Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Can genes for mammographic density inform cancer aetiology?

Abstract

Mammographic density (MD) reflects variations in fat, stromal and epithelial tissues that are thought to be regulated by several genes. High MD is an established risk factor for breast cancer; therefore, genes that regulate MD may indirectly influence breast cancer. These genes might also be fewer in number and easier to identify than those for breast cancer risk outside of inherited predisposition syndromes. In this Perspective, we review the limited genetic studies of MD and propose future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The insulin-like growth factor (IGF) axis.
Figure 2: Pathways of steroid hormone synthesis, metabolism and sensitivity of tissues.

Similar content being viewed by others

References

  1. Turner, S. T. et al. Genomic loci with pleiotropic effects on coronary artery calcification. Atherosclerosis 185, 340–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Kullo, I. J., Ding, K., Boerwinkle, E., Turner, S. T. & de Andrade, M. Quantitative trait loci influencing low density lipoprotein particle size in African Americans. J. Lipid Res. 47, 1457–1462 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Carlson, C. S. et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 74, 106–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Wolfe, J. N. Breast patterns as an index of risk for developing breast cancer. AJR Am. J. Roentgenol. 126, 1130–1137 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Lehman, C., Holt, S., Peacock, S., White, E. & Urban, N. Use of the American College of Radiology BI-RADS guidelines by community radiologists: concordance of assessments and recommendations assigned to screening mammograms. AJR Am. J. Roentgenol. 179, 15–20 (2002).

    Article  PubMed  Google Scholar 

  6. Wolfe, J. N., Saftlas, A. F. & Salane, M. Mammographic parenchymal patterns and quantitative evaluation of mammographic densities: a case-control study. AJR Am. J. Roentgenol. 148, 1087–1092 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Boyd, N. F. et al. Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J. Natl Cancer Inst. 87, 670–675 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Greendale, G. A. et al. Postmenopausal hormone therapy and change in mammographic density. J. Natl Cancer Inst. 95, 30–37 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Boyd, N. F. et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 6, 798–808 (2005).

    Article  PubMed  Google Scholar 

  10. McCormack, V. A. & Dos Santos Silva, I. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 15, 1159–1169 (2006).

    Article  PubMed  Google Scholar 

  11. Byrne, C. et al. Mammographic features and breast cancer risk: effects with time, age, and menopause status. J. Natl Cancer Inst. 87, 1622–1629 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Tice, J. A., Cummings, S. R., Ziv, E. & Kerlikowske, K. Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res. Treat. 94, 115–122 (2005).

    Article  PubMed  Google Scholar 

  13. Chen, J. et al. Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density. J. Natl Cancer Inst. 98, 1215–1226 (2006).

    Article  PubMed  Google Scholar 

  14. Barlow, W. E. et al. Prospective breast cancer risk prediction model for women undergoing screening mammography. J. Natl Cancer Inst. 98, 1204–1214 (2006).

    Article  PubMed  Google Scholar 

  15. Wilkinson, E. et al. Mammographic parenchymal pattern and the risk of breast cancer. J. Natl Cancer Inst. 59, 1397–1400 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Hainline, S. et al. Mammographic patterns and risk of breast cancer. AJR Am. J. Roentgenol. 130, 1157–1158 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Saftlas, A. F. et al. Mammographic parenchymal patterns as indicators of breast cancer risk. Am. J. Epidemiol. 129, 518–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. Saftlas, A. F. et al. Mammographic densities and risk of breast cancer. Cancer 67, 2833–2838 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Kaufman, Z., Garstin, W. I., Hayes, R., Michell, M. J. & Baum, M. The mammographic parenchymal patterns of nulliparous women and women with a family history of breast cancer. Clin. Radiol. 43, 385–388 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Brisson, J. et al. The relation of mammographic features of the breast to breast cancer risk factors. Am. J. Epidemiol. 115, 438–443 (1982).

    Article  CAS  PubMed  Google Scholar 

  21. Crest, A. B., Aiello, E. J., Anderson, M. L. & Buist, D. S. Varying levels of family history of breast cancer in relation to mammographic breast density (United States). Cancer Causes Control 17, 843–850 (2006).

    Article  PubMed  Google Scholar 

  22. Ziv, E., Shepherd, J., Smith-Bindman, R. & Kerlikowske, K. Mammographic breast density and family history of breast cancer. J. Natl Cancer Inst. 95, 556–558 (2003).

    Article  PubMed  Google Scholar 

  23. Wolfe, J. N., Albert, S., Belle, S. & Salane, M. Familial influences on breast parenchymal patterns. Cancer 46, 2433–2437 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. Kaprio, J., Alanko, A., Kivisaari, L. & Standertskjol d-Nordenstam, C. G. Mammographic patterns in twin pairs discordant for breast cancer. Br. J. Radiol. 60, 459–462 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Haars, G., van Noord, P. A., van Gils, C. H., Peeters, P. H. & Grobbee, D. E. Heritable aspects of dysplastic breast glandular tissue (DY). Breast Cancer Res. Treat. 87, 149–156 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Boyd, N. F. et al. Heritability of mammographic density, a risk factor for breast cancer. N. Engl. J. Med 347, 886–894 (2002).

    Article  PubMed  Google Scholar 

  27. Stone, J. et al. The heritability of mammographically dense and nondense breast tissue. Cancer Epidemiol. Biomarkers Prev. 15, 612–617 (2006).

    Article  PubMed  Google Scholar 

  28. Ursin, G. et al. A revised heritability estimate of mammographic density. Proc. Am. Assoc. Cancer Res. (2007).

  29. Pankow, J. S. et al. Genetic analysis of mammographic breast density in adult women: evidence of a gene effect. J. Natl Cancer Inst. 89, 549–556 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Tamimi, R. M. et al. Common genetic variation in IGF1, IGFBP-1, and IGFBP-3 in relation to mammographic density: a cross-sectional study. Breast Cancer Res. 9, R18 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Olson, J. E. et al. A comprehensive examination of CYP19 variation and breast density. Cancer Epidemiol. Biomarkers Prev. 16, 623–625 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Verheus, M. et al. Common genetic variation in the IGF-1 gene, serum IGF-I levels and breast density. Breast Cancer Res. Treat. 7 Dec 2007 (doi:10.1007/s10549-007-9827-x).

  33. Helvie, M. A., Roubidoux, M. A., Weber, B. L. & Merajver, S. D. Mammography of breast carcinoma in women who have mutations of the breast cancer gene BRCA1: initial experience. AJR Am. J. Roentgenol. 168, 1599–1602 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Chang, J., Yang, W. T. & Choo, H. F. Mammography in Asian patients with BRCA1 mutations. Lancet 353, 2070–2071 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Huo, Z. et al. Computerized analysis of mammographic parenchymal patterns for breast cancer risk assessment: feature selection. Med. Phys. 27, 4–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Tilanus-Linthorst, M. et al. A BRCA1/2 mutation, high breast density and prominent pushing margins of a tumor independently contribute to a frequent false-negative mammography. Int. J. Cancer 102, 91–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Lord, S. J. et al. Polymorphisms in genes involved in estrogen and progesterone metabolism and mammographic density changes in women randomized to postmenopausal hormone therapy: results from a pilot study. Breast Cancer Res. 7, R336–R344 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takata, Y., Maskarinec, G. & Le Marchand, L. Breast density and polymorphisms in genes coding for CYP1A2 and COMT: the Multiethnic Cohort. BMC Cancer 7, 30 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Haiman, C. A. et al. Genetic determinants of mammographic density. Breast Cancer Res. 4, R5 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lillie, E. O. et al. Polymorphism in the androgen receptor and mammographic density in women taking and not taking estrogen and progestin therapy. Cancer Res. 64, 1237–1241 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Haiman, C. A. et al. Polymorphisms in steroid hormone pathway genes and mammographic density. Breast Cancer Res. Treat. 77, 27–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Hong, C. C. et al. Val158Met polymorphism in catechol-O-methyltransferase gene associated with risk factors for breast cancer. Cancer Epidemiol. Biomarkers Prev. 12, 838–847 (2003).

    CAS  PubMed  Google Scholar 

  43. Hong, C. C. et al. Association between the T27C polymorphism in the cytochrome P450 c17α (CYP17) gene and risk factors for breast cancer. Breast Cancer Res. Treat. 88, 217–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Mulhall, C. et al. Pituitary growth hormone and growth hormone-releasing hormone receptor genes and associations with mammographic measures and serum growth hormone. Cancer Epidemiol. Biomarkers Prev. 14, 2648–2654 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Lai, J. H. et al. A polymorphic locus in the promoter region of the IGFBP3 gene is related to mammographic breast density. Cancer Epidemiol. Biomarkers Prev. 13, 573–582 (2004).

    CAS  PubMed  Google Scholar 

  46. Maskarinec, G., Lurie, G., Williams, A. E. & Le Marchand, L. An investigation of mammographic density and gene variants in healthy women. Int. J. Cancer 112, 683–688 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. van Duijnhoven, F. J. et al. Polymorphisms in the estrogen receptor α gene and mammographic density. Cancer Epidemiol. Biomarkers Prev. 14, 2655–2660 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. dos Santos Silva, I. et al. The insulin-like growth factor system and mammographic features in premenopausal and postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 15, 449–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Mitchell, G. et al. Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res. 66, 1866–1872 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Stone, J. et al. Mammographic density and candidate gene variants: a twins and sisters study. Cancer Epidemiol. Biomarkers Prev. 16, 1479–1484 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lee, E. et al. The role of established breast cancer susceptibility loci in mammographic density in young women. Cancer Epidemiol. Biomarkers Prev. 17, 258–260 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. van Duijnhoven, F. J. et al. Influence of estrogen receptor α and progesterone receptor polymorphisms on the effects of hormone therapy on mammographic density. Cancer Epidemiol. Biomarkers Prev. 15, 462–467 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Warren, R. et al. Associations among mammographic density, circulating sex hormones, and polymorphisms in sex hormone metabolism genes in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 15, 1502–1508 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Diorio, C., Brisson, J., Berube, S. & Pollak, M. Genetic polymorphisms involved in insulin-like growth factor (IGF) pathway in relation to mammographic breast density and IGF levels. Cancer Epidemiol. Biomarkers Prev. 17, 880–888 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Olson, J. E. et al. Mammographic breast density and membrane-bound catechol O-methyltransferase (COMT) genetic polymorphisms. Proc Am. Assoc. Cancer Res. (in the press).

  56. Nedelcheva Kristensen, V. et al. CYP17 and breast cancer risk: the polymorphism in the 5′ flanking area of the gene does not influence binding to Sp-1. Cancer Res. 59, 2825–2828 (1999).

    CAS  PubMed  Google Scholar 

  57. Dunning, A. M. et al. A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 8, 843–854 (1999).

    CAS  PubMed  Google Scholar 

  58. Lachman, H. M. et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 6, 243–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Le Marchand, L., Donlon, T., Kolonel, L. N., Henderson, B. E. & Wilkens, L. R. Estrogen metabolism-related genes and breast cancer risk: the multiethnic cohort study. Cancer Epidemiol. Biomarkers Prev. 14, 1998–2003 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Yaich, L., Dupont, W. D., Cavener, D. R. & Parl, F. F. Analysis of the PvuII restriction fragment-length polymorphism and exon structure of the estrogen receptor gene in breast cancer and peripheral blood. Cancer Res. 52, 77–83 (1992).

    CAS  PubMed  Google Scholar 

  61. Cai, Q. et al. Genetic polymorphisms in the estrogen receptor α gene and risk of breast cancer: results from the Shanghai Breast Cancer Study. Cancer Epidemiol. Biomarkers Prev. 12, 853–859 (2003).

    CAS  PubMed  Google Scholar 

  62. Onland-Moret, N. C., van Gils, C. H., Roest, M., Grobbee, D. E. & Peeters, P. H. The estrogen receptor α gene and breast cancer risk (The Netherlands). Cancer Causes Control 16, 1195–1202 (2005).

    Article  PubMed  Google Scholar 

  63. Wedren, S. et al. Oestrogen receptor α gene haplotype and postmenopausal breast cancer risk: a case control study. Breast Cancer Res. 6, R437–449 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. De Vivo, I. et al. A functional polymorphism in the promoter of the progesterone receptor gene associated with endometrial cancer risk. Proc. Natl Acad. Sci. USA 99, 12263–12268 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Modugno, F. Ovarian cancer and polymorphisms in the androgen and progesterone receptor genes: a HuGE review. Am. J. Epidemiol. 159, 319–335 (2004).

    Article  PubMed  Google Scholar 

  66. Breast Cancer Association Consortium. Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J. Natl Cancer Inst. 98, 1382–1396 (2006).

  67. Deal, C. et al. Novel promoter polymorphism in insulin-like growth factor-binding protein-3: correlation with serum levels and interaction with known regulators. J. Clin. Endocrinol. Metab. 86, 1274–1280 (2001).

    CAS  PubMed  Google Scholar 

  68. Schernhammer, E. S., Hankinson, S. E., Hunter, D. J., Blouin, M. J. & Pollak, M. N. Polymorphic variation at the −202 locus in IGFBP3: Influence on serum levels of insulin-like growth factors, interaction with plasma retinol and vitamin D and breast cancer risk. Int. J. Cancer 107, 60–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Al-Zahrani, A. et al. IGF1 and IGFBP3 tagging polymorphisms are associated with circulating levels of IGF1, IGFBP3 and risk of breast cancer. Hum. Mol. Genet. 15, 1–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Setiawan, V. W. et al. IGF-I genetic variation and breast cancer: the multiethnic cohort. Cancer Epidemiol. Biomarkers Prev. 15, 172–174 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Canzian, F. et al. Polymorphisms of genes coding for insulin-like growth factor 1 and its major binding proteins, circulating levels of IGF-I and IGFBP-3 and breast cancer risk: results from the EPIC study. Br. J. Cancer 94, 299–307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mitrunen, K. & Hirvonen, A. Molecular epidemiology of sporadic breast cancer. The role of polymorphic genes involved in oestrogen biosynthesis and metabolism. Mutat. Res. 544, 9–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Puranen, T. J., Poutanen, M. H., Peltoketo, H. E., Vihko, P. T. & Vihko, R. K. Site-directed mutagenesis of the putative active site of human 17 β-hydroxysteroid dehydrogenase type 1. Biochem. J. 304 (Pt 1), 289–293 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cai, Q. et al. Haplotype analyses of CYP19A1 gene variants and breast cancer risk: results from the Shanghai Breast Cancer Study. Cancer Epidemiol. Biomarkers Prev. 17, 27–32 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Healey, C. S. et al. Polymorphisms in the human aromatase cytochrome P450 gene (CYP19) and breast cancer risk. Carcinogenesis 21, 189–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Tut, T. G., Ghadessy, F. J., Trifiro, M. A., Pinsky, L. & Yong, E. L. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J. Clin. Endocrinol. Metab. 82, 3777–3782 (1997).

    CAS  PubMed  Google Scholar 

  77. Grierson, A. J., Mootoosamy, R. C. & Miller, C. C. Polyglutamine repeat length influences human androgen receptor/c-Jun mediated transcription. Neurosci. Lett. 277, 9–12 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Lillie, E. O., Bernstein, L. & Ursin, G. The role of androgens and polymorphisms in the androgen receptor in the epidemiology of breast cancer. Breast Cancer Res. 5, 164–173 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rebbeck, T. R. et al. Modification of BRCA1-associated breast cancer risk by the polymorphic androgen-receptor CAG repeat. Am. J. Hum. Genet. 64, 1371–1377 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Antoniou, A. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72, 1117–1130 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brockstedt, U. et al. Analyses of bulky DNA adduct levels in human breast tissue and genetic polymorphisms of cytochromes P450 (CYPs), myeloperoxidase (MPO), quinone oxidoreductase (NQO1), and glutathione S-transferases (GSTs). Mutat. Res. 516, 41–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Long, J. R. et al. Population-based case-control study of AhR (aryl hydrocarbon receptor) and CYP1A2 polymorphisms and breast cancer risk. Pharmacogenet. Genomics 16, 237–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Masson, L. F., Sharp, L., Cotton, S. C. & Little, J. Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: a HuGE review. Am. J. Epidemiol. 161, 901–915 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Shimada, T. et al. Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 20, 1607–1613 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Lee, A. J., Cai, M. X., Thomas, P. E., Conney, A. H. & Zhu, B. T. Characterization of the oxidative metabolites of 17β-estradiol and estrone formed by 15 selectively expressed human cytochrome p450 isoforms. Endocrinology 144, 3382–3398 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Gaudet, M. M. et al. Genetic variation of Cytochrome P450 1B1 (CYP1B1) and risk of breast cancer among Polish women. Pharmacogenet. Genomics 16, 547–553 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L. & Rothman, N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J. Natl Cancer Inst. 96, 434–442 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vachon, C. M., King, R. A., Atwood, L. D., Kuni, C. C. & Sellers, T. A. Preliminary sibpair linkage analysis of percent mammographic density. J. Natl Cancer Inst. 91, 1778–1779 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Vachon, C. M. et al. Strong evidence of a genetic determinant for mammographic density, a major risk factor for breast cancer. Cancer Res. 67, 8412–8418 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genet. 39, 870–874 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Stacey, S. N. et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nature Genet. 39, 865–869 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Boyd, N. F., Jensen, H. M., Cooke, G. & Han, H. L. Relationship between mammographic and histological risk factors for breast cancer. J. Natl Cancer Inst. 84, 1170–1179 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. Byng, J. W., Boyd, N. F., Fishell, E., Jong, R. A. & Yaffe, M. J. The quantitative analysis of mammographic densities. Phys. Med. Biol. 39, 1629–1638 (1994).

    Article  CAS  PubMed  Google Scholar 

  95. Fletcher, O. et al. Polymorphisms and circulating levels in the insulin-like growth factor system and risk of breast cancer: a systematic review. Cancer Epidemiol. Biomarkers Prev. 14, 2–19 (2005).

    CAS  PubMed  Google Scholar 

  96. Cheng, I. et al. Haplotype-based association studies of IGFBP1 and IGFBP3 with prostate and breast cancer risk: the multiethnic cohort. Cancer Epidemiol. Biomarkers Prev. 15, 1993–1997 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Pollak, M. N., Schernhammer, E. S. & Hankinson, S. E. Insulin-like growth factors and neoplasia. Nature Rev. Cancer 4, 505–518 (2004).

    Article  CAS  Google Scholar 

  98. Mendez, P., Azcoitia, I. & Garcia-Segura, L. M. Interdependence of oestrogen and insulin-like growth factor-I in the brain: potential for analysing neuroprotective mechanisms. J. Endocrinol. 185, 11–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Sharp, L., Cardy, A. H., Cotton, S. C. & Little, J. CYP17 gene polymorphisms: prevalence and associations with hormone levels and related factors. a HuGE review. Am. J. Epidemiol. 160, 729–740 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Power, S. G. et al. Molecular analyses of a human sex hormone-binding globulin variant: evidence for an additional carbohydrate chain. J. Clin. Endocrinol. Metab. 75, 1066–1070 (1992).

    CAS  PubMed  Google Scholar 

  101. Cousin, P., Dechaud, H., Grenot, C., Lejeune, H. & Pugeat, M. Human variant sex hormone-binding globulin (SHBG) with an additional carbohydrate chain has a reduced clearance rate in rabbit. J. Clin. Endocrinol. Metab. 83, 235–240 (1998).

    CAS  PubMed  Google Scholar 

  102. Sissung, T. M., Price, D. K., Sparreboom, A. & Figg, W. D. Pharmacogenetics and regulation of human cytochrome P450 1B1: implications in hormone-mediated tumor metabolism and a novel target for therapeutic intervention. Mol. Cancer Res. 4, 135–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Raftogianis, R., Creveling, C., Weinshilboum, R. & Weisz, J. Estrogen metabolism by conjugation. J. Natl Cancer Inst. Monogr., 113–124 (2000).

  104. Kume, T. et al. Characterization of a novel variant (S145C/L311V) of 3α-hydroxysteroid/dihydrodiol dehydrogenase in human liver. Pharmacogenetics 9, 763–771 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Penning, T. M. et al. Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem. J. 351, 67–77 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Yager, J. D. & Davidson, N. E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 354, 270–282 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Planas-Silva, M. D., Shang, Y., Donaher, J. L., Brown, M. & Weinberg, R. A. AIB1 enhances estrogen-dependent induction of cyclin D1 expression. Cancer Res. 61, 3858–3862 (2001).

    CAS  PubMed  Google Scholar 

  108. Singh, R. R. & Kumar, R. Steroid hormone receptor signaling in tumorigenesis. J. Cell Biochem. 96, 490–505 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Hayashi, Y. et al. Polymorphism of homopolymeric glutamines in coactivators for nuclear hormone receptors. Endocr. J. 46, 279–284 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Rosen, C. J. et al. Association between serum insulin growth factor-I (IGF-I) and a simple sequence repeat in IGF-I gene: implications for genetic studies of bone mineral density. J. Clin. Endocrinol. Metab. 83, 2286–2290 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Rasmussen, S. K. et al. Studies of the variability of the genes encoding the insulin-like growth factor I receptor and its ligand in relation to type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 85, 1606–1610 (2000).

    CAS  PubMed  Google Scholar 

  112. Almind, K., Inoue, G., Pedersen, O. & Kahn, C. R. A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J. Clin. Invest. 97, 2569–2575 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Le Stunff, C. et al. Association analysis indicates that a variant GATA-binding site in the PIK3CB promoter is a cis-acting expression quantitative trait locus for this gene and attenuates insulin resistance in obese children. Diabetes 57, 494–502 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Canzian, F. et al. Genetic variation in the growth hormone synthesis pathway in relation to circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3, and breast cancer risk: results from the European prospective investigation into cancer and nutrition study. Cancer Epidemiol. Biomarkers Prev. 14, 2316–2325 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Hasegawa, Y. et al. Identification of novel human GH-1 gene polymorphisms that are associated with growth hormone secretion and height. J. Clin. Endocrinol. Metab. 85, 1290–1295 (2000).

    CAS  PubMed  Google Scholar 

  116. Adams, E. F., Symowski, H., Buchfelder, M. & Poyner, D. R. A polymorphism in the growth hormone (GH)-releasing hormone (GHRH) receptor gene is associated with elevated response to GHRH by human pituitary somatotrophinomas in vitro. Biochem. Biophys. Res. Commun. 275, 33–36 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Lunn, R. M. et al. XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21, 551–555 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Savas, S. & Ozcelik, H. Phosphorylation states of cell cycle and DNA repair proteins can be altered by the nsSNPs. BMC Cancer 5, 107 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

National Cancer Institute Grants R01 CA97396, R01 CA128931 and P50 CA116201

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celine M. Vachon.

Supplementary information

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

National Cancer Institute Drug Dictionary

 tamoxifen

FURTHER INFORMATION

Breast Cancer Information Core

Glossary

Familial aggregation

A tendency for a trait to occur or cluster in multiple family members more often than would be expected by chance.

Genetic association studies

Tests whether a polymorphism in a candidate gene explains the inter-individual variation in a trait under study.

Haplotype blocks

Configurations of alleles within regions on the chromosome that tend to be inherited together (that is, are in high linkage disequilibrium). Little genetic variability is observed within this region among individuals in a population.

Linkage analysis

The process of determining the approximate chromosomal location of a gene associated with the trait being studied by looking for evidence of co-segregation with other marker genes whose locations are already known.

Linkage disequilibrium

Non-random association of alleles at two or more loci on chromosomes in a population, beyond that expected by chance.

Parent–offspring and twin studies

Investigates the proportion of variation in the trait under study that is explained by unmeasured additive genetic factors among respective relative pairs.

Segregation analysis

Tests hypotheses about whether the existence of major genes account for the observed pattern of familial aggregation of the trait and provides evidence for the mode of inheritance of the genes using pedigree data. Statistical models compare Mendelian inheritance patterns of a trait to a model in which there are no restrictions on mode of inheritance or other model parameters.

Stroma

The supportive framework of a biological tissue with an extensive extracellular matrix that serves to support cells, separate tissues and regulate intercellular communication.

Tag single nucleotide polymorphisms

(tagSNPs). A reduced set of single nucleotide polymorphisms that identify or 'tag' other SNPs with which it is in high linkage disequilibrium.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelemen, L., Sellers, T. & Vachon, C. Can genes for mammographic density inform cancer aetiology?. Nat Rev Cancer 8, 812–823 (2008). https://doi.org/10.1038/nrc2466

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2466

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing