M. ADAMs: modulators of cell–cell and cell–matrix interactions. Curr. Opin. Cell Biol. 15, 598–606 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Reiss, K., Ludwig, A. & Saftig, P. Breaking up the tie: disintegrin-like metalloproteinases as regulators of cell migration in inflammation and invasion. Pharmacol. Ther. 111, 985–1006 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Maretzky, T. et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration, and b-catenin translocation. Proc. Natl Acad. Sci. USA 102, 9182–9187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Waldhauer, I. et al. Tumor-associated MICA is shed by ADAM proteases. Cancer Res. 68, 6368–6376 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Hakulinen, J. & Keski-Oja, J. ADAM10-mediated release of complement membrane cofactor protein during apoptosis of epithelial cells. J. Biol. Chem. 281, 21369–21376 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Rev. Cancer 5, 341–354 (2005). This review highlights of the problems of targeting the Erbb receptors in cancer.

    Article  CAS  Google Scholar 

  46. Zhou, B. B. et al. ADAM proteases, ErbB pathways and cancer. Expert Opin. Investig. Drugs 14, 591–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Revillion, F., Lhotellier, V., Hornez, L., Bonneterre, J. & Peyrat, J. P. ErbB/HER ligands in human breast cancer, and relationships with their receptors, the bio-pathological features and prognosis. Ann. Oncol. 19, 73–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Fridman, J. S. et al. Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin. Cancer Res. 13, 1892–1902 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Kenny, P. A. & Bissell, M. J. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J. Clin. Invest. 117, 337–345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, X. et al. Selective inhibition of ADAM metalloproteases blocks HER-2 extracellular domain (ECD) cleavage and potentiates the anti-tumor effects of trastuzumab. Cancer Biol. Ther. 5, 648–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Lafky, J. M., Wilken, J. A., Baron, A. T. & Maihle, N. J. Clinical implications of the ErbB/epidermal growth factor (EGF) receptor family and its ligands in ovarian cancer. Biochim. Biophys. Acta 1785, 232–265 (2008).

    CAS  PubMed  Google Scholar 

  52. Horiuchi, K. et al. Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol. Biol. Cell 18, 176–188 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schulte, A. et al. Sequential processing of the transmembrane chemokines CX3CL1 and CXCL16 by α- and γ-secretases. Biochem. Biophys. Res. Commun. 358, 233–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Williams, C. C. et al. The ERBB4/HER4 receptor tyrosine kinase regulates gene expression by functioning as a STAT5A nuclear chaperone. J. Cell Biol. 167, 469–478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Selkoe, D. J. & Wolfe, M. S. Presenilin: running with scissors in the membrane. Cell 131, 215–221 (2007). This article details the current knowledge of the action of γ-secretases as co-regulators — with the ADAMs — of transmembrane protein signalling.

    Article  CAS  PubMed  Google Scholar 

  56. Linggi, B. & Carpenter, G. ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol. 16, 649–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Nanba, D. et al. An intermediary role of proHB-EGF shedding in growth factor-induced c-Myc gene expression. J. Cell Physiol. 214, 465–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Shih Ie, M. & Wang, T. L. Notch signaling, γ-secretase inhibitors, and cancer therapy. Cancer Res. 67, 1879–1882 (2007).

    Article  PubMed  CAS  Google Scholar 

  59. Murphy, G., Murthy, A. & Khokha, R. Clipping, shedding and RIPping keep immunity on cue. Trends Immunol. 29, 75–82 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Schlondorff, J., Becherer, J. D. & Blobel, C. P. Intracellular maturation and localization of the tumour necrosis factor α convertase (TACE). Biochem. J. 347 (Pt 1), 131–138 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Doedens, J. R. & Black, R. A. Stimulation-induced down-regulation of tumor necrosis factor-α converting enzyme. J. Biol. Chem. 275, 14598–14607 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Becherer, J. D. & Blobel, C. P. Biochemical properties and functions of membrane-anchored metalloprotease-disintegrin proteins (ADAMs). Curr. Top. Dev. Biol. 54, 101–123 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Zheng, Y., Schlondorff, J. & Blobel, C. P. Evidence for regulation of the tumor necrosis factor α-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J. Biol. Chem. 277, 42463–42470 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Mackay, H. J. & Twelves, C. J. Targeting the protein kinase C family: are we there yet? Nature Rev. Cancer 7, 554–562 (2007).

    Article  CAS  Google Scholar 

  65. Tonks, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nature Rev. Mol. Cell Biol. 7, 833–846 (2006).

    Article  CAS  Google Scholar 

  66. Nagano, O. et al. Cell–matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation. J. Cell Biol. 165, 893–902 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Soond, S. M., Everson, B., Riches, D. W. & Murphy, G. ERK-mediated phosphorylation of Thr735 in TNFα-converting enzyme and its potential role in TACE protein trafficking. J. Cell Sci. 118, 2371–2380 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Ramsay, A. G., Marshall, J. F. & Hart, I. R. Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev. 26, 567–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Seals, D. F. & Courtneidge, S. A. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 17, 7–30 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Izumi, Y. et al. A metalloprotease-disintegrin, MDC9/meltrin-γ/ADAM9 and PKCδ are involved in TPA-induced ectodomain shedding of membrane-anchored heparin-binding EGF-like growth factor. EMBO J. 17, 7260–7272 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sanderson, M. P. et al. ADAM10 mediates ectodomain shedding of the betacellulin precursor activated by p-aminophenylmercuric acetate and extracellular calcium influx. J. Biol. Chem. 280, 1826–1837 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Stoeck, A. et al. A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem. J. 393, 609–618 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Skovronsky, D. M., Pijak, D. S., Doms, R. W. & Lee, V. M. A distinct ER/IC γ-secretase competes with the proteasome for cleavage of APP. Biochemistry 39, 810–817 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Shirakabe, K., Wakatsuki, S., Kurisaki, T. & Fujisawa-Sehara, A. Roles of Meltrin β /ADAM19 in the processing of neuregulin. J. Biol. Chem. 276, 9352–9358 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Yokozeki, T. et al. Meltrin β (ADAM19) mediates ectodomain shedding of Neuregulin β1 in the Golgi apparatus: fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells. Genes Cells 12, 329–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Matthews, V. et al. Cellular cholesterol depletion triggers shedding of the human interleukin-6 receptor by ADAM10 and ADAM17 (TACE). J. Biol. Chem. 278, 38829–38839 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Wild-Bode, C., Fellerer, K., Kugler, J., Haass, C. & Capell, A. A basolateral sorting signal directs ADAM10 to adherens junctions and is required for its function in cell migration. J. Biol. Chem. 281, 23824–23829 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Smalley, D. M. & Ley, K. L-selectin: mechanisms and physiological significance of ectodomain cleavage. J. Cell. Mol. Med. 9, 255–266 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kaiser, B. K. et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447, 482–486 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Cui, X. et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J. Clin. Invest. 110, 515–526 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nishi, E., Hiraoka, Y., Yoshida, K., Okawa, K. & Kita, T. Nardilysin enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of tumor necrosis factor-α-converting enzyme. J. Biol. Chem. 281, 31164–31172 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Gechtman, Z., Alonso, J. L., Raab, G., Ingber, D. E. & Klagsbrun, M. The shedding of membrane-anchored heparin-binding epidermal-like growth factor is regulated by the Raf/mitogen-activated protein kinase cascade and by cell adhesion and spreading. J. Biol.Chem. 274, 28828–28835 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Yan, Y., Shirakabe, K. & Werb, Z. The metalloprotease Kuzbanian (ADAM10) mediates the transactivation of EGF receptor by G protein-coupled receptors. J. Cell Biol. 158, 221–226 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Le Naour, F. et al. Profiling of the tetraspanin web of human colon cancer cells. Mol. Cell Proteomics 5, 845–857 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Clevers, H. & Batlle, E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res. 66, 2–5 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Janes, P. W., Adikari, S. & Lackmann, M. Eph/ephrin signalling and function in oncogenesis: lessons from embryonic development. Curr. Cancer Drug Targets. 8, 473–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Himanen, J. P., Saha, N. & Nikolov, D. B. Cell–cell signaling via Eph receptors and ephrins. Curr. Opin. Cell Biol. 19, 534–542 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  89. Ohtsu, H., Dempsey, P. J. & Eguchi, S. ADAMs as mediators of EGF receptor transactivation by G protein-coupled receptors. Am. J. Physiol. Cell Physiol. 291, C1–C10 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Hart, S. et al. GPCR-induced migration of breast carcinoma cells depends on both EGFR signal transactivation and EGFR-independent pathways. Biol. Chem. 386, 845–855 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Song, R. X., Zhang, Z., Chen, Y., Bao, Y. & Santen, R. J. Estrogen signaling via a linear pathway involving insulin-like growth factor I receptor, matrix metalloproteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase in MCF-7 breast cancer cells. Endocrinology 148, 4091–4101 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Civenni, G., Holbro, T. & Hynes, N. E. Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. EMBO Rep. 4, 166–171 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Faivre, E. J. & Lange, C. A. Progesterone receptors upregulate Wnt-1 to induce epidermal growth factor receptor transactivation and c-Src-dependent sustained activation of Erk1/2 mitogen-activated protein kinase in breast cancer cells. Mol. Cell. Biol. 27, 466–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Marin, V. et al. Chemotactic agents induce IL-6Rα shedding from polymorphonuclear cells: involvement of a metalloproteinase of the TNF-α-converting enzyme (TACE) type. Eur. J. Immunol. 32, 2965–2970 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Muraguchi, T. et al. RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nature Neurosci. 10, 838–845 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Baker, A. H., Edwards, D. R. & Murphy, G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci. 115, 3719–3727 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Nagase, H., Visse, R. & Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69, 562–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Smookler, D. S. et al. Cutting edge: tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J. Immunol. 176, 721–725 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Cruz-Munoz, W., Kim, I. & Khokha, R. TIMP-3 deficiency in the host, but not in the tumor, enhances tumor growth and angiogenesis. Oncogene (2005).

  100. Hoque, M. O. et al. Tissue inhibitor of metalloproteinases-3 promoter methylation is an independent prognostic factor for bladder cancer. J. Urol. 179, 743–747 (2008).

    Article  PubMed  Google Scholar 

  101. Kopitz, C. et al. Tissue inhibitor of metalloproteinases-1 promotes liver metastasis by induction of hepatocyte growth factor signaling. Cancer Res. 67, 8615–8623 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Moss, M. L., Sklair-Tavron, L. & Nudelman, R. Drug insight: tumor necrosis factor-converting enzyme as a pharmaceutical target for rheumatoid arthritis. Nature Clin. Pract. Rheumatol. 4, 300–309 (2008).

    Article  CAS  Google Scholar 

  103. Zhou, B. B. et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 10, 39–50 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Moss, M. L., Stoeck, A., Yan, W. & Dempsey, P. J. ADAM10 as a target for anti-cancer therapy. Curr. Pharm. Biotechnol. 9, 2–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Hojilla, C. V., Wood, G. A. & Khokha, R. Inflammation and breast cancer. metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Res. 10, 205 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lee, M. H. et al. Engineering N-terminal domain of tissue inhibitor of metalloproteinase (TIMP)-3 to be a better inhibitor against tumour necrosis factor-α- converting enzyme. Biochem. J. 364, 227–234 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. D'Abaco, G. M. et al. ADAM22, expressed in normal brain but not in high-grade gliomas, inhibits cellular proliferation via the disintegrin domain. Neurosurgery 58, 179–186; discussion 179–186 (2006).

    Article  PubMed  Google Scholar 

  108. Takada, H. et al. ADAM23, a possible tumor suppressor gene, is frequently silenced in gastric cancers by homozygous deletion or aberrant promoter hypermethylation. Oncogene 24, 8051–8060 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Moss, M. L., White, J. M., Lambert, M. H. & Andrews, R. C. TACE and other ADAM proteases as targets for drug discovery. Drug Discov. Today 6, 417–426 (2001). The whys and wherefores of recent approaches to the inhibition of ADAM catalytic activities as potential disease therapies.

    Article  CAS  PubMed  Google Scholar 

  110. Shah, B. H. & Catt, K. J. TACE-dependent EGF receptor activation in angiotensin-II-induced kidney disease. Trends Pharmacol. Sci. 27, 235–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Postina, R. A closer look at α-secretase. Curr. Alzheimer Res. 5, 179–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Camden, J. M. et al. P2Y2 nucleotide receptors enhance α-secretase-dependent amyloid precursor protein processing. J. Biol. Chem. 280, 18696–18702 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Buckley, C. A. et al. Amino-terminal TACE prodomain attenuates TNFR2 cleavage independently of the cysteine switch. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L1132–1138 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Takeda, S., Igarashi, T., Mori, H. & Araki, S. Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold. EMBO J. 25, 2388–2396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Janes, P. W. et al. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123, 291–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Serrano, S. M., Jia, L. G., Wang, D., Shannon, J. D. & Fox, J. W. Function of the cysteine-rich domain of the haemorrhagic metalloproteinase atrolysin A: targeting adhesion proteins collagen I and von Willebrand factor. Biochem. J. 391, 69–76 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Smith, K. M. et al. The cysteine-rich domain regulates ADAM protease function in vivo. J. Cell Biol. 159, 893–902 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reddy, P. et al. Functional analysis of the domain structure of tumor necrosis factor-α converting enzyme. J. Biol.Chem. 275, 14608–14614 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Abram, C. L. et al. The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes of Src-transformed cells. J. Biol. Chem. 278, 16844–16851 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Tanaka, M. et al. ADAM binding protein Eve-1 is required for ectodomain shedding of epidermal growth factor receptor ligands. J. Biol. Chem. 279, 41950–41959 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Wildeboer, D., Naus, S., Amy Sang, Q. X., Bartsch, J. W. & Pagenstecher, A. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. J. Neuropathol. Exp. Neurol. 65, 516–527 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Roemer, A. et al. Increased mRNA expression of ADAMs in renal cell carcinoma and their association with clinical outcome. Oncol. Rep. 11, 529–536 (2004).

    CAS  PubMed  Google Scholar 

  123. Ishikawa, N. et al. ADAM8 as a novel serological and histochemical marker for lung cancer. Clin. Cancer Res. 10, 8363–8370 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Valkovskaya, N. et al. ADAM8 expression is associated with increased invasiveness and reduced patient survival in pancreatic cancer. J. Cell. Mol. Med. 11, 1162–1174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carl-McGrath, S., Lendeckel, U., Ebert, M., Roessner, A. & Rocken, C. The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int. J. Oncol. 26, 17–24 (2005).

    CAS  PubMed  Google Scholar 

  126. Shintani, Y. et al. Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Res. 64, 4190–4196 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Grutzmann, R. et al. ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br. J. Cancer 90, 1053–1058 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gavert, N. et al. L1, a novel target of β-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J. Cell Biol. 168, 633–642 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yoshimura, T. et al. ADAMs (a disintegrin and metalloproteinase) messenger RNA expression in Helicobacter pylori-infected, normal, and neoplastic gastric mucosa. J. Infect. Dis. 185, 332–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Fogel, M. et al. L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet 362, 869–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Roy, R., Wewer, U. M., Zurakowski, D., Pories, S. E. & Moses, M. A. ADAM 12 cleaves extracellular matrix proteins and correlates with cancer status and stage. J. Biol. Chem. 279, 51323–51330 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Kodama, T. et al. ADAM12 is selectively overexpressed in human glioblastomas and is associated with glioblastoma cell proliferation and shedding of heparin-binding epidermal growth factor. Am. J. Pathol. 165, 1743–1753 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Le Pabic, H. et al. ADAM12 in human liver cancers: TGF-β-regulated expression in stellate cells is associated with matrix remodeling. Hepatology 37, 1056–1066 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Lendeckel, U. et al. Increased expression of ADAM family members in human breast cancer and breast cancer cell lines. J. Cancer Res. Clin. Oncol. 131, 41–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Schutz, A. et al. Expression of ADAM15 in lung carcinomas. Virchows Arch. 446, 421–429 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Karan, D. et al. Expression of ADAMs (a disintegrin and metalloproteases) and TIMP-3 (tissue inhibitor of metalloproteinase-3) in human prostatic adenocarcinomas. Int. J. Oncol. 23, 1365–1371 (2003).

    CAS  PubMed  Google Scholar 

  137. Zheng, X. et al. Inhibition of ADAM17 reduces hypoxia-induced brain tumor cell invasiveness. Cancer Sci. 98, 674–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Mitsui, Y. et al. ADAM28 is overexpressed in human breast carcinomas: implications for carcinoma cell proliferation through cleavage of insulin-like growth factor binding protein-3. Cancer Res. 66, 9913–9920 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Ohtsuka, T. et al. ADAM28 is overexpressed in human non-small cell lung carcinomas and correlates with cell proliferation and lymph node metastasis. Int. J. Cancer 118, 263–273 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This Review is not intended to be comprehensive and discusses only some of the major representative studies of ADAMs. Apologies to the many laboratories whose work has not been cited. Work in the author's laboratory is supported by Cancer Research UK, the Medical Research Council, UK, the Biotechnology and Biological Sciences Research Council, UK, the British Heart Foundation and the European Union Framework Programme 6 (LSH-2002-2). Thanks to H. Nagase and W. English and the external reviewers for their thoughtful contributions to the writing of this Review.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

paclitaxel

tamoxifen

trastuzumab

Pathway Interaction Database 

MEK–Erk–MAPK

Wnt signalling

FURTHER INFORMATION

G. Murphy's homepage

MEROPS database

White laboratory

Glossary

Ectodomain

The portion of the structure of a membrane-associated protein that is outside the plasma membrane.

Furin-like

Enzymes of the proprotein convertase family that largely reside in the endoplasmic reticulum and are involved in post-translational processing of hormones and other proteins. The substrate cleavage specificity is carboxy-terminal to either single or paired basic residues, with the Lys–Arg motif being the most common.

RIPping

Regulated intramembrane proteolysis of the membrane-embedded portion of transmembrane proteins by the membrane-embedded presenilin-containing γ-secretase complex. This activity is central to Alzheimer disease and certain cancers and is therefore an important therapeutic target.

Phorbol esters

Polycyclic esters that are isolated from croton oil. The most common is phorbol myristoyl acetate (PMA, also known as 12,13-tetradecanoyl phorbol acetate or TPA). They are potent co-carcinogens or tumour promoters because they mimic diacylglycerol, thereby irreversibly activating protein kinase C.

Lipid rafts

Detergent-resistant membrane microdomains that are involved in a wide array of cellular processes including membrane trafficking and intracellular signalling.

Tissue inhibitors of metalloproteinases

(TIMPs). TIMPs are protein inhibitors of the matrix metalloproteinases, and some disintegrin metalloproteinases have a key role in the regulation of their activity in cancer and other diseases.

RECK

Reversion-inducing-cysteine-rich protein with kazal motifs is a membrane-associated regulator of matrix metalloproteinases, and possibly some disintegrin metalloproteinases, and is downregulated when the cells undergo malignant transformation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 8, 932–941 (2008). https://doi.org/10.1038/nrc2459

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing