Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The impact of O2 availability on human cancer

Abstract

During the past century it has been established that regions within solid tumours experience mild to severe O2 deprivation owing to aberrant vascular function. These hypoxic regions are associated with altered cellular metabolism, as well as increased resistance to radiation and chemotherapy. As discussed in this Timeline, over the past decade work from many laboratories has elucidated the mechanisms by which hypoxia-inducible factors (HIFs) modulate tumour cell metabolism, angiogenesis, growth and metastasis. The central role played by intra-tumoural hypoxia and HIF in these processes has made them attractive therapeutic targets in the treatment of multiple human malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genes activated by hypoxia-inducible factors (HIFs) that are involved in tumour progression.
Figure 2: Regulation of hypoxia-inducible factor-α (HIFα) subunits by O2 availability and other intracellular metabolites.
Figure 3: Hypoxia regulates other crucial pathways that affect tumour progression in a HIF-independent fashion.

References

  1. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  2. Denko, N. C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Rev. Cancer 8, 705–713 (2008).

    Article  CAS  Google Scholar 

  3. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature Rev. Cancer 4, 891–899 (2004).

    Article  CAS  Google Scholar 

  4. Deberardinis, R. J., Sayed, N., Ditsworth, D. & Thompson, C. B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev. 18, 54–61 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S. & Scott, O. C. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol. 26, 638–648 (1953).

    Article  CAS  PubMed  Google Scholar 

  6. Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 9, 539–549 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomlinson, R. H. Tumour anoxia and the response to radiation. Sci. Basis Med. Annu. Rev., 74–90 (1965).

  8. Simon, M. C., Liu, L., Barnhart, B. C. & Young, R. M. Hypoxia-induced signaling in the cardiovascular system. Annu. Rev. Physiol. 70, 51–71 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Powers, W. E. & Tolmach, L. J. Demonstration of an anoxic component in a mouse tumor-cell population by in vivo assay of survival following irradiation. Radiology 83, 328–336 (1964).

    Article  CAS  PubMed  Google Scholar 

  10. Churchill-Davidson, I. Oxygenation in radiotherapy of malignant disease of the upper air passages. the oxygen effect of radiotherapy. Proc. R. Soc. Med. 57, 635–638 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Okunieff, P., Fenton, B. & Chen, Y. Past, present, and future of oxygen in cancer research. Adv. Exp. Med. Biol. 566, 213–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Vaupel, P., Schlenger, K. & Hoeckel, M. Blood flow and tissue oxygenation of human tumors: an update. Adv. Exp. Med. Biol. 317, 139–151 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Urtasun, R. C., Chapman, J. D., Raleigh, J. A., Franko, A. J. & Koch, C. J. Binding of [3H]misonidazole to solid human tumors as a measure of tumor hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 12, 1263–1267 (1986).

    Article  CAS  PubMed  Google Scholar 

  14. Urtasun, R. C., Koch, C. J., Franko, A. J., Raleigh, J. A. & Chapman, J. D. A novel technique for measuring human tissue pO2 at the cellular level. Br. J. Cancer 54, 453–457 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chapman, J. D. Measurement of tumor hypoxia by invasive and non-invasive procedures: a review of recent clinical studies. Radiother. Oncol. 20 (Suppl. 1), 13–19 (1991).

    Article  PubMed  Google Scholar 

  16. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Med. 3, 177–182 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Chaplin, D. J., Durand, R. E. & Olive, P. L. Acute hypoxia in tumors: implications for modifiers of radiation effects. Int. J. Radiat. Oncol. Biol. Phys. 12, 1279–1282 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. Dewhirst, M. W., Cao, Y. & Moeller, B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature Rev. Cancer 8, 425–437 (2008).

    Article  CAS  Google Scholar 

  19. Barach, A. L. & Bickerman, H. A. The effect of anoxia on tumor growth with special reference to sarcoma 180 implanted in C57 mice. Cancer Res. 14, 672–676 (1954).

    CAS  PubMed  Google Scholar 

  20. Thomlinson, R. H. Hypoxia and tumours. J. Clin. Pathol. Suppl (R. Coll. Pathol.) 11, 105–113 (1977).

    Article  CAS  Google Scholar 

  21. Churchill-Davidson, I., Sanger, C. & Thomlinson, R. H. High-pressure oxygen and radiotherapy. Lancet 268, 1091–1095 (1955).

    Article  CAS  PubMed  Google Scholar 

  22. Hall, E. J. & Giaccia, A. Radiobiology for the Radiologist (Lippincott Williams & Wilkins, Philadelphia, 2006).

    Google Scholar 

  23. Deschner, E. E. & Gray, L. H. Influence of oxygen tension on x-ray-induced chromosomal damage in Ehrlich ascites tumor cells irradiated in vitro and in vivo. Radiat. Res. 11, 115–146 (1959).

    Article  CAS  PubMed  Google Scholar 

  24. Churchill-Davidson, I., Sanger, C. & Thomlinson, R. H. Oxygenation in radiotherapy. II. Clinical application. Br. J. Radiol 30, 406–422 (1957).

    Article  CAS  PubMed  Google Scholar 

  25. Dewey, D. L. Effect of oxygen and nitric oxide on the radio-sensitivity of human cells in tissue culture. Nature 186, 780–782 (1960).

    Article  CAS  PubMed  Google Scholar 

  26. Hewitt, H. B. & Wilson, C. W. The effect of tissue oxygen tension on the radiosensitivity of leukaemia cells irradiated in situ in the livers of leukaemic mice. Br. J. Cancer 13, 675–684 (1959).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gray, L. H. Radiobiologic basis of oxygen as a modifying factor in radiation therapy. Am. J. Roentgenol Radium Ther. Nucl. Med. 85, 803–815 (1961).

    CAS  PubMed  Google Scholar 

  28. Teicher, B. A. Hypoxia and drug resistance. Cancer Metastasis Rev. 13, 139–168 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Teicher, B. A., Lazo, J. S. & Sartorelli, A. C. Classification of antineoplastic agents by their selective toxicities toward oxygenated and hypoxic tumor cells. Cancer Res. 41, 73–81 (1981).

    CAS  PubMed  Google Scholar 

  30. Henk, J. M. Does hyperbaric oxygen have a future in radiation therapy? Int. J. Radiat. Oncol. Biol. Phys. 7, 1125–1128 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Brown, J. M. Clinical trials of radiosensitizers: what should we expect? Int. J. Radiat. Oncol. Biol. Phys. 10, 425–429 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Kallman, R. F. & Dorie, M. J. Tumor oxygenation and reoxygenation during radiation therapy: their importance in predicting tumor response. Int. J. Radiat. Oncol. Biol. Phys. 12, 681–685 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Coleman, C. N. Modulating the radiation response. Stem Cells 14, 10–15 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Steel, G. G., McMillan, T. J. & Peacock, J. H. The radiobiology of human cells and tissues. In vitro radiosensitivity. The picture has changed in the 1980s. Int. J. Radiat. Biol. 56, 525–537 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, J. M. & Giaccia, A. J. Tumour hypoxia: the picture has changed in the 1990s. Int. J. Radiat. Biol. 65, 95–102 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Blumenson, L. E. & Bross, I. D. A possible mechanism for enhancement of increased production of tumor angiogenic factor. Growth 40, 205–209 (1976).

    CAS  PubMed  Google Scholar 

  37. van den Brenk, H. A., Moore, V., Sharpington, C. & Orton, C. Production of metastases by a primary tumour irradiated under aerobic and anaerobic conditions in vivo. Br. J. Cancer 26, 402–412 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Young, S. D., Marshall, R. S. & Hill, R. P. Hypoxia induces DNA overreplication and enhances metastatic potential of murine tumor cells. Proc. Natl Acad. Sci. USA 85, 9533–9537 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Young, S. D. & Hill, R. P. Effects of reoxygenation on cells from hypoxic regions of solid tumors: analysis of transplanted murine tumors for evidence of DNA overreplication. Cancer Res. 50, 5031–5038 (1990).

    CAS  PubMed  Google Scholar 

  40. Heacock, C. S. & Sutherland, R. M. Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism. Br. J. Cancer 62, 217–225 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sciandra, J. J., Subjeck, J. R. & Hughes, C. S. Induction of glucose-regulated proteins during anaerobic exposure and of heat-shock proteins after reoxygenation. Proc. Natl Acad. Sci. USA 81, 4843–4847 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Murphy, B. J., Laderoute, K. R., Short, S. M. & Sutherland, R. M. The identification of heme oxygenase as a major hypoxic stress protein in Chinese hamster ovary cells. Br. J. Cancer 64, 69–73 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roll, D. E., Murphy, B. J., Laderoute, K. R., Sutherland, R. M. & Smith, H. C. Oxygen regulated 80 kDa protein and glucose regulated 78 kDa protein are identical. Mol. Cell Biochem. 103, 141–148 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359, 843–845 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Shreeniwas, R. et al. Hypoxia-mediated induction of endothelial cell interleukin-1a. An autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J. Clin. Invest. 90, 2333–2339 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kourembanas, S., Marsden, P. A., McQuillan, L. P. & Faller, D. V. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J. Clin. Invest. 88, 1054–1057 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kourembanas, S., Hannan, R. L. & Faller, D. V. Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J. Clin. Invest. 86, 670–674 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goldberg, M. A., Dunning, S. P. & Bunn, H. F. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242, 1412–1415 (1988).

    Article  CAS  PubMed  Google Scholar 

  49. Robin, E. D., Murphy, B. J. & Theodore, J. Coordinate regulation of glycolysis by hypoxia in mammalian cells. J. Cell Physiol. 118, 287–290 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Anderson, G. R., Stoler, D. L. & Scarcello, L. A. Normal fibroblasts responding to anoxia exhibit features of the malignant phenotype. J. Biol. Chem. 264, 14885–14892 (1989).

    CAS  PubMed  Google Scholar 

  51. Price, B. D. & Calderwood, S. K. Gadd45 and Gadd153 messenger RNA levels are increased during hypoxia and after exposure of cells to agents which elevate the levels of the glucose-regulated proteins. Cancer Res. 52, 3814–3817 (1992).

    CAS  PubMed  Google Scholar 

  52. Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix–loop–helix–PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA 92, 5510–5514 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beck, I., Ramirez, S., Weinmann, R. & Caro, J. Enhancer element at the 3′-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J. Biol. Chem. 266, 15563–15566 (1991).

    CAS  PubMed  Google Scholar 

  54. Pugh, C. W., Tan, C. C., Jones, R. W. & Ratcliffe, P. J. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3′ to the mouse erythropoietin gene. Proc. Natl Acad. Sci. USA 88, 10553–10557 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Semenza, G. L., Nejfelt, M. K., Chi, S. M. & Antonarakis, S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc. Natl Acad. Sci. USA 88, 5680–5684 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Madan, A. & Curtin, P. T. A 24-base-pair sequence 3′ to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc. Natl Acad. Sci. USA 90, 3928–3932 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, G. L. & Semenza, G. L. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513–21518 (1993).

    CAS  PubMed  Google Scholar 

  59. Jiang, B. H., Semenza, G. L., Bauer, C. & Marti, H. H. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271, C1172–C1180 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Wouters, B. & Koritzinsky, M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nature Rev. Cancer 8, 851–864 (2008).

    Article  CAS  Google Scholar 

  61. Simon, M. C. & Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nature Rev. Mol. Cell Biol. 9, 285–296 (2008).

    Article  CAS  Google Scholar 

  62. Jain, S., Maltepe, E., Lu, M. M., Simon, C. & Bradfield, C. A. Expression of ARNT, ARNT2, HIF1α, HIF2α and Ah receptor mRNAs in the developing mouse. Mech. Dev. 73, 117–123 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Tian, H., McKnight, S. L. & Russell, D. W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 11, 72–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Wiesener, M. S. et al. Widespread hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J. 17, 271–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Gu, Y. Z., Moran, S. M., Hogenesch, J. B., Wartman, L. & Bradfield, C. A. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3α. Gene Expr. 7, 205–213 (1998).

    CAS  PubMed  Google Scholar 

  66. Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad. Sci. USA 95, 7987–7992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salceda, S. & Caro, J. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272, 22642–22647 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Kallio, P. J., Wilson, W. J., O'Brien, S., Makino, Y. & Poellinger, L. Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J. Biol. Chem. 274, 6519–6525 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Cockman, M. E. et al. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Kamura, T. et al. Activation of HIF1α ubiquitination by a reconstituted von Hippel–Lindau (VHL) tumor suppressor complex. Proc. Natl Acad. Sci. USA 97, 10430–10435 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel–Lindau protein. Nature Cell Biol. 2, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Tanimura, T. & Shepard, T. H. Glucose metabolism by rat embryos in vitro. Proc. Soc. Exp. Biol. Med. 135, 51–54 (1970).

    Article  CAS  PubMed  Google Scholar 

  75. Stebbins, C. E., Kaelin, W. G. Jr & Pavletich, N. P. Structure of the VHL–ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455–461 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Jaakkola, P. et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Yu, F., White, S. B., Zhao, Q. & Lee, F. S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl Acad. Sci. USA 98, 9630–9635 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Bruick, R. K. & McKnight, S. L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337–1340 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 99, 13459–13464 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mahon, P. C., Hirota, K. & Semenza, G. L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 15, 2675–2686 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hewitson, K. S. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem. 277, 26351–26355 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 16, 1466–1471 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Whitelaw, M. L. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295, 858–861 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Maxwell, P. H., Pugh, C. W. & Ratcliffe, P. J. Activation of the HIF pathway in cancer. Curr. Opin. Genet. Dev. 11, 293–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer 3, 721–732 (2003).

    Article  CAS  Google Scholar 

  88. Giaccia, A., Siim, B. G. & Johnson, R. S. HIF-1 as a target for drug development. Nature Rev. Drug Discov. 2, 803–811 (2003).

    Article  CAS  Google Scholar 

  89. Birner, P. et al. Overexpression of hypoxia-inducible factor 1α is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer Res. 60, 4693–4696 (2000).

    CAS  PubMed  Google Scholar 

  90. Schindl, M. et al. Overexpression of hypoxia-inducible factor 1α is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clin. Cancer Res. 8, 1831–1837 (2002).

    CAS  PubMed  Google Scholar 

  91. Bos, R. et al. Levels of hypoxia-inducible factor-1 α during breast carcinogenesis. J. Natl Cancer Inst. 93, 309–314 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Birner, P. et al. Expression of hypoxia-inducible factor-1 α in oligodendrogliomas: its impact on prognosis and on neoangiogenesis. Cancer 92, 165–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Birner, P., Schindl, M., Obermair, A., Breitenecker, G. & Oberhuber, G. Expression of hypoxia-inducible factor 1α in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin. Cancer Res. 7, 1661–1668 (2001).

    CAS  PubMed  Google Scholar 

  94. Sivridis, E., Giatromanolaki, A., Gatter, K. C., Harris, A. L. & Koukourakis, M. I. Association of hypoxia-inducible factors 1α and 2α with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer 95, 1055–1063 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Aebersold, D. M. et al. Expression of hypoxia-inducible factor-1α: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 61, 2911–2916 (2001).

    CAS  PubMed  Google Scholar 

  96. Giatromanolaki, A. et al. Relation of hypoxia inducible factor 1 α and 2 α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br. J. Cancer 85, 881–890 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Holmquist-Mengelbier, L. et al. Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell 10, 413–423 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Khatua, S. et al. Overexpression of the EGFR/FKBP12/HIF-2α pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res. 63, 1865–1870 (2003).

    CAS  PubMed  Google Scholar 

  99. Koukourakis, M. I. et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 53, 1192–1202 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Beasley, N. J. et al. Hypoxia-inducible factors HIF-1α and HIF-2α in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res. 62, 2493–2497 (2002).

    CAS  PubMed  Google Scholar 

  101. Volm, M. & Koomagi, R. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res. 20, 1527–1533 (2000).

    CAS  PubMed  Google Scholar 

  102. Mandriota, S. J. et al. HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1, 459–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Raval, R. R. et al. Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel–Lindau-associated renal cell carcinoma. Mol. Cell. Biol. 25, 5675–5686 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Maxwell, P. H. et al. Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl Acad. Sci. USA 94, 8104–8109 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ryan, H. E. et al. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer Res. 60, 4010–4015 (2000).

    CAS  PubMed  Google Scholar 

  106. Kung, A. L., Wang, S., Klco, J. M., Kaelin, W. G. & Livingston, D. M. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nature Med. 6, 1335–1340 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Liao, D., Corle, C., Seagroves, T. N. & Johnson, R. S. Hypoxia-inducible factor-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer Res. 67, 563–572 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Hiraga, T., Kizaka-Kondoh, S., Hirota, K., Hiraoka, M. & Yoneda, T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer Res. 67, 4157–4163 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Koukourakis, M. I. et al. Endogenous markers of two separate hypoxia response pathways (hypoxia inducible factor 2a and carbonic anhydrase 9) are associated with radiotherapy failure in head and neck cancer patients recruited in the CHART randomized trial. J. Clin. Oncol. 24, 727–735 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours [see comments]. Nature 379, 88–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  111. An, W. G. et al. Stabilization of wild-type p53 by hypoxia-inducible factor 1α. Nature 392, 405–408 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Koshiji, M. et al. HIF-1α induces cell cycle arrest by functionally counteracting Myc. EMBO J. 23, 1949–1956 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A. & Simon, M. C. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11, 335–347 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Gordan, J. D., Thompson, C. B. & Simon, M. C. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12, 108–113 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schwarz, G. Ueber Desensibilisierung gegen rontgen- und radiumstrahlen. Munchener Medizinische Wochenschrift 24, 1–2 (1909) (in German).

    Google Scholar 

  116. Brown, J. M. Tumor hypoxia in cancer therapy. Meth. Enzymol. 435 (2007).

  117. Overgaard, J. Hypoxic radiosensitization: adored and ignored. J. Clin. Oncol. 25, 4066–4074 (2007).

    Article  PubMed  Google Scholar 

  118. Urtasun, R. C., Band, P. R., Chapman, J. D. & Feldstein, M. L. Radiation plus metronidazole for glioblastoma. N. Engl. J. Med. 296, 757 (1977).

    CAS  PubMed  Google Scholar 

  119. Zeman, E. M., Brown, J. M., Lemmon, M. J., Hirst, V. K. & Lee, W. W. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys. 12, 1239–1242 (1986).

    Article  CAS  PubMed  Google Scholar 

  120. Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nature Rev. Cancer 4, 437–447 (2004).

    Article  CAS  Google Scholar 

  121. Rischin, D. et al. Tirapazamine, cisplatin, and radiation versus fluorouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J. Clin. Oncol. 23, 79–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. von Pawel, J. et al. Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: A report of the international CATAPULT I study group. Cisplatin and Tirapazamine in Subjects with Advanced Previously Untreated Non-Small-Cell Lung Tumors. J. Clin. Oncol. 18, 1351–1359 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Shrieve, D. C. & Harris, J. W. The in vitro sensitivity of chronically hypoxic EMT6/SF cells to X-radiation and hypoxic cell radiosensitizers. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 48, 127–138 (1985).

    Article  CAS  PubMed  Google Scholar 

  124. Graeber, T. G. et al. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. Wartenberg, M. et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J. 17, 503–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Comerford, K. M. et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62, 3387–3394 (2002).

    CAS  PubMed  Google Scholar 

  127. Koshiji, M. et al. HIF-1α induces genetic instability by transcriptionally downregulating MutSα expression. Mol. Cell 17, 793–803 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Erler, J. T. et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Staller, P. et al. Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 425, 307–311 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Pennacchietti, S. et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3, 347–361 (2003).

    Article  PubMed  Google Scholar 

  131. Moeller, B. J., Richardson, R. A. & Dewhirst, M. W. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 26, 241–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Fujibayashi, Y. et al. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J. Nucl. Med. 38, 1155–1160 (1997).

    CAS  PubMed  Google Scholar 

  133. Evans, S. M. et al. Noninvasive detection of tumor hypoxia using the 2-nitroimidazole [18F]EF1. J. Nucl. Med. 41, 327–336 (2000).

    CAS  PubMed  Google Scholar 

  134. Rasey, J. S. et al. Characterization of radiolabeled fluoromisonidazole as a probe for hypoxic cells. Radiat. Res. 111, 292–304 (1987).

    Article  CAS  PubMed  Google Scholar 

  135. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Med. 10, 594–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Thomas, G. V. et al. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nature Med. 12, 122–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, Y. V. et al. RACK1 Competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol. Cell 25, 207–217 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kung, A. L. et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 6, 33–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Semenza, G. L. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov. Today 12, 853–859 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nature Rev. Drug Discov. 3, 391–400 (2004).

    Article  CAS  Google Scholar 

  141. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature Rev. Cancer (2008).

  144. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  146. Kulshreshtha, R., Davuluri, R. V., Calin, G. A. & Ivan, M. A microRNA component of the hypoxic response. Cell Death Differ. 15, 667–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Percy, M. J. et al. Novel exon 12 mutations in the HIF2A gene associated with erythrocytosis. Blood 111, 5400–5402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hickey, M. M., Lam, J. C., Bezman, N. A., Rathmell, W. K. & Simon, M. C. von Hippel–Lindau mutation in mice recapitulates Chuvash polycythemia via hypoxia-inducible factor-2α signaling and splenic erythropoiesis. J. Clin. Invest. 117, 3879–3889 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Jurgensen, J. S. et al. Persistent induction of HIF-1α and -2α in cardiomyocytes and stromal cells of ischemic myocardium. FASEB J. 18, 1415–1417 (2004).

    Article  PubMed  CAS  Google Scholar 

  151. Loor, G. & Schumacker, P. T. Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ. 15, 686–690 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Kido, M. et al. Hypoxia-inducible factor 1-α reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J. Am. Coll. Cardiol 46, 2116–2124 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Yu, A. Y. et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J. Clin. Invest. 103, 691–696 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Brusselmans, K. et al. Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J. Clin. Invest. 111, 1519–1527 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cramer, T. et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell 112, 645–657 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Karhausen, J. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest. 114, 1098–1106 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the Simon laboratory for helpful comments as well as F. Tucker and E. Podewils for manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Celeste Simon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

bevacizumab

Cu-ATSM

etanidazole

everolimus

FDG

gefitinib

misonidazole

sorafenib

tirapazamine

Pathway Interaction Database

PI3K–Akt–mTOR

Ras

FURTHER INFORMATION

M. Celeste Simon's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertout, J., Patel, S. & Simon, M. The impact of O2 availability on human cancer. Nat Rev Cancer 8, 967–975 (2008). https://doi.org/10.1038/nrc2540

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing