Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Is cancer triggered by altered signalling of nicotinic acetylcholine receptors?

Key Points

  • Nicotinic acetylcholine receptors (nAChRs) are ion channels that are expressed in the plasma membrane of all mammalian cells, including cancer cells.

  • nAChRs are central regulators that stimulate the synthesis and release of stimulatory and inhibitory neurotransmitters, which in turn regulate the release of growth, angiogenic and neurogenic factors and stimulate signal transduction in a cell-type-specific manner.

  • Chronic exposure to nicotine or nicotine-derived carcinogenic nitrosamines upregulates cancer-stimulatory nAChRs and desensitizes cancer-inhibitory nAChRs.

  • The homomeric α7nAChR is the major stimulator of cancer development and progression: it induces the synthesis and release of autocrine growth factors in small-cell lung cancer and indirectly stimulates most other types of cancer through the systemic and cellular release of stress neurotransmitters that bind as agonists to β-adrenergic receptors.

  • The heteromeric α4β2nAChR is a major inhibitor of cancer development and progression: it stimulates the release of γ-aminobutyric acid, which blocks the cancer stimulating effects of β-adrenergic receptors by inhibiting cyclic AMP.

  • Marker-guided cancer intervention strategies that target nAChRs and their effectors that aim to restore the balance between stimulatory and inhibitory neurotransmitters need to be developed.

Abstract

Nicotinic acetylcholine receptors (nAChRs) are the central regulators of stimulatory and inhibitory neurotransmitters that control the synthesis and release of growth, angiogenic and neurotrophic factors in cancer cells, the cancer microenvironment and distant organs. Data discussed in this Review suggests that smoking and possibly other environmental and lifestyle factors increase the function of nAChRs that stimulate cancer cells and reduce the function of nAChRs that inhibit cancer cells. This novel paradigm necessitates the development of marker-guided cancer intervention strategies that aim to restore the balance between nAChR-mediated stimulatory and inhibitory neurotransmitters and their downstream effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conformational changes of ion channels.
Figure 2: The diverse functions of the homomeric α7 nicotinic acetylcholine receptor (nAChR) and of the heteromeric α4β2nAChRs.
Figure 3: Regulation of small-cell lung cancer (SCLC) cells and their cells of origin.
Figure 4: Regulation of non-small-cell lung cancer (NSCLC) cells and their cells of origin.
Figure 5: Regulation of gastrointestinal adenocarcinomas and small-airway-derived adenocarcinoma.
Figure 6: Regulation of tumour angiogenesis and neurogenesis by nicotinic acetylcholine receptors (nAChRs).

Similar content being viewed by others

References

  1. Burns, D. M. Tobacco-related diseases. Semin. Oncol. Nurs. 19, 244–249 (2003).

    Article  PubMed  Google Scholar 

  2. Brambilla, E., Travis, W. D., Colby, T. V., Corrin, B. & Shimosato, Y. The new World Health Organization classification of lung tumours. Eur. Respir. J. 18, 1059–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Khuder, S. A. Effect of cigarette smoking on major histological types of lung cancer: a meta-analysis. Lung Cancer 31, 139–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Hecht, S. S. Tobacco smoke carcinogens and lung cancer. J. Natl Cancer Inst. 91, 1194–1210 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Benowitz, N. L. Cigarette smoking and cardiovascular disease: pathophysiology and implications for treatment. Prog. Cardiovasc. Dis. 46, 91–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Benowitz, N. L. Neurobiology of nicotine addiction: implications for smoking cessation treatment. Am. J. Med. 121, S3–S10 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Gotti, C., Fornasari, D. & Clementi, F. Human neuronal nicotinic receptors. Prog. Neurobiol. 53, 199–237 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Schuller, H. M. Cell type specific, receptor-mediated modulation of growth kinetics in human lung cancer cell lines by nicotine and tobacco-related nitrosamines. Biochem. Pharmacol. 38, 3439–3442 (1989). This was the first report that implicated nAChRs in the growth regulation of cancer.

    Article  CAS  PubMed  Google Scholar 

  9. Maneckjee, R. & Minna, J. D. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines. Proc. Natl Acad. Sci. USA 87, 3294–3298 (1990). This was the first report that implicated nAChRs in the regulation of cancer cell apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schuller, H. M. & Orloff, M. Tobacco-specific carcinogenic nitrosamines. Ligands for nicotinic acetylcholine receptors in human lung cancer cells. Biochem. Pharmacol. 55, 1377–1384 (1998). This study identified cancer-causing nitrosamines as agonists for nAChRs.

    Article  CAS  PubMed  Google Scholar 

  11. Wessler, I. & Kirkpatrick, C. J. Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br. J. Pharmacol. 54, 1558–1571 (2008). This review details the ubiquitous expression of nAChRs in all cells and tissues.

    Google Scholar 

  12. Sobel, A., Weber, M. & Changeux, J. P. Large-scale purification of the acetylcholine-receptor protein in its membrane-bound and detergent-extracted forms from Torpedo marmorata electric organ. Eur. J. Biochem. 80, 215–224 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. O'Brian, R. D., Eldefrawi, A. T. & Eldefrawi, A. T. Isolation of acetylcholine receptors. Annu. Rev. Pharmacol. 12, 19–34 (1972).

    Article  Google Scholar 

  14. Karlin, A. The acetylcholine receptor: progress report. Life Sci. 14, 1385–1415 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Galzi, J. L., Revah, F., Bessis, A. & Changeux, J. P. Functional architecture of the nicotinic acetylcholine receptor: from electric organ to brain. Annu. Rev. Pharmacol. Toxicol. 31, 37–72 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Portugal, G. S. & Gould, T. J. Genetic variability in nicotinic acetylcholine receptors and nicotine addiction: converging evidence from human and animal research. Behav. Brain Res. 193, 1–16 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lindstrom, J. et al. Structure and function of neuronal nicotinic acetylcholine receptors. Prog. Brain Res. 109, 125–137 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Le Novere, N. & Changeux, J. P. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J. Mol. Evol. 40, 155–172 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Gopalakrishnan, M. et al. Stable expression and pharmacological properties of the human alpha 7 nicotinic acetylcholine receptor. Eur. J. Pharmacol. 290, 237–246 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Kunzelmann, K. Ion channels and cancer. J. Membr. Biol. 205, 159–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Roderick, H. L. & Cook, S. J. Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nature Rev. Cancer 8, 361–375 (2008).

    Article  CAS  Google Scholar 

  22. Kawai, H. & Berg, D. K. Nicotinic acetylcholine receptors containing the α7 subunits on rat cortical neurons do not undergo long lasting inactivation even when upregulated by chronic nicotine exposure. J. Neurochem. 78, 1367–1378 (2001). This study showed that, unlike heteromeric nAChRs, α7nAChR is not desensitized by chronic nicotine.

    Article  CAS  PubMed  Google Scholar 

  23. Barik, J. & Wonnacott, S. Indirect modulation by α7 nicotinic acetylcholine receptors of noradrenaline release in rat hippocampal slices: interaction with glutamate and GABA systems and effect of nicotine withdrawal. Mol. Pharmacol. 69, 618–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lang, K. et al. Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int. J. Cancer 112, 231–238 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Schuller, H. M., Al-Wadei, H. A. & Majidi, M. Gamma-aminobutyric acid, a potential tumor suppressor for small airway-derived lung adenocarcinoma. Carcinogenesis (2008).

  26. Schuller, H. M., Al-Wadei, H. A. & Majidi, M. GABA B receptor is a novel drug target for pancreatic cancer. Cancer 112, 767–778 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Drell, T. L.t. et al. Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res. Treat. 80, 63–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Joseph, J., Niggemann, B., Zaenker, K. S. & Entschladen, F. The neurotransmitter γ-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res. 62, 6467–6469 (2002). This was the first report that implicated GABA as a tumour suppressor.

    CAS  PubMed  Google Scholar 

  29. Nakazawa, K. & Ohno, Y. Block by phytoestrogens of recombinant human neuronal nicotinic receptors. J. Pharmacol. Sci. 93, 118–121 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Devesa, S. S., Bray, F., Vizcaino, A. P. & Parkin, D. M. International lung cancer trends by histologic type: male:female differences diminishing and adenocarcinoma rates rising. Int. J. Cancer 117, 294–299 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi, H. K. et al. The immunosuppressive effects of nicotine during mixed lymphocyte reaction. Eur. J. Pharmacol. 559, 69–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kawashima, K., Yoshikawa, K., Fujii, Y. X., Moriwaki, Y. & Misawa, H. Expression and function of genes encoding cholinergic components in murine immune cells. Life Sci. 80, 2314–2319 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Cattaneo, M. G., Codignola, A., Vicentini, L. M., Clementi, F. & Sher, E. Nicotine stimulates a serotonergic autocrine loop in human small-cell lung carcinoma. Cancer Res. 53, 5566–5568 (1993). This study showed for the first time that nAChRs stimulate the growth of SCLC by releasing the autocrine growth factor serotonin.

    CAS  PubMed  Google Scholar 

  34. Jull, B. A., Plummer, H. K. 3rd & Schuller, H. M. Nicotinic receptor-mediated activation by the tobacco-specific nitrosamine NNK of a Raf-1/MAP kinase pathway, resulting in phosphorylation of c-myc in human small cell lung carcinoma cells and pulmonary neuroendocrine cells. J. Cancer Res. Clin. Oncol. 127, 707–717 (2001).

    CAS  PubMed  Google Scholar 

  35. Gil-Ad, I. et al. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int. J. Oncol. 33, 277–286 (2008).

    CAS  PubMed  Google Scholar 

  36. Nocito, A. et al. Serotonin regulates macrophage-mediated angiogenesis in a mouse model of colon cancer allografts. Cancer Res. 68, 5152–5158 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Olincy, A., Leonard, S., Young, D. A., Sullivan, B. & Freedman, R. Decreased bombesin peptide response to cigarette smoking in schizophrenia. Neuropsychopharmacology 20, 52–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Haass, M. & Kubler, W. Nicotine and sympathetic neurotransmission. Cardiovasc. Drugs Ther. 19, 657–665 (1997).

    Article  Google Scholar 

  39. Mozayan, M. & Lee, T. J. Statins prevent cholinesterase inhibitor blockade of sympathetic α7nAChR-mediated currents in rat superior cervical ganglion neurons. Am. J. Physiol. Heart Circ. Physiol. 293, H1737–H1744 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Wong, H. P. et al. Nicotine promotes cell proliferation via α7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells. Toxicol. Appl. Pharmacol. 221, 261–267 (2007). This report showed for the first time that cancer cells synthesize and release stress neurotransmitters in response to α7nAChR stimulation.

    Article  CAS  PubMed  Google Scholar 

  41. Verhoeckx, K. C., Doornbos, R. P., Witkamp, R. F., van der Greef, J. & Rodenburg, R. J. Beta-adrenergic receptor agonists induce the release of granulocyte chemotactic protein-2, oncostatin M, and vascular endothelial growth factor from macrophages. Int. Immunopharmacol. 6, 1–7 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Grau, M., Soley, M. & Ramirez, I. Interaction between adrenaline and epidermal growth factor in the control of liver glycogenolysis in mouse. Endocrinology 138, 2601–2609 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Schuller, H. M., Tithof, P. K., Williams, M. & Plummer, H. 3rd. The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a β-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via β-adrenergic receptor-mediated release of arachidonic acid. Cancer Res. 59, 4510–4515 (1999).

    CAS  PubMed  Google Scholar 

  44. Weddle, D. L., Tithoff, P., Williams, M. & Schuller, H. M. β-Adrenergic growth regulation of human cancer cell lines derived from pancreatic ductal carcinomas. Carcinogenesis 22, 473–479 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Masur, K., Niggemann, B., Zanker, K. S. & Entschladen, F. Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by β-blockers. Cancer Res. 61, 2866–2869 (2001).

    CAS  PubMed  Google Scholar 

  46. Palm, D. et al. The norepinephrine-driven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by β-blockers. Int. J. Cancer 118, 2744–2749 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Shin, V. Y. et al. Functional role of β-adrenergic receptors in the mitogenic action of nicotine on gastric cancer cells. Toxicol. Sci. 96, 21–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Thaker, P. H. et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nature Med. 12, 939–944 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Plummer, H. K. 3rd, Dhar, M. S., Cekanova, M. & Schuller, H. M. Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines. BMC Cancer 5, 104 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Arredondo, J., Chernyavsky, A. I. & Grando, S. A. Nicotinic receptors mediate tumorigenic action of tobacco-derived nitrosamines on immortalized oral epithelial cells. Cancer Biol. Ther. 5, 511–517 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Sheppard, B. J., Williams, M., Plummer, H. K. & Schuller, H. M. Activation of voltage-operated Ca2+-channels in human small cell lung carcinoma by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Int. J. Oncol. 16, 513–518 (2000).

    CAS  PubMed  Google Scholar 

  52. Plummer, H. K. 3rd, Sheppard, B. J. & Schuller, H. M. Interaction of tobacco-specific toxicants with nicotinic cholinergic regulation of fetal pulmonary neuroendocrine cells: implications for pediatric lung disease. Exp. Lung Res. 26, 121–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Plummer, H. K. 3rd, Dhar, M. & Schuller, H. M. Expression of the α7 nicotinic acetylcholine receptor in human lung cells. Respir. Res. 6, 29 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Codignola, A. et al. Serotonin release and cell proliferation are under the control of a-bungarotoxin-sensitive nicotinic receptors in small-cell lung carcinoma cell lines. FEBS Lett. 342, 286–290 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Sartelet, H. et al. Expression of nicotinic receptors in normal and tumoral pulmonary neuroendocrine cells (PNECDs). Pathol. Res. Pract. 204, 891–898 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, L. & Deng, X. Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induces phosphorylation of μ- and m-calpain in association with increased secretion, cell migration, and invasion. J. Biol. Chem. 279, 53683–53690 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Jin, Z., Gao, F., Flagg, T. & Deng, X. Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation. J. Biol. Chem. 279, 40209–40219 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Seufferlein, T. & Rozengurt, E. Galanin, neurotensin, and phorbol esters rapidly stimulate activation of mitogen-activated protein kinase in small cell lung cancer cells. Cancer Res. 56, 5758–5764 (1996).

    CAS  PubMed  Google Scholar 

  59. Schuller, H. M., Orloff, M. & Reznik, G. K. Inhibition of protein-kinase-C-dependent cell proliferation of human lung cancer cell lines by the dihydropyridine dexniguldipine. J. Cancer Res. Clin. Oncol. 120, 354–358 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Shafer, S. H., Phelps, S. H. & Williams, C. L. Reduced DNA synthesis and cell viability in small cell lung carcinoma by treatment with cyclic AMP phosphodiesterase inhibitors. Biochem. Pharmacol. 56, 1229–1236 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Pursiheimo, J. P., Kieksi, A., Jalkanen, M. & Salmivirta, M. Protein kinase A balances the growth factor-induced Ras/ERK signaling. FEBS Lett. 521, 157–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Heeschen, C., Weis, M., Aicher, A., Dimmeler, S. & Cooke, J. P. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J. Clin. Invest. 110, 527–536 (2002). This was the first report that identified the α7nAChR as a regulator of angiogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Grozio, A. et al. Nicotine, lung and cancer. Anticancer Agents Med. Chem. 7, 461–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Cooke, J. P. Angiogenesis and the role of the endothelial nicotinic acetylcholine receptor. Life Sci. 80, 2347–2351 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schuller, H. M. Carbon dioxide potentiates the mitogenic effects of nicotine and its carcinogenic derivative, NNK, in normal and neoplastic neuroendocrine lung cells via stimulation of autocrine and protein kinase C-dependent mitogenic pathways. Neurotoxicology 15, 877–886 (1994).

    CAS  PubMed  Google Scholar 

  66. Schuller, H. M. Nitrosamines as nicotinic receptor ligands. Life Sci. 80, 2274–2280 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schuller, H. M. Neurotransmission and cancer: implications for prevention and therapy. Anticancer Drugs 19, 655–671 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Purdue, M. P. et al. Impaired lung function and lung cancer incidence in a cohort of Swedish construction workers. Thorax 62, 51–56 (2007).

    Article  PubMed  Google Scholar 

  69. Mannino, D. M. Chronic obstructive pulmonary disease: definition and epidemiology. Respir. Care 48, 1185–1191; discussion 1191–1193 (2003).

    PubMed  Google Scholar 

  70. Gwilt, C. R., Donnelly, L. E. & Rogers, D. F. The non-neuronal cholinergic system in the airways: an unappreciated regulatory role in pulmonary inflammation? Pharmacol. Ther. 115, 208–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Schuller, H. M., Porter, B. & Riechert, A. Beta-adrenergic modulation of NNK-induced lung carcinogenesis in hamsters. J. Cancer Res. Clin. Oncol. 126, 624–630 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Boswell-Smith, V. & Spina, D. PDE4 inhibitors as potential therapeutic agents in the treatment of COPD-focus on roflumilast. Int. J. Chron. Obstruct. Pulmon. Dis. 2, 121–129 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, D. & Cui, X. Evaluation of PDE4 inhibition for COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 1, 373–379 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Schuller, H. M., McGavin, M. D., Orloff, M., Riechert, A. & Porter, B. Simultaneous exposure to nicotine and hyperoxia causes tumors in hamsters. Lab. Invest. 73, 448–456 (1995). This study showed that nicotine causes neuroendocrine lung cancer in hamsters with COPD but was non-carcinogenic in healthy hamsters.

    CAS  PubMed  Google Scholar 

  75. Schuller, H. M. et al. Pathobiology of lung tumors induced in hamsters by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and the modulating effect of hyperoxia. Cancer Res. 50, 1960–1965 (1990).

    CAS  PubMed  Google Scholar 

  76. Schuller, H. M., Porter, B., Riechert, A., Walker, K. & Schmoyer, R. Neuroendocrine lung carcinogenesis in hamsters is inhibited by green tea or theophylline while the development of adenocarcinomas is promoted: implications for chemoprevention in smokers. Lung Cancer 45, 11–18 (2004).

    Article  PubMed  Google Scholar 

  77. Egleton, R. D., Brown, K. C. & Dasgupta, P. Nicotinic acetylcholine receptors in cancer: multiple roles in proliferation and inhibition of apoptosis. Trends Pharmacol. Sci. 29, 151–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. West, K. A. et al. Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. J. Clin. Invest. 111, 81–90 (2003). This study provided first evidence that the frequent overexpression of Akt in NSCLC is caused by nAChR stimulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsurutani, J. et al. Tobacco components stimulate Akt-dependent proliferation and NFκB-dependent survival in lung cancer cells. Carcinogenesis 26, 1182–1195 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Laag, E. et al. NNK activates ERK1/2 and CREB/ATF-1 via β-1-AR and EGFR signaling in human lung adenocarcinoma and small airway epithelial cells. Int. J. Cancer 119, 1547–1552 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Majidi, M., Al-Wadei, H. A., Takahashi, T. & Schuller, H. M. Nongenomic β estrogen receptors enhance β1 adrenergic signaling induced by the nicotine-derived carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in human small airway epithelial cells. Cancer Res. 67, 6863–6871 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Brognard, J., Clark, A. S., Ni, Y. & Dennis, P. A. Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 61, 3986–3997 (2001).

    CAS  PubMed  Google Scholar 

  83. Dasgupta, P. et al. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc. Natl Acad. Sci. USA 103, 6332–6337 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dasgupta, P. et al. Nicotine induces cell proliferation by β-arrestin-mediated activation of Src and Rb–Raf-1 pathways. J. Clin. Invest. 116, 2208–2217 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Arredondo, J., Chernyavsky, A. I. & Grando, S. A. The nicotinic receptor antagonists abolish pathobiologic effects of tobacco-derived nitrosamines on BEP2D cells. J. Cancer Res. Clin. Oncol. 132, 653–663 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Martinez-Garcia, E., Irigoyen, M., Anso, E., Martinez-Irujo, J. J. & Rouzaut, A. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation. Toxicol. Appl. Pharmacol. 228, 334–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Epperson, C. N. et al. Sex, GABA, and nicotine: the impact of smoking on cortical GABA levels across the menstrual cycle as measured with proton magnetic resonance spectroscopy. Biol. Psychiatry 57, 44–48 (2005). This study showed reduced GABA in the brain of smokers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lam, D. C. et al. Expression of nicotinic acetylcholine receptor subunit genes in non-small-cell lung cancer reveals differences between smokers and nonsmokers. Cancer Res. 67, 4638–4647 (2007). This was the first report that associated the downregulation of α4nAChRs with lung adenocarcinoma.

    Article  CAS  PubMed  Google Scholar 

  89. Shin, V. Y. et al. Nicotine promotes gastric tumor growth and neovascularization by activating extracellular signal-regulated kinase and cyclooxygenase-2. Carcinogenesis 25, 2487–2495 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Wong, H. P. et al. Nicotine promotes colon tumor growth and angiogenesis through β-adrenergic activatriton. Toxicol. Sci. 97, 279–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Askari, M. D., Tsao, M. S. & Schuller, H. M. The tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone stimulates proliferation of immortalized human pancreatic duct epithelia through β-adrenergic transactivation of EGF receptors. J. Cancer Res. Clin. Oncol. 131, 639–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Arredondo, J., Chernyavsky, A. I. & Grando, S. A. SLURP-1 and -2 in normal, immortalized and malignant oral keratinocytes. Life Sci. 80, 2243–2247 (2007). This study provided evidence that SLURP1 may be useful for cancer intervention by desensitizing nAChRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Arredondo, J., Chernyavsky, A. I., Jolkovsky, D. L., Pinkerton, K. E. & Grando, S. A. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of α7 nicotinic receptor in oral keratinocytes. FASEB J. 20, 2093–2101 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Arredondo, J., Chernyavsky, A. I., Jolkovsky, D. L., Pinkerton, K. E. & Grando, S. A. Receptor-mediated tobacco toxicity: alterations of the NF-κB expression and activity downstream of α7 nicotinic receptor in oral keratinocytes. Life Sci. 80, 2191–2194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Arredondo, J., Chernyavsky, A. I., Jolkovsky, D. L., Webber, R. J. & Grando, S. A. SLURP-2: A novel cholinergic signaling peptide in human mucocutaneous epithelium. J. Cell Physiol. 208, 238–245 (2006).

    Article  CAS  Google Scholar 

  96. Arredondo, J., Chernyavsky, A. I., Jolkovsky, D. L., Pinkerton, K. E. & Grando, S. A. Receptor-mediated tobacco toxicity: acceleration of sequential expression of alpha5 and alpha7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke. FASEB J. 22, 1356–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Liu, X. et al. Epinephrine stimulates esophageal squamous-cell carcinoma cell proliferation via beta-adrenoceptor-dependent transactivation of extracellular signal-regulated kinase/cyclooxygenase-2 pathway. J. Cell Biochem. 105, 53–60 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, X. et al. Epidermal growth factor-induced esophageal cancer cell proliferation requires transactivation of β-adrenoceptors. J. Pharmacol. Exp. Ther. 326, 69–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Trombino, S. et al. α7-Nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway. Cancer Res. 64, 135–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, R., Ho, Y., Guo, H. & Wang, Y. Rapid activation of Stat3 and ERK1/2 by nicotine modulates cell proliferarion in human bladder cancer cells. Toxicol. Sci. 104, 283–293 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Cheodotal, A., Kerjan, G. & Moreau-Fauvarque, C. The brain within the tumor: new roled for axon guidance molecules in cancers. Cell Death Differ. 12, 1044–1056 (2005). This study provided first evidence suggesting that the growth of cancer is supported by the formation of new nerve endings (neurogenesis).

    Article  CAS  Google Scholar 

  102. Palm, D. & Entschladen, F. in Neuronal activity in tumor tissue (eds Zänker, K. S. & Entschladen, F.) 91–98 (Karger, Basel, 2007).

    Book  Google Scholar 

  103. Entschladen, F., Palm, D., Niggemann, B. & Zaenker, K. S. The cancer's nervous tooth: Considering the neuronal crosstalk within tumors. Semin. Cancer Biol. 18, 171–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Zafra, F., Lindholm, D., Castren, E., Hartikka, J. & Thoenen, H. Regulation of brain-derived neurotrophic factor and nerve growth factor mRNA in primary cultures of hippocampal neurons and astrocytes. J. Neurosci. 12, 4793–4799 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. French, S. J., Humby, T., Horner, C. H., Sofroniew, M. V. & Rattray, M. Hippocampal neurotrophin and trk receptor mRNA levels are altered by local administration of nicotine, carbachol and pilocarpine. Brain Res. Mol. Brain Res. 67, 124–136 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Girault, J. A. & Greengard, P. The neurobiology of dopamine signaling. Arch. Neurol. 61, 641–644 (2004).

    Article  PubMed  Google Scholar 

  107. Cakir, Y., Plummer, H. K., 3rd, Tithof, P. K. & Schuller, H. M. Beta-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int. J. Oncol. 21, 153–157 (2002).

    CAS  PubMed  Google Scholar 

  108. Sood, A. K. et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin. Cancer Res. 12, 369–375 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang, E. V. et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 66, 10357–10364 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Thorgeirsson, T. E. et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 452, 638–642 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shiraishi, K. et al. Contribution of nicotine acetylcholine receptor polymorphisms to lung cancer risk in a smoking-independent manner in the Japanese. Carcinogenesis 12 Nov 2008 (doi:10.1093/carcin/bgn257).

  112. Schuller, H. M. Nitrosamines as nitotinic receptor ligands. Life Sci. 80, 2274–2280 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Abnet, C. C. Carcinogenic food contaminants. Cancer Invest. 25, 189–196 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jakszyn, P. & Gonzales, C. A. Nitrosamine and related food intake and gastric and esophafeal cancer risk: a systematic review of the epidemiological evidence. World J. Gastroenterol. 12, 4296–4303 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sato, M. et al. Multiple oncogenic changes (K-RasV12, p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells. Cancer Res. 66, 2116–2128 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Leonard, S. et al. Association of promoter variants in the α7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch. Gen. Psychiatry 59, 1085–1096 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Al-Wadei, H. A. N., Takahashi, T. & Schuller, H. M. Theophylline stimulates cAMP-mediated signaling associated with growth regulation in human cells from pulmonary adenocarcinoma and small airway epithelia. Int. J. Oncol. 27, 27–155 (2005).

    Google Scholar 

  118. Al-Wadei, H. A., Takahashi, T. & Schuller, H. M. Caffeine stimulates the proliferation of human lung adenocarcinoma cells and small airway epithelial cells via activation of, PKA, CREB and ERK1/2. Oncol. Rep. 15, 431–435 (2006).

    CAS  PubMed  Google Scholar 

  119. Al-Wadei, H. A., Takahashi, T. & Schuller, H. M. Growth stimulation of human pulmonary adenocarcinoma cells and small airway epithelial cells by beta-carotene via activation of cAMP, PKA, CREB and ERK1/2. Int. J. Cancer 118, 1370–1380 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Aggarwal, S. et al. Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol. Biol. Cell 17, 566–575 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Al-Wadei, H. A. & Schuller, H. M. Cyclic adenosine monophosphate-dependent cell type-specific modulation of mitogenic signaling by retinoids in normal and neoplastic lung cells. Cancer Detect Prev. 30, 403–411 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pereira, G. E. et al. Microclimate influence on mineral and metabolic profiles of grape berries. J. Agric. Food Chem. 54, 6765–6775 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Bianchini, F. & Vainio, H. Wine and resveratrol: mechanisms of cancer prevention? Eur. J. Cancer Prev. 12, 417–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Schoonen, W. M., Salinas, C. A., Kiemeney, L. A. & Stanford, J. L. Alcohol consumption and risk of prostate cancer in middle-aged men. J. Urol. 173, 1170 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Glossary

Nicotine-derived nitrosamines

Cancer-causing agents formed from nicotine by nitrosation.

Ion channel

A channel in the plasma membrane through which ions flow from the outside to the interior of the cell.

Desensitization

An nAChR is desensitized by a reversible conformational change in the receptor that is characterized by a significant decrease in responsiveness to an agonist.

Phyto-oestrogens

A naturally occurring compound derived from plants or plant products that acts like oestrogen in the body.

β-Adrenergic receptor

G-protein-coupled receptors in effector tissues, most of which are innervated by adrenergic post-ganglionic fibres of the sympathetic nervous system and are activated by noradrenaline, adrenaline and various adrenergic drugs.

Calpains

Proteolytic enzymes that are regulated by Ca2+.

Chronic obstructive pulmonary disease

(COPD). A chronic inflammation of the lungs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuller, H. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors?. Nat Rev Cancer 9, 195–205 (2009). https://doi.org/10.1038/nrc2590

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing