Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies

Key Points

  • Nitric oxide (NO) mediates pro-angiogenic activities of vascular endothelial growth factor A (VEGFA) and a number of additional angiogenic factors that support the neovascularization of tumours. This signalling involves activation of soluble guanylate cyclase and downstream targets of cyclic GMP.

  • Thrombospondin 1 (TSP1) and TSP2 are endogenous angiogenesis inhibitors. Their expression is frequently lost during cancer progression, and overexpression suppresses tumour growth. TSP1 is a potent antagonist of NO signalling in vascular endothelial cells, vascular smooth muscle cells and platelets. TSP2 is substantially less active.

  • Antagonism of NO signalling can be mediated by TSP1 binding to two of its receptors, CD36 and CD47. CD47 mediates inhibition at much lower concentrations of TSP1, and CD47 is also required for signalling through CD36.

  • TSP1 signalling through CD47 redundantly inhibits NO signalling at the level of soluble guanylate cyclase and cGMP-dependent protein kinase.

  • In addition to long-term inhibition of angiogenesis, antagonism of NO signalling by TSP1 results in acute inhibition of tissue perfusion and acceleration of platelet haemostasis. Consequently, TSP1 and CD47 limit recovery of blood flow and tissue survival following ischaemic injuries. By contrast, tumour vasculature is resistant to acute vasodilation by NO, and increased circulating TSP1 produced by tumour stroma may instead indirectly increase tumour perfusion by limiting blood flow elsewhere.

  • These activities of TSP1 parallel the hypertensive and pro-thrombotic activities that are emerging as frequent side effects of therapeutic angiogenesis inhibitors, and both can be explained by inhibition of NO signalling.

  • TSP1 signalling through CD47 also limits soft tissue survival after radiation injury. Disruption of this pathway is a possible strategy to permit delivery of higher therapeutic radiation doses to tumours while selectively protecting surrounding healthy tissues.

Abstract

In addition to long-term regulation of angiogenesis, angiogenic growth factor signalling through nitric oxide (NO) acutely controls blood flow and haemostasis. Inhibition of this pathway may account for the hypertensive and pro-thrombotic side effects of the vascular endothelial growth factor antagonists that are currently used for cancer treatment. The first identified endogenous angiogenesis inhibitor, thrombospondin 1, also controls tissue perfusion, haemostasis and radiosensitivity by antagonizing NO signalling. We examine the role of these and other emerging activities of thrombospondin 1 in cancer. Clarifying how endogenous and therapeutic angiogenesis inhibitors regulate vascular NO signalling could facilitate development of more selective inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The central role of nitric oxide (NO) signalling in angiogenesis, vascular tone and haemostasis.
Figure 2: CD47 and CD36 mediate inhibition of nitric oxide (NO)–cyclic GMP signalling by thrombospondin 1 (TSP1).
Figure 3: Vascular responses outside the tumour primarily determine effects of thrombospondin 1 (TSP1) on tumour perfusion.
Figure 4: Convergence of angiogenesis inhibitor signalling on the nitric oxide (NO)–cyclic GMP cascade.

Similar content being viewed by others

References

  1. Pande, A., Lombardo, J., Spangenthal, E. & Javle, M. Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res. 27, 3465–3470 (2007).

    CAS  PubMed  Google Scholar 

  2. Wu, S., Chen, J. J., Kudelka, A., Lu, J. & Zhu, X. Incidence and risk of hypertension with sorafenib in patients with cancer: a systematic review and meta-analysis. Lancet Oncol. 9, 117–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. van Heeckeren, W. J. et al. Complications from vascular disrupting agents and angiogenesis inhibitors: aberrant control of hemostasis and thrombosis. Curr. Opin. Hematol. 14, 468–480 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Ku, D. D., Zaleski, J. K., Liu, S. & Brock, T. A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 265, H586–H592 (1993). The first report that VEGFA is an acute vasodilator.

    CAS  PubMed  Google Scholar 

  5. Yang, R. et al. Effects of vascular endothelial growth factor on hemodynamics and cardiac performance. J. Cardiovasc. Pharmacol. 27, 838–844 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Curwen, J. O. et al. Inhibition of vascular endothelial growth factor-a signaling induces hypertension: examining the effect of cediranib (recentin; AZD2171) treatment on blood pressure in rat and the use of concomitant antihypertensive therapy. Clin. Cancer Res. 14, 3124–3131 (2008). In vivo demonstration of acute blood pressure regulation by VEGFA and the opposing acute hypertensive activity of a VEGFA kinase inhibitor.

    Article  CAS  PubMed  Google Scholar 

  7. Isenberg, J. S. et al. Thrombospondin-1 limits ischemic tissue survival by inhibiting nitric oxide-mediated vascular smooth muscle relaxation. Blood 109, 1945–1952 (2007). The first demonstration that TSP1 acutely regulates tissue blood flow in vivo by antagonizing NO signalling and limits tissue survival after ischaemic injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Isenberg, J. S. et al. Thrombospondin-1 stimulates platelet aggregation by blocking the antithrombotic activity of nitric oxide/cGMP signaling. Blood 111, 613–623 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Folkman, J. Endogenous angiogenesis inhibitors. Apmis 112, 496–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Volpert, O. V., Lawler, J. & Bouck, N. P. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. Proc. Natl Acad. Sci. USA 95, 6343–6348 (1998). This work identified TSP1 as a circulating angiogenesis inhibitor that limits the growth of metastases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamashita, Y., Kurohiji, T., Tuszynski, G. P., Sakai, T. & Shirakusa, T. Plasma thrombospondin levels in patients with colorectal carcinoma. Cancer 82, 632–638 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Nathan, F. E. et al. Plasma thrombospondin levels in patients with gynecologic malignancies. Cancer 73, 2853–2858 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Davy, H. & Davy, J. The collected works of Sir Humphry Davy (Smith, Elder and Co., London, 1839).

    Book  Google Scholar 

  14. Ignarro, L. J. Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J. Physiol. Pharmacol. 53, 503–514 (2002).

    CAS  PubMed  Google Scholar 

  15. Dudzinski, D. M. & Michel, T. Life history of eNOS: partners and pathways. Cardiovasc. Res. 75, 247–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Roy, B. & Garthwaite, J. Nitric oxide activation of guanylyl cyclase in cells revisited. Proc. Natl Acad. Sci. USA 103, 12185–12190 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomas, D. D. et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Biol. Med. 45, 18–31 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Isenberg, J. S. et al. Thrombospondin-1 inhibits endothelial cell responses to nitric oxide in a cGMP-dependent manner. Proc. Natl Acad. Sci. USA 102, 13141–13146 (2005). The first demonstration that TSP1 blocks NO–cGMP signalling in endothelial cells and tissue explants.

  19. Radomski, M. W., Palmer, R. M. & Moncada, S. An L-arginine/nitric oxide pathway present in human platelets regulates aggregation. Proc. Natl Acad. Sci. USA 87, 5193–5197 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fukumura, D., Kashiwagi, S. & Jain, R. K. The role of nitric oxide in tumour progression. Nature Rev. Cancer 6, 521–534 (2006).

    Article  CAS  Google Scholar 

  21. Fukumura, D. et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl Acad. Sci. USA 98, 2604–2609 (2001). This article established the crucial role in vivo for NOS3 in VEGFA-stimulated angiogenesis and vascular permeability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Babaei, S. et al. Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide. Am. J. Pathol. 162, 1927–1936 (2003). This article extended the crucial role of NOS3 in angiogenesis beyond VEGFA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Urano, T. et al. Angiopoietin-related growth factor enhances blood flow via activation of the ERK1/2–eNOS–NO pathway in a mouse hind-limb ischemia model. Arterioscler. Thromb. Vasc. Biol. 28, 827–834 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Shindo, T. et al. Hypotension and resistance to lipopolysaccharide-induced shock in transgenic mice overexpressing adrenomedullin in their vasculature. Circulation 101, 2309–2316 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Babaei, S. et al. Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ. Res. 82, 1007–1015 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Rikitake, Y. et al. Involvement of endothelial nitric oxide in sphingosine-1-phosphate-induced angiogenesis. Arterioscler. Thromb. Vasc. Biol. 22, 108–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Jadeski, L. C. & Lala, P. K. Nitric oxide synthase inhibition by NG-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am. J. Pathol. 155, 1381–1390 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jadeski, L. C., Hum, K. O., Chakraborty, C. & Lala, P. K. Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int. J. Cancer 86, 30–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Hussain, S. P. et al. Nitric oxide is a key component in inflammation-accelerated tumorigenesis. Cancer Res. 68, 7130–7136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu, D. E., Dyke, S. O., Moore, A. M., Thomsen, L. L. & Brindle, K. M. Tumor cell-derived nitric oxide is involved in the immune-rejection of an immunogenic murine lymphoma. Cancer Res. 64, 152–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Wei, D. et al. Direct demonstration of negative regulation of tumor growth and metastasis by host-inducible nitric oxide synthase. Cancer Res. 63, 3855–3859 (2003).

    CAS  PubMed  Google Scholar 

  32. Ridnour, L. A. et al. Molecular mechanisms for discrete nitric oxide levels in cancer. Nitric Oxide 19, 73–76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim-Shapiro, D. B., Schechter, A. N. & Gladwin, M. T. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler. Thromb. Vasc. Biol. 26, 697–705 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Ridnour, L. A. et al. The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol. Chem. 385, 1–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Omori, K. & Kotera, J. Overview of PDEs and their regulation. Circ. Res. 100, 309–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Lecour, S. et al. Evidence for the extrapulmonary localization of inhaled nitric oxide. Heart Dis. 5, 372–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Gladwin, M. T. et al. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity. J. Clin. Invest. 104, 937–945 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghiadoni, L., Versari, D. & Taddei, S. Phosphodiesterase 5 inhibition in essential hypertension. Curr. Hypertens. Rep. 10, 52–57 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Dony, E. et al. Partial reversal of experimental pulmonary hypertension by phosphodiesterase-3/4 inhibition. Eur. Respir. J. 31, 599–610 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Voetsch, B., Jin, R. C. & Loscalzo, J. Nitric oxide insufficiency and atherothrombosis. Histochem. Cell Biol. 122, 353–367 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Loscalzo, J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ. Res. 88, 756–762 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Carlson, C. B., Lawler, J. & Mosher, D. F. Structures of thrombospondins. Cell. Mol. Life Sci. 65, 672–686 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Posey, K. L., Yang, Y., Veerisetty, A. C., Sharan, S. K. & Hecht, J. T. Model systems for studying skeletal dysplasias caused by TSP-5/COMP mutations. Cell. Mol. Life Sci. 65, 687–699 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Xiao, Y. et al. Cartilage oligomeric matrix protein expression in hepatocellular carcinoma and the cirrhotic liver. J. Gastroenterol. Hepatol. 19, 296–302 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Li, N. et al. Discovery of novel biomarkers in oral submucous fibrosis by microarray analysis. Cancer Epidemiol. Biomarkers Prev. 17, 2249–2259 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. van Doorn, R. et al. Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J. Clin. Oncol. 23, 3886–3896 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Korkola, J. E. et al. Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res. 63, 7167–7175 (2003).

    CAS  PubMed  Google Scholar 

  48. Sugimura, J. et al. Gene expression profiling of mesoblastic nephroma and Wilms tumors — comparison and clinical implications. Urology 64, 362–368; discussion 368 (2004).

    Article  PubMed  Google Scholar 

  49. Dalla-Torre, C. A. et al. Effects of THBS3, SPARC and SPP1 expression on biological behavior and survival in patients with osteosarcoma. BMC Cancer 6, 237 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kazerounian, S., Yee, K. O. & Lawler, J. Thrombospondins in cancer. Cell. Mol. Life Sci. 65, 700–712 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bonnefoy, A., Moura, R. & Hoylaerts, M. F. The evolving role of thrombospondin-1 in hemostasis and vascular biology. Cell. Mol. Life Sci. 65, 713–727 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Bergseth, G., Lappegard, K. T., Videm, V. & Mollnes, T. E. A novel enzyme immunoassay for plasma thrombospondin. Comparison with beta-thromboglobulin as platelet activation marker in vitro and in vivo. Thromb. Res. 99, 41–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Italiano, J. E. Jr et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111, 1227–1233 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stenina, O. I., Topol, E. J. & Plow, E. F. Thrombospondins, their polymorphisms, and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 27, 1886–1894 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Kato, K. et al. Assessment of genetic risk factors for thoracic aortic aneurysm in hypertensive patients. Am. J. Hypertens. 21, 1023–1027 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Koch, W., Hoppmann, P., de Waha, A., Schomig, A. & Kastrati, A. Polymorphisms in thrombospondin genes and myocardial infarction: a case-control study and a meta-analysis of available evidence. Hum. Mol. Genet. 17, 1120–1126 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Sfar, S., Saad, H., Mosbah, F., Gabbouj, S. & Chouchane, L. TSP1 and MMP9 genetic variants in sporadic prostate cancer. Cancer Genet. Cytogenet. 172, 38–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Kodama, J. et al. Thrombospondin-1 and -2 messenger RNA expression in invasive cervical cancer: correlation with angiogenesis and prognosis. Clin. Cancer Res. 7, 2826–2831 (2001).

    CAS  PubMed  Google Scholar 

  59. Guerrero, D. et al. Hypermethylation of the thrombospondin-1 gene is associated with poor prognosis in penile squamous cell carcinoma. BJU Int. 102, 747–755 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Neal, C. P. et al. Molecular prognostic markers in resectable colorectal liver metastases: a systematic review. Eur. J. Cancer 42, 1728–1743 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Poon, R. T. et al. Clinical significance of thrombospondin 1 expression in hepatocellular carcinoma. Clin. Cancer Res. 10, 4150–4157 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Straume, O. & Akslen, L. A. Expresson of vascular endothelial growth factor, its receptors (FLT-1, KDR) and TSP-1 related to microvessel density and patient outcome in vertical growth phase melanomas. Am. J. Pathol. 159, 223–235 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rice, A. J., Steward, M. A. & Quinn, C. M. Thrombospondin 1 protein expression relates to good prognostic indices in ductal carcinoma in situ of the breast. J. Clin. Pathol. 55, 921–925 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tobita, K. et al. Thrombospondin-1 expression as a prognostic predictor of pancreatic ductal carcinoma. Int. J. Oncol. 21, 1189–1195 (2002).

    CAS  PubMed  Google Scholar 

  65. Hawighorst, T. et al. Thrombospondin-2 plays a protective role in multistep carcinogenesis: a novel host anti-tumor defense mechanism. EMBO J. 20, 2631–2640 (2001). This work established tumour suppressor activity for TSP2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hawighorst, T. et al. Thrombospondin-1 selectively inhibits early-stage carcinogenesis and angiogenesis but not tumor lymphangiogenesis and lymphatic metastasis in transgenic mice. Oncogene 21, 7945–7956 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Li, Q., Ahuja, N., Burger, P. C. & Issa, J. P. Methylation and silencing of the Thrombospondin-1 promoter in human cancer. Oncogene 18, 3284–3289 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Yang, Q. W. et al. Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Res. 63, 6299–6310 (2003).

    CAS  PubMed  Google Scholar 

  69. Dameron, K. M., Volpert, O. V., Tainsky, M. A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Janz, A., Sevignani, C., Kenyon, K., Ngo, C. V. & Thomas-Tikhonenko, A. Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res. 28, 2268–2275 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Volpert, O. V. et al. Id1 regulates angiogenesis through transcriptional repression of thrombospondin-1. Cancer Cell 2, 473–483 (2002). This article established TSP1 as a target for the anti-angiogenic activity of ID1.

    Article  CAS  PubMed  Google Scholar 

  72. Zabrenetzky, V., Harris, C. C., Steeg, P. S. & Roberts, D. D. Expression of the extracellular matrix molecule thrombospondin inversely correlates with malignant progression in melanoma, lung and breast carcinoma cell lines. Int. J. Cancer 59, 191–195 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Shaked, Y. et al. Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7, 101–111 (2005).

    CAS  PubMed  Google Scholar 

  74. Weinstat-Saslow, D. L. et al. Transfection of thrombospondin 1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential, and angiogenesis. Cancer Res. 54, 6504–6511 (1994). The first demonstration that re-expressing TSP1 in a tumour xenograft model inhibits tumour growth and angiogenesis.

    CAS  PubMed  Google Scholar 

  75. Sheibani, N. & Frazier, W. A. Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis. Proc. Natl Acad. Sci. USA 92, 6788–6792 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Streit, M. et al. Overexpression of thrombospondin-1 decreases angiogenesis and inhibits the growth of human cutaneous squamous cell carcinomas. Am. J. Pathol. 155, 441–452 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Streit, M. et al. Thrombospondin-2: a potent endogenous inhibitor of tumor growth and angiogenesis. Proc. Natl Acad. Sci. USA 96, 14888–14893 (1999). The first demonstration that expressing TSP2 inhibits tumour angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guo, N. H., Krutzsch, H. C., Inman, J. K., Shannon, C. S. & Roberts, D. D. Antiproliferative and antitumor activities of D-reverse peptides derived from the second type-1 repeat of thrombospondin-1. J. Pept. Res. 50, 210–221 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Iruela-Arispe, M. L., Lombardo, M., Krutzsch, H. C., Lawler, J. & Roberts, D. D. Inhibition of angiogenesis by thrombspondin-1 is mediated by two independent regions within the type 1 repeats. Circulation 100, 1423–1431 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Haviv, F. et al. Thrombospondin-1 mimetic peptide inhibitors of angiogenesis and tumor growth: design, synthesis, and optimization of pharmacokinetics and biological activities. J. Med. Chem. 48, 2838–2846 (2005). This article describes the development of a potent TSP1 mimetic drug that inhibits tumour growth.

    Article  CAS  PubMed  Google Scholar 

  81. Ebbinghaus, S. et al. Phase 2 study of ABT-510 in patients with previously untreated advanced renal cell carcinoma. Clin. Cancer Res. 13, 6689–6695 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Markovic, S. N. et al. A phase II study of ABT-510 (thrombospondin-1 analog) for the treatment of metastatic melanoma. Am. J. Clin. Oncol. 30, 303–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Yap, R. et al. Metronomic low-dose chemotherapy boosts CD95-dependent antiangiogenic effect of the thrombospondin peptide ABT-510: a complementation antiangiogenic strategy. Clin. Cancer Res. 11, 6678–6685 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Gietema, J. A. et al. A phase I study assessing the safety and pharmacokinetics of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 with gemcitabine and cisplatin in patients with solid tumors. Ann. Oncol. 17, 1320–1327 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Hoekstra, R. et al. Phase I study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 with 5-fluorouracil and leucovorin: a safe combination. Eur. J. Cancer 42, 467–472 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Baker, L. H. et al. Randomized, phase II study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 in patients with advanced soft tissue sarcoma. J. Clin. Oncol. 26, 5583–5588 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Taraboletti, G., Roberts, D., Liotta, L. A. & Giavazzi, R. Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J. Cell Biol. 111, 765–772 (1990).

    Article  CAS  PubMed  Google Scholar 

  88. Tolsma, S. S. et al. Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity. J. Cell Biol. 122, 497–511 (1993).

    Article  CAS  PubMed  Google Scholar 

  89. Isenberg, J. S., Wink, D. A. & Roberts, D. D. Thrombospondin-1 antagonizes nitric oxide-stimulated vascular smooth muscle cell responses. Cardiovasc. Res. 71, 785–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Isenberg, J. S. et al. Thrombospondin-1 and vasoactive agents indirectly alter tumor blood flow. Neoplasia 10, 886–896 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Isenberg, J. S., Frazier, W. A. & Roberts, D. D. Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cell. Mol. Life Sci. 65, 728–742 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dawson, D. W. et al. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J. Cell Biol. 138, 707–717 (1997). This article established the role of CD36 as a receptor that mediates anti-angiogenic responses to TSP1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jimenez, B. et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nature Med. 6, 41–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Isenberg, J. S. et al. CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J. Biol. Chem. 281, 26069–26080 (2006). This article established that CD47, not CD36, is the crucial receptor for inhibition of NO–cGMP signalling in vascular cells.

    Article  CAS  PubMed  Google Scholar 

  95. Ambati, B. K. et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature 443, 993–997 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Isenberg, J. S., Yu, C. & Roberts, D. D. Differential effects of ABT-510 and a CD36-binding peptide derived from the type 1 repeats of thrombospondin-1 on fatty acid uptake, nitric oxide signaling, and caspase activation in vascular cells. Biochem. Pharmacol. 75, 875–882 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Brown, E. J. & Frazier, W. A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11, 130–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Isenberg, J. S. et al. Blocking thrombospondin-1/CD47 signaling alleviates deleterious effects of aging on tissue responses to ischemia. Arterioscler. Thromb. Vasc. Biol. 27, 2582–2588 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Isenberg, J. S. et al. Gene silencing of CD47 and antibody ligation of thrombospondin-1 enhance ischemic tissue survival in a porcine model: implications for human disease. Ann. Surg. 247, 860–868 (2008).

    Article  PubMed  Google Scholar 

  100. Pyriochou, A. & Papapetropoulos, A. Soluble guanylyl cyclase: more secrets revealed. Cell Signal. 17, 407–413 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Jackson, E. B. Jr, Mukhopadhyay, S. & Tulis, D. A. Pharmacologic modulators of soluble guanylate cyclase/cyclic guanosine monophosphate in the vascular system — from bench top to bedside. Curr. Vasc. Pharmacol. 5, 1–14 (2007).

    CAS  PubMed  Google Scholar 

  102. Butt, E. et al. cAMP- and cGMP-dependent protein kinase phosphorylation sites of the focal adhesion vasodilator-stimulated phosphoprotein (VASP) in vitro and in intact human platelets. J. Biol. Chem. 269, 14509–14517 (1994).

    CAS  PubMed  Google Scholar 

  103. Zhu, W. & Smart, E. J. Myristic acid stimulates endothelial nitric-oxide synthase in a CD36- and an AMP kinase-dependent manner. J. Biol. Chem. 280, 29543–29550 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Febbraio, M. & Silverstein, R. L. CD36: implications in cardiovascular disease. Int. J. Biochem. Cell Biol. 39, 2012–2030 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Isenberg, J. S. et al. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J. Biol. Chem. 282, 15404–15415 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Gao, A.-G. et al. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J. Biol. Chem. 271, 21–24 (1996). This article identified CD47 as a TSP1 receptor.

    Article  CAS  PubMed  Google Scholar 

  107. Lamy, L. et al. Interactions between CD47 and thrombospondin reduce inflammation. J. Immunol. 178, 5930–5939 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Isenberg, J. S. et al. Differential interactions of thrombospondins-1, -2 and -4 with CD47 and effects on cGMP signaling and ischemic injury responses. J. Biol. Chem. 284, 1116–1125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Dewhirst, M. W., Cao, Y. & Moeller, B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nature Rev. Cancer 8, 425–437 (2008).

    Article  CAS  Google Scholar 

  110. Isenberg, J. S. et al. Blockade of thrombospondin-1-CD47 interactions prevents necrosis of full thickness skin grafts. Ann. Surg. 247, 180–190 (2008).

    Article  PubMed  Google Scholar 

  111. Isenberg, J. S. et al. Increasing survival of ischemic tissue by targeting CD47. Circ. Res. 100, 712–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Lien, Y. H., Lai, L. W. & Silva, A. L. Pathogenesis of renal ischemia/reperfusion injury: lessons from knockout mice. Life Sci. 74, 543–552 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Isenberg, J. S. et al. Treatment of ischemia/reperfusion injury by limiting thrombospondin-1/CD47 signaling. Surgery 144, 752–761 (2008).

    Article  PubMed  Google Scholar 

  114. Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Jain, R. K. Haemodynamic and transport barriers to the treatment of solid tumours. Int. J. Radiat. Biol. 60, 85–100 (1991).

    Article  CAS  PubMed  Google Scholar 

  116. Dewhirst, M. W. et al. The use of hydralazine to manipulate tumour temperatures during hyperthermia. Int. J. Hyperthermia 6, 971–983 (1990).

    Article  CAS  PubMed  Google Scholar 

  117. Shankar, A., Loizidou, M., Burnstock, G. & Taylor, I. Noradrenaline improves the tumour to normal blood flow ratio and drug delivery in a model of liver metastases. Br. J. Surg. 86, 453–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Jirtle, R. L. Chemical modification of tumour blood flow. Int. J. Hyperthermia 4, 355–371 (1988).

    Article  CAS  PubMed  Google Scholar 

  119. Morikawa, S. et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am. J. Pathol. 160, 985–1000 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Thachil, J. Nitric oxide depletion is responsible for the adverse effects of vascular endothelial growth factor inhibitors. Nature Clin. Pract. Nephrol. 4, 536–537 (2008).

    Article  CAS  Google Scholar 

  121. Urbich, C. et al. Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. FASEB J. 16, 706–708 (2002).

    Article  CAS  PubMed  Google Scholar 

  122. Schmidt, A. et al. Endostatin down-regulates soluble guanylate cyclase (sGC) in endothelial cells in vivo: influence of endostatin on vascular endothelial growth factor (VEGF) signaling. Endothelium 12, 251–257 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Goymer, P. Natural selection: the evolution of cancer. Nature 454, 1046–1048 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Ludwig, R. J., Schon, M. P. & Boehncke, W. H. P-selectin: a common therapeutic target for cardiovascular disorders, inflammation and tumour metastasis. Expert Opin. Ther. Targets 11, 1103–1117 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Yee, K. O. et al. The effect of thrombospondin-1 on breast cancer metastasis. Breast Cancer Res. Treat. 13 Apr 2008 (Epub ahead of print).

  126. Nieder, C., Wiedenmann, N., Andratschke, N. H., Astner, S. T. & Molls, M. Radiation therapy plus angiogenesis inhibition with bevacizumab: rationale and initial experience. Rev. Recent Clin. Trials 2, 163–168 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Kashiwagi, S. et al. Perivascular nitric oxide gradients normalize tumor vasculature. Nature Med. 14, 255–257 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Moeller, B. J., Richardson, R. A. & Dewhirst, M. W. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. Cancer Metastasis Rev. 26, 241–248 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Dings, R. P. et al. Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin. Cancer Res. 13, 3395–3402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Garcia-Barros, M. et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155–1159 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Ogawa, K. et al. Influence of tumor cell and stroma sensitivity on tumor response to radiation. Cancer Res. 67, 4016–4021 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Gerweck, L. E., Vijayappa, S., Kurimasa, A., Ogawa, K. & Chen, D. J. Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res. 66, 8352–8355 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Isenberg, J. S. et al. Thrombospondin-1 and CD47 limit cell and tissue survival of radiation injury. Am. J. Pathol. 173, 1100–1112 (2008). This paper demonstrates the key roles of TSP1 and CD47 in the radiosensitivity of soft tissue in vivo and vascular cells in vitro .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Agah, A., Kyriakides, T. R., Lawler, J. & Bornstein, P. The lack of thrombospondin-1 (TSP1) dictates the course of wound healing in double-TSP1/TSP2-null mice. Am. J. Pathol. 161, 831–839 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liebmann, J. et al. In vivo radiation protection by nitric oxide modulation. Cancer Res. 54, 3365–3368 (1994). This paper established a radioprotective activity of NO.

    CAS  PubMed  Google Scholar 

  136. Isenberg, J. S. et al. Thrombospondin-1 and CD47 regulate blood pressure and cardiovascular responses to vasoactive stress. Matrix Biol. 21 Jan 2009 (doi: 10.1016/j.matbio.2009.01.002).

  137. Martin-Manso, G. et al. Thrombospondin-1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity by differentiated U937 cells. Cancer Res. 68, 7090–7099 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Munder, M., Eichmann, K. & Modolell, M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160, 5347–5354 (1998).

    CAS  PubMed  Google Scholar 

  139. Cao, C. et al. Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration. EMBO J. 25, 1860–1870 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Degryse, B. et al. The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J. Biol. Chem. 279, 22595–22604 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Chandrasekaran, L. et al. Cell contact-dependent activation of α3β1 integrin modulates endothelial cell responses to thrombospondin-1. Mol. Biol. Cell 11, 2885–2900 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Taraboletti, G. et al. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J. 14, 1674–1676 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Calzada, M. J. et al. Recognition of the N-terminal modules of thrombospondin-1 and thrombospondin-2 by α6β1 integrin. J. Biol. Chem. 278, 40679–40687 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Calzada, M. J. et al. α4β1 integrin mediates selective endothelial cell responses to thrombospondins in vitro and modulates angiogenesis in vivo. Circ. Res. 94, 462–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Staniszewska, I. et al. Interaction of α9β1 integrin with thrombospondin-1 promotes angiogenesis. Circ. Res. 100, 1308–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Elzie, C. A. & Murphy-Ullrich, J. E. The N-terminus of thrombospondin: the domain stands apart. Int. J. Biochem. Cell Biol. 36, 1090–1101 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Liu, A., Mosher, D. F., Murphy-Ullrich, J. E. & Goldblum, S. E. The counteradhesive proteins, thrombospondin 1 and SPARC/osteonectin, open the tyrosine phosphorylation-responsive paracellular pathway in pulmonary vascular endothelia. Microvasc. Res. 1 Oct 2008 (Epub ahead of print).

  148. Simantov, R., Febbraio, M. & Silverstein, R. L. The antiangiogenic effect of thrombospondin-2 is mediated by CD36 and modulated by histidine-rich glycoprotein. Matrix Biol. 24, 27–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Huang, H. et al. Peroxisome proliferator-activated receptor γ ligands improve the antitumor efficacy of thrombospondin peptide ABT510. Mol. Cancer Res. 2, 541–550 (2004).

    CAS  PubMed  Google Scholar 

  150. Kuriki, K. et al. Increased risk of colorectal cancer due to interactions between meat consumption and the CD36 gene A52C polymorphism among Japanese. Nutr. Cancer 51, 170–177 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. McDonald, J. F., Dimitry, J. M. & Frazier, W. A. An amyloid-like C-terminal domain of thrombospondin-1 displays CD47 agonist activity requiring both VVM motifs. Biochemistry 42, 10001–10011 (2003).

    Article  CAS  PubMed  Google Scholar 

  152. Kvansakul, M., Adams, J. C. & Hohenester, E. Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J. 23, 1223–1233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Floquet, N., Dedieu, S., Martiny, L., Dauchez, M. & Perahia, D. Human thrombospondin's (TSP-1) C-terminal domain opens to interact with the CD-47 receptor: a molecular modeling study. Arch. Biochem. Biophys. 478, 103–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  154. van Beek, E. M., Cochrane, F., Barclay, A. N. & van den Berg, T. K. Signal regulatory proteins in the immune system. J. Immunol. 175, 7781–7787 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Kikuchi, Y. et al. Apoptosis inducing bivalent single-chain antibody fragments against CD47 showed antitumor potency for multiple myeloma. Leuk. Res. 29, 445–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Manna, P. P. & Frazier, W. A. CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A. Cancer Res. 64, 1026–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Dimmeler, S. et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  158. Fulton, D. et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597–601 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Fulton, D. et al. Agonist-stimulated endothelial nitric oxide synthase activation and vascular relaxation. Role of eNOS phosphorylation at Tyr83. Circ. Res. 102, 497–504 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Duval, M., Le Boeuf, F., Huot, J. & Gratton, J. P. Src-mediated phosphorylation of Hsp90 in response to vascular endothelial growth factor (VEGF) is required for VEGF receptor-2 signaling to endothelial NO synthase. Mol. Biol. Cell 18, 4659–4668 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Reihill, J. A., Ewart, M. A., Hardie, D. G. & Salt, I. P. AMP-activated protein kinase mediates VEGF-stimulated endothelial NO production. Biochem. Biophys. Res. Commun. 354, 1084–1088 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Anderson, J. C. et al. ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis. Cancer Biol. Ther. 6, 454–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Lawler, J. et al. Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice. Am. J. Pathol. 159, 1949–1956 (2001). The first demonstration that endogenous TSP1 limits tumour growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rodriguez-Manzaneque, J. C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl Acad. Sci. USA 98, 12485–12490 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Johnson, A. M. et al. Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: a role for thrombospondin-1. BMC Urol. 8, 7 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Bocci, G., Francia, G., Man, S., Lawler, J. & Kerbel, R. S. Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc. Natl Acad. Sci. USA 100, 12917–12922 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Maeda, K. et al. Expression of vascular endothelial growth factor and thrombospondin-1 in colorectal carcinoma. Int. J. Mol. Med. 5, 373–378 (2000).

    CAS  PubMed  Google Scholar 

  168. Maeda, K. et al. Expression of thrombospondin-1 inversely correlated with tumor vascularity and hematogenous metastasis in colon cancer. Oncol. Rep. 8, 763–766 (2001).

    CAS  PubMed  Google Scholar 

  169. Kawakami, T. et al. Interleukin 10 expression is correlated with thrombospondin expression and decreased vascular involvement in colon cancer. Int. J. Oncol. 18, 487–491 (2001).

    CAS  PubMed  Google Scholar 

  170. Yoshida, Y. et al. Expression of angiostatic factors in colorectal cancer. Int. J. Oncol. 15, 1221–1225 (1999).

    CAS  PubMed  Google Scholar 

  171. Kaio, E. et al. Clinical significance of thrombospondin-1 expression in relation to vascular endothelial growth factor and interleukin-10 expression at the deepest invasive tumor site of advanced colorectal carcinoma. Int. J. Oncol. 23, 901–911 (2003).

    CAS  PubMed  Google Scholar 

  172. Bodner-Adler, B. et al. Expression of thrombospondin 1 (TSP 1) in patients with uterine smooth muscle tumors: an immunohistochemical study. Gynecol. Oncol. 103, 186–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  173. Straume, O. & Akslen, L. A. Strong expression of ID1 protein is associated with decreased survival, increased expression of ephrin-A1/EPHA2, and reduced thrombospondin-1 in malignant melanoma. Br. J. Cancer 93, 933–938 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Vallbo, C., Wang, W. & Damber, J. E. The expression of thrombospondin-1 in benign prostatic hyperplasia and prostatic intraepithelial neoplasia is decreased in prostate cancer. BJU Int. 93, 1339–1343 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Paydas, S. et al. Thrombospondin-1 (TSP-1) and Survivin (S) expression in non-Hogkin's lymphomas. Leuk Res. 32, 243–250 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Sutton, C. D. et al. Expression of thrombospondin-1 in resected colorectal liver metastases predicts poor prognosis. Clin. Cancer Res. 11, 6567–6573 (2005).

    Article  CAS  PubMed  Google Scholar 

  177. Tringler, B. et al. Immunohistochemical expression of thrombospondin-1 in invasive vulvar squamous cell carcinoma. Gynecol. Oncol. 99, 80–83 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Karavasilis, V. et al. Clinicopathologic study of vascular endothelial growth factor, thrombospondin-1, and microvessel density assessed by CD34 in patients with stage III ovarian carcinoma. Int. J. Gynecol. Cancer 16 (Suppl. 1), 241–246 (2006).

    Article  PubMed  Google Scholar 

  179. Linderholm, B., Lindh, B., Tavelin, B., Grankvist, K. & Henriksson, R. p53 and vascular-endothelial-growth-factor (VEGF) expression predicts outcome in 833 patients with primary breast carcinoma. Int. J. Cancer 89, 51–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  180. Siegel, A. B. et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J. Clin. Oncol. 26, 2992–2998 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. Nalluri, S. R., Chu, D., Keresztes, R., Zhu, X. & Wu, S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300, 2277–2285 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Jain, M. & Townsend, R. R. Chemotherapy agents and hypertension: a focus on angiogenesis blockade. Curr. Hypertens. Rep. 9, 320–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  183. Patel, T. V. et al. A preeclampsia-like syndrome characterized by reversible hypertension and proteinuria induced by the multitargeted kinase inhibitors sunitinib and sorafenib. J. Natl Cancer Inst. 100, 282–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Steeghs, N. et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin. Cancer Res. 14, 3470–3476 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research (D.D.R.). Gema Martin-Manso is recipient of a grant BEFI from Instituto de Salud Carlos III (Spanish Ministry of Heath).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Roberts.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary

ABT-510

bevacizumab

cediranib

sorafenib

sunitinib

FURTHER INFORMATION

David D. Roberts' homepage

Glossary

Hypertension

A condition in which blood pressure is chronically increased.

Thrombosis

Formation of a blood clot (thrombus) inside a blood vessel that obstructs blood flow.

Vessel tone

An assessment of vessel resistance to blood flow. Vessel tone is decreased by NO-mediated vasodilation and increased by activity of autonomic innervation and the presence of vasopressors.

Tissue perfusion

The volume of blood that flows through a unit quantity of tissue.

Haemostasis

The physiological process that arrests bleeding at a site of injury by formation of a haemostatic plug, resolves this plug during healing and maintains circulating blood in a fluid state in the absence of injury.

Nitric oxide synthase

Mammalian genomes encode three nitric oxide synthases: NOS1 (nNOS) is constitutively expressed in neuronal tissues, NOS2 (iNOS) is an inducible enzyme in phagocytic cells that can also be induced by inflammatory mediators in vascular cells, and NOS3 (eNOS) is a constitutively expressed but highly regulated enzyme in endothelium and platelets.

Mechanical shear

A physical force exerted on endothelial cells in blood vessels as a result of blood flow, which regulates the activity of NOS3 in endothelium.

Acetylcholine

A neurotransmitter in the autonomic nervous system that activates NOS3 in endothelial cells by increasing cytoplasmic calcium levels.

α-Granule

A major secretory organelle in platelets. The primary source for purification of thrombospondin 1.

Innate immunity

Cells and mechanisms that defend the host from pathogens or tumours in a non-specific manner. Innate anti-tumour immunity involves primarily macrophages and natural killer cells.

Corneal angiogenesis

The corneal angiogenesis assay is a standard method to assess pro- and anti-angiogenic factors by implanting slow-releasing polymer pellets containing the factors into the avascular cornea, usually of mice, rats or rabbits.

Vasodilator-stimulated phosphoprotein

A protein that controls actin polymerization. It is a well-characterized substrate for phosphorylation by cGMP-dependent protein kinase

Signature domain

Conserved C-terminal region of thrombospondins that includes EGF-like repeats, Ca2+-binding repeats and the C-terminal globular domain. In TSP1 it contains the binding site for CD47.

Partial fixed ischaemia

A partial but sustained loss of tissue blood flow.

Total ischaemia

A sustained total loss of tissue blood flow.

Hyperthermia therapy

The use of heat to damage or kill cancer cells and to make cancer cells more sensitive to the effects of radiation and certain anticancer drugs.

BOLD-MRI

(Blood oxygen level-dependent magnetic resonance imaging). An imaging technique that assesses blood oxygenation by detecting oxygen bound to haemoglobin.

Alopecia

A temporary or permanent loss of hair. Alopecia typically occurs several weeks after high-dose irradiation for tumour treatment.

Wet desquamation

Skin damage leading to broken skin or infection due to a fluid-filled abscess created by blocked ducts or capillaries, which is a characteristic side effect of high-dose irradiation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isenberg, J., Martin-Manso, G., Maxhimer, J. et al. Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer 9, 182–194 (2009). https://doi.org/10.1038/nrc2561

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing