Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Radiation-induced bystander signalling in cancer therapy

Key Points

  • Radiation-induced bystander responses are defined as the response of cells to their neighbours being irradiated. These have been observed in a range of cell types and measured for a range of end points.

  • Long-range, abscopal (out-of-field) effects have also been observed after the clinical use of radiation.

  • The main mechanisms involve direct cell–cell communication by gap junction intercellular communication and release of factors into the medium.

  • Bystander signalling has a key role in increasing the effectiveness of gene therapy approaches in which common mechanisms involving cytokine signalling and the production of reactive oxygen and nitrogen species have been used to maximize effectiveness.

  • With the development of suitable strategies, radiation-induced bystander responses may be used to enhance tumour cell kill or protect normal tissues from the damaging consequences of radiation exposure.

Abstract

Our understanding of how radiation kills normal and tumour cells has been based on an intimate knowledge of the direct induction of DNA damage and its cellular consequences. What has become clear is that, as well as responses to direct DNA damage, cell–cell signalling — known as the bystander effect — mediated through gap junctions and inflammatory responses may have an important role in the response of cells and tissues to radiation exposure and also chemotherapy agents. This Review outlines the key aspects of radiation-induced intercellular signalling and assesses its relevance for existing and future radiation-based therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct DNA damage radiation model.
Figure 2: Key aspects of radiation-induced bystander responses.
Figure 3: Key pathways affecting bystander signals.
Figure 4: Defining tumours for external beam targeting.
Figure 5: Treating cancer with radiation.

Similar content being viewed by others

References

  1. Hall, E. J. & Giaccia, A. J. Radiobiology for the Radiologist (Lippincott William & Wilkins, Philadelphia, 2006).

    Google Scholar 

  2. Harper, J. W. & Elledge, S. J. The DNA damage response: ten years after. Mol. Cell 28, 739–745 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Jackson, S. P. Detecting, signalling and repairing double-strand breaks. Biochem. Soc. Trans. 29, 655–661 (2001).

    CAS  PubMed  Google Scholar 

  4. Morgan, W. F. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro. Radiat. Res. 159, 567–580 (2003). Good starting point for a review of cellular data on radiation-induced bystander responses.

    CAS  PubMed  Google Scholar 

  5. Morgan, W. F. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat. Res. 159, 581–596 (2003).

    CAS  PubMed  Google Scholar 

  6. Hamada, N., Matsumoto, H., Hara, T. & Kobayashi, Y. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects. J. Radiat. Res. (Tokyo) 48, 87–95 (2007).

    CAS  Google Scholar 

  7. Mothersill, C. & Seymour, C. B. Radiation-induced bystander effects — implications for cancer. Nature Rev. Cancer 4, 158–164 (2004).

    CAS  Google Scholar 

  8. Bagdonas, S., Dahle, J., Kaalhus, O. & Moan, J. Cooperative inactivation of cells in microcolonies treated with UVA radiation. Radiat. Res. 152, 174–179 (1999).

    CAS  PubMed  Google Scholar 

  9. Dahle, J. et al. The bystander effect in photodynamic inactivation of cells. Biochim. Biophys. Acta 1475, 273–280 (2000).

    CAS  PubMed  Google Scholar 

  10. DeVeaux, L. C., Durtschi, L. S., Case, J. G. & Wells, D. P. Bystander effects in unicellular organisms. Mutat. Res. 597, 78–86 (2006).

    CAS  PubMed  Google Scholar 

  11. Alexandre, J., Hu, Y., Lu, W., Pelicano, H. & Huang, P. Novel action of paclitaxel against cancer cells: bystander effect mediated by reactive oxygen species. Cancer Res. 67, 3512–3517 (2007).

    CAS  PubMed  Google Scholar 

  12. Ramesh, R., Marrogi, A. J., Munshi, A., Abboud, C. N. & Freeman, S. M. In vivo analysis of the 'bystander effect': a cytokine cascade. Exp. Hematol. 24, 829–838 (1996).

    CAS  PubMed  Google Scholar 

  13. Mesnil, M., Piccoli, C., Tiraby, G., Willecke, K. & Yamasaki, H. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl Acad. Sci. USA 93, 1831–1835 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McMasters, R. A. et al. Lack of bystander killing in herpes simplex virus thymidine kinase-transduced colon cell lines due to deficient connexin43 gap junction formation. Hum. Gene Ther. 9, 2253–2261 (1998).

    CAS  PubMed  Google Scholar 

  15. Denning, C. & Pitts, J. D. Bystander effects of different enzyme–prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimes. Hum. Gene Ther. 8, 1825–1835 (1997).

    CAS  PubMed  Google Scholar 

  16. Kaminski, J. M. et al. The controversial abscopal effect. Cancer Treat. Rev. 31, 159–172 (2005). A good review of clinical data supporting long-range or abscopal radiation-induced bystander responses.

    CAS  PubMed  Google Scholar 

  17. Nagasawa, H. & Little, J. B. Induction of sister chromatid exchanges by extremely low doses of α-particles. Cancer Res. 52, 6394–6396 (1992). A defining paper of radiation-induced bystander responses in cellular models.

    CAS  PubMed  Google Scholar 

  18. Belyakov, O. V., Malcolmson, A. M., Folkard, M., Prise, K. M. & Michael, B. D. Direct evidence for a bystander effect of ionizing radiation in primary human fibroblasts. Br. J. Cancer 84, 674–679 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Schettino, G., Folkard, M., Michael, B. D. & Prise, K. M. Low-dose binary behavior of bystander cell killing after microbeam irradiation of a single cell with focused CK X rays. Radiat. Res. 163, 332–336 (2005).

    CAS  PubMed  Google Scholar 

  20. Shareef, M. M. et al. Role of tumor necrosis factor-α and TRAIL in high-dose radiation-induced bystander signaling in lung adenocarcinoma. Cancer Res. 67, 11811–11820 (2007).

    CAS  PubMed  Google Scholar 

  21. Schettino, G. et al. Low-dose studies of bystander cell killing with targeted soft X rays. Radiat. Res. 160, 505–511 (2003).

    CAS  PubMed  Google Scholar 

  22. Kadhim, M. A. et al. Bystander-mediated genomic instability in human lymphocytes after single α-particle irradiation. Radiat. Res. 161, 110–111 (2004).

    Google Scholar 

  23. Prise, K. M., Belyakov, O. V., Folkard, M. & Michael, B. D. Studies of bystander effects in human fibroblasts using a charged particle microbeam. Int. J. Radiat. Biol. 74, 793–798 (1998). The first direct evidence of radiation-induced bystander effect using a microbeam to irradiate individual cells.

    CAS  PubMed  Google Scholar 

  24. Gaugler, M. H. et al. Intestinal epithelial cell dysfunction is mediated by an endothelial-specific radiation-induced bystander effect. Radiat. Res. 167, 185–193 (2007).

    CAS  PubMed  Google Scholar 

  25. Shao, C., Furusawa, Y., Aoki, M., Matsumoto, H. & Ando, K. Nitric oxide-mediated bystander effect induced by heavy-ions in human salivary gland tumour cells. Int. J. Radiat. Biol. 78, 837–844 (2002).

    CAS  PubMed  Google Scholar 

  26. Coates, P. J., Lorimore, S. A. & Wright, E. G. Damaging and protective cell signalling in the untargeted effects of ionizing radiation. Mutat. Res. 568, 5–20 (2004).

    CAS  PubMed  Google Scholar 

  27. Yang, H., Asaad, N. & Held, K. D. Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene 24, 2096–2103 (2005).

    CAS  PubMed  Google Scholar 

  28. Huo, L., Nagasawa, H. & Little, J. B. HPRT mutants induced in bystander cells by very low fluences of alpha particles result primarily from point mutations. Radiat. Res. 156, 521–525 (2001).

    CAS  PubMed  Google Scholar 

  29. Sawant, S. G., Randers-Pehrson, G., Geard, C. R., Brenner, D. J. & Hall, E. J. The bystander effect in radiation oncogenesis: I. Transformation in C3H 10T1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat. Res. 155, 397–401 (2001).

    CAS  PubMed  Google Scholar 

  30. Mothersill, C. & Seymour, C. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of irradiated cells. Int. J. Radiat. Biol. 71, 421–427 (1997).

    CAS  PubMed  Google Scholar 

  31. Belyakov, O. V., Folkard, M., Mothersill, C., Prise, K. M. & Michael, B. D. Bystander-induced differentiation: A major response to targeted irradiation of a urothelial explant model. Mutat. Res. 597, 43–49 (2006).

    CAS  PubMed  Google Scholar 

  32. Lyng, F. M., Seymour, C. B. & Mothersill, C. Initiation of apoptosis in cells exposed to medium from the progeny of irradiated cells: a possible mechanism for bystander-induced genomic instability? Radiat. Res. 157, 365–370 (2002).

    CAS  PubMed  Google Scholar 

  33. Iyer, R. & Lehnert, B. E. Low dose, low-LET ionizing radiation-induced radioadaptation and associated early responses in unirradiated cells. Mutat. Res. 503, 1–9 (2002).

    CAS  PubMed  Google Scholar 

  34. Herve, J. C., Bourmeyster, N., Sarrouilhe, D. & Duffy, H. S. Gap junctional complexes: from partners to functions. Prog. Biophys. Mol. Biol. 94, 29–65 (2007).

    CAS  PubMed  Google Scholar 

  35. Oyamada, M., Oyamada, Y. & Takamatsu, T. Regulation of connexin expression. Biochim. Biophys. Acta 1719, 6–23 (2005).

    CAS  PubMed  Google Scholar 

  36. Azzam, E. I., de Toledo, S. M., Gooding, T. & Little, J. B. Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of α particles. Radiat. Res. 150, 497–504 (1998).

    CAS  PubMed  Google Scholar 

  37. Azzam, E. I., de Toledo, S. M. & Little, J. B. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from α-particle irradiated to nonirradiated cells. Proc. Natl Acad. Sci. USA 98, 473–478 (2001). Direct evidence for a role of GJIC in radiation-induced bystander signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Trosko, J. E. & Ruch, R. J. Cell–cell communication in carcinogenesis. Front. Biosci., D208–D236 (1998).

  39. Emerit, I. Reactive oxygen species, chromosome mutation, and cancer: possible role of clastogenic factors in carcinogenesis. Free Radic. Biol. Med. 16, 99–109 (1994).

    CAS  PubMed  Google Scholar 

  40. Emerit, I., Khan, S. H. & Esterbauer, H. Hydroxynonenal, a component of clastogenic factors? Free Radic. Biol. Med. 10, 371–377 (1991).

    CAS  PubMed  Google Scholar 

  41. Auclair, C., Gouyette, A., Levy, A. & Emerit, I. Clastogenic inosine nucleotide as components of the chromosome breakage factor in scleroderma patients. Arch. Biochem. Biophys. 278, 238–244 (1990).

    CAS  PubMed  Google Scholar 

  42. Emerit, I. et al. Superoxide-mediated clastogenesis and anticlastogenic effects of exogenous superoxide dismutase. Proc. Natl Acad. Sci. USA 93, 12799–12804 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Murphy, J. B., Liu, J. H. & Sturm, E. Studies on X-ray effects: IX. The action of serum from X-rayed animals on lymphoid cells in vitro. J. Exp. Med. 35, 373–384 (1922).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hollowell, J. G. & Littlefield, G. Chromosome damage induced by plasma of X-rayed patients: an indirect effect of X-ray. Proc. Soc. Exp. Biol. Med. 129, 240–244 (1968).

    PubMed  Google Scholar 

  45. Emerit, I. et al. Transferable clastogenic activity in plasma from persons exposed as salvage personnel of the Chernobyl reactor. J. Cancer Res. Clin. Oncol. 120, 558–561 (1994).

    CAS  PubMed  Google Scholar 

  46. Chou, C. H. et al. Radiation-induced hepatitis B virus reactivation in liver mediated by the bystander effect from irradiated endothelial cells. Clin. Cancer Res. 13, 851–857 (2007).

    CAS  PubMed  Google Scholar 

  47. Narayanan, P. K., LaRue, K. E., Goodwin, E. H. & Lehnert, B. E. α particles induce the production of interleukin-8 by human cells. Radiat. Res. 152, 57–63 (1999).

    CAS  PubMed  Google Scholar 

  48. Iyer, R. & Lehnert, B. E. Factors underlying the cell growth-related bystander responses to alpha particles. Cancer Res. 60, 1290–1298 (2000).

    CAS  PubMed  Google Scholar 

  49. Zhou, H. et al. Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway. Proc. Natl Acad. Sci. USA 102, 14641–14646 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lehnert, B. E. & Goodwin, E. H. Extracellular factor(s) following exposure to α-particles can cause sister chromatid exchanges in normal human cells. Cancer Res. 57, 2164–2171 (1997).

    CAS  PubMed  Google Scholar 

  51. Shao, C., Stewart, V., Folkard, M., Michael, B. D. & Prise, K. M. Nitric oxide-mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res. 63, 8437–8442 (2003).

    CAS  PubMed  Google Scholar 

  52. Coates, P. J., Robinson, J. I., Lorimore, S. A. & Wright, E. G. Ongoing activation of p53 pathway responses is a long-term consequence of radiation exposure in vivo and associates with altered macrophage activities. J. Pathol. 214, 610–616 (2008).

    CAS  PubMed  Google Scholar 

  53. Shao, C., Folkard, M., Michael, B. D. & Prise, K. M. Targeted cytoplasmic irradiation induces bystander responses. Proc. Natl Acad. Sci. USA 101, 13495–13500 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, L. J. et al. Targeted cytoplasmic irradiation with α particles induces mutations in mammalian cells. Proc. Natl Acad. Sci. USA 96, 4959–4964 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nugent, S. M. et al. Increased mitochondrial mass in cells with functionally compromised mitochondria after exposure to both direct γ radiation and bystander factors. Radiat. Res. 168, 134–142 (2007).

    CAS  PubMed  Google Scholar 

  56. Tartier, L., Gilchrist, S., Burdak-Rothkamm, S., Folkard, M. & Prise, K. M. Cytoplasmic irradiation induces mitochondrial-dependent 53BP1 protein relocalization in irradiated and bystander cells. Cancer Res. 67, 5872–9 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Mothersill, C. Development of primary tissue culture techniques for use in radiobiology. Radiat. Res. 150, S121–125 (1998).

    CAS  PubMed  Google Scholar 

  58. Mothersill, C. et al. Individual variation in the production of a 'bystander signal' following irradiation of primary cultures of normal human urothelium. Carcinogenesis 22, 1465–1471 (2001).

    CAS  PubMed  Google Scholar 

  59. Mothersill, C. et al. Genetic factors influencing bystander signaling in murine bladder epithelium after low-dose irradiation in vivo. Radiat. Res. 163, 391–399 (2005).

    CAS  PubMed  Google Scholar 

  60. Belyakov, O. V., Folkard, M., Mothersill, C., Prise, K. M. & Michael, B. D. A proliferation-dependent bystander effect in primary porcine and human urothelial explants in response to targeted irradiation. Br. J. Cancer 88, 767–774 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Belyakov, O. V. et al. Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away. Proc. Natl Acad. Sci. USA 102, 14203–14208 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sedelnikova, O. A. et al. DNA double-strand breaks form in bystander cells after microbeam irradiation of three-dimensional human tissue models. Cancer Res. 67, 4295–4302 (2007).

    CAS  PubMed  Google Scholar 

  63. Travis, E. L. Organizational response of normal tissues to irradiation. Semin. Radiat. Oncol. 11, 184–196 (2001).

    CAS  PubMed  Google Scholar 

  64. Khan, M. A., Hill, R. P. & Van Dyk, J. Partial volume rat lung irradiation: an evaluation of early DNA damage. Int. J. Radiat. Oncol. Biol. Phys. 40, 467–476 (1998).

    CAS  PubMed  Google Scholar 

  65. Khan, M. A., Van Dyk, J., Yeung, I. W. & Hill, R. P. Partial volume rat lung irradiation; assessment of early DNA damage in different lung regions and effect of radical scavengers. Radiother. Oncol. 66, 95–102 (2003).

    PubMed  Google Scholar 

  66. Calveley, V. L., Khan, M. A., Yeung, I. W., Vandyk, J. & Hill, R. P. Partial volume rat lung irradiation: temporal fluctuations of in-field and out-of-field DNA damage and inflammatory cytokines following irradiation. Int. J. Radiat. Biol. 81, 887–899 (2005).

    CAS  PubMed  Google Scholar 

  67. De Ridder, M. et al. IFN-γ+ CD8+ T lymphocytes: possible link between immune and radiation responses in tumor-relevant hypoxia. Int. J. Radiat. Oncol. Biol. Phys. 71, 647–651 (2008).

    CAS  PubMed  Google Scholar 

  68. Moiseenko, V. V., Battista, J. J., Hill, R. P., Travis, E. L. & Van Dyk, J. In-field and out-of-field effects in partial volume lung irradiation in rodents: possible correlation between early DNA damage and functional endpoints. Int. J. Radiat. Oncol. Biol. Phys. 48, 1539–1548 (2000).

    CAS  PubMed  Google Scholar 

  69. Morgan, G. W. & Breit, S. N. Radiation and the lung: a reevaluation of the mechanisms mediating pulmonary injury. Int. J. Radiat. Oncol. Biol. Phys. 31, 361–369 (1995).

    CAS  PubMed  Google Scholar 

  70. Coates, P. J., Rundle, J. K., Lorimore, S. A. & Wright, E. G. Indirect macrophage responses to ionizing radiation: implications for genotype-dependent bystander signaling. Cancer Res. 68, 450–456 (2008). A paper highlighting the important role of macrophage responses in radiation-induced bystander signalling.

    CAS  PubMed  Google Scholar 

  71. Koturbash, I. et al. Irradiation induces DNA damage and modulates epigenetic effectors in distant bystander tissue in vivo. Oncogene 25, 4267–4275 (2006).

    CAS  PubMed  Google Scholar 

  72. Koturbash, I. et al. Role of epigenetic effectors in maintenance of the long-term persistent bystander effect in spleen in vivo. Carcinogenesis 28, 1831–1838 (2007).

    CAS  PubMed  Google Scholar 

  73. Koturbash, I. et al. Radiation-induced bystander effects in vivo are sex specific. Mutat. Res. 642, 28–36 (2008).

    CAS  PubMed  Google Scholar 

  74. Koturbash, I. et al. Sex-specific microRNAome deregulation in the shielded bystander spleen of cranially exposed mice. Cell Cycle 7, 1658–1667 (2008).

    CAS  PubMed  Google Scholar 

  75. Mancuso, M. et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc. Natl Acad. Sci. USA 105, 12445–12450 (2008). Studies in vivo showing evidence of long-range bystander responses leading to carcinogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Camphausen, K. et al. Radiation abscopal antitumor effect is mediated through p53. Cancer Res. 63, 1990–1993 (2003).

    CAS  PubMed  Google Scholar 

  77. Brooks, A. L., Retherford, J. C. & McClellan, R. O. Effect of 239PuO2 particle number and size on the frequency and distribution of chromosome aberrations in the liver of the Chinese hamster. Radiat. Res. 59, 693–709 (1974).

    CAS  PubMed  Google Scholar 

  78. Brooks, A. L. et al. The induction of liver tumors by 239Pu citrate or 239PuO2 particles in the Chinese hamster. Radiat. Res. 96, 135–151 (1983).

    CAS  PubMed  Google Scholar 

  79. Barcellos-Hoff, M. H. & Brooks, A. L. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects, and genomic instability. Radiat. Res. 156, 618–627 (2001).

    CAS  PubMed  Google Scholar 

  80. Wang, Z. et al. Adenoviral gene transfer of the human inducible nitric oxide synthase gene enhances the radiation response of human colorectal cancer associated with alterations in tumor vascularity. Cancer Res. 64, 1386–1395 (2004).

    CAS  PubMed  Google Scholar 

  81. Worthington, J. et al. Use of the radiation-inducible WAF1 promoter to drive iNOS gene therapy as a novel anti-cancer treatment. J. Gene Med. 6, 673–680 (2004).

    CAS  PubMed  Google Scholar 

  82. Boyd, M. et al. An efficient targeted radiotherapy/gene therapy strategy utilising human telomerase promoters and radioastatine and harnessing radiation-mediated bystander effects. J. Gene Med. 6, 937–947 (2004).

    CAS  PubMed  Google Scholar 

  83. Burdak-Rothkamm, S., Short, S. C., Folkard, M., Rothkamm, K. & Prise, K. M. ATR-dependent radiation-induced γH2AX foci in bystander primary human astrocytes and glioma cells. Oncogene 26, 993–1002 (2007).

    CAS  PubMed  Google Scholar 

  84. Little, J. B., Nagasawa, H., Li, G. C. & Chen, D. J. Involvement of the nonhomologous end joining DNA repair pathway in the bystander effect for chromosomal aberrations. Radiat. Res. 159, 262–267 (2003).

    CAS  PubMed  Google Scholar 

  85. Burdak-Rothkamm, S., Rothkamm, K. & Prise, K. M. ATM acts downstream of ATR in the DNA damage response signalling of bystander cells. Cancer Res. 68, 7059–7065 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mothersill, C. & Seymour, C. B. Bystander and delayed effects after fractionated radiation exposure. Radiat. Res. 158, 626–633 (2002).

    CAS  PubMed  Google Scholar 

  87. Gow, M. D., Seymour, C. B., Byun, S. H. & Mothersill, C. E. Effect of dose rate on the radiation-induced bystander response. Phys. Med. Biol. 53, 119–132 (2008).

    CAS  PubMed  Google Scholar 

  88. Fenwick, J. D., Tome, W. A., Soisson, E. T., Mehta, M. P. & Rock Mackie, T. Tomotherapy and other innovative IMRT delivery systems. Semin. Radiat. Oncol. 16, 199–208 (2006).

    PubMed  Google Scholar 

  89. Milano, M. T., Constine, L. S. & Okunieff, P. Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin. Radiat. Oncol. 17, 131–140 (2007).

    PubMed  Google Scholar 

  90. Veldeman, L. et al. Evidence behind use of intensity-modulated radiotherapy: a systematic review of comparative clinical studies. Lancet Oncol. 9, 367–375 (2008).

    PubMed  Google Scholar 

  91. Ling, C. C. et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 47, 551–560 (2000).

    CAS  PubMed  Google Scholar 

  92. Verellen, D. et al. Innovations in image-guided radiotherapy. Nature Rev. Cancer 7, 949–960 (2007).

    CAS  Google Scholar 

  93. Suchowerska, N., Ebert, M. A., Zhang, M. & Jackson, M. In vitro response of tumour cells to non-uniform irradiation. Phys. Med. Biol. 50, 3041–3051 (2005).

    CAS  PubMed  Google Scholar 

  94. Claridge Mackonis, E. et al. Cellular response to modulated radiation fields. Phys. Med. Biol. 52, 5469–5482 (2007). A paper discussing the role of bystander responses to modulated beams used in IMRT.

    PubMed  Google Scholar 

  95. Palm, A. & Johansson, K. A. A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors. Acta Oncol. 46, 462–473 (2007).

    PubMed  Google Scholar 

  96. Dilmanian, F. A. et al. Interlaced x-ray microplanar beams: a radiosurgery approach with clinical potential. Proc. Natl Acad. Sci. USA 103, 9709–9714 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dilmanian, F. A. et al. Tissue-sparing effect of x-ray microplanar beams particularly in the CNS: is a bystander effect involved? Exp. Hematol. 35, 69–77 (2007).

    CAS  PubMed  Google Scholar 

  98. Hall, E. J. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 65, 1–7 (2006).

    PubMed  Google Scholar 

  99. Bishayee, A., Hill, H. Z., Stein, D., Rao, D. V. & Howell, R. W. Free radical-initiated and gap junction-mediated bystander effect due to nonuniform distribution of incorporated radioactivity in a three-dimensional tissue culture model. Radiat. Res. 155, 1–10 (2000).

    Google Scholar 

  100. Xue, L. Y., Butler, N. J., Makrigiorgos, G. M., Adelstein, S. J. & Kassis, A. I. Bystander effect produced by radiolabeled tumor cells in vivo. Proc. Natl Acad. Sci. USA 99, 13765–13770 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Boyd, M. et al. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides. J. Nucl. Med. 47, 1007–1015 (2006). Comparison of effectiveness of different radionuclides at inducing bystander responses in comparison with external beam therapy.

    CAS  PubMed  Google Scholar 

  102. McCready, V. R. & O'Sullivan, J. M. Future directions for unsealed source radionuclide therapy for bone metastases. Eur. J. Nucl. Med. Mol. Imaging 29, 1271–1275 (2002).

    CAS  PubMed  Google Scholar 

  103. Dearling, J. L. & Pedley, R. B. Technological advances in radioimmunotherapy. Clin. Oncol. (R. Coll. Radiol.) 19, 457–469 (2007).

    CAS  Google Scholar 

  104. DeNardo, S. J. & Denardo, G. L. Targeted radionuclide therapy for solid tumors: an overview. Int. J. Radiat. Oncol. Biol. Phys. 66, S89–S95 (2006).

    CAS  PubMed  Google Scholar 

  105. Boyd, M., Cunningham, S. H., Brown, M. M., Mairs, R. J. & Wheldon, T. E. Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Gene Ther. 6, 1147–52 (1999).

    CAS  PubMed  Google Scholar 

  106. Boswell, C. A. & Brechbiel, M. W. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl. Med. Biol. 34, 757–778 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Brenner, D. J. et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. Natl Acad. Sci. USA 100, 13761–13766 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the extensive literature they were not able to cite owing to space limits. They are grateful to Cancer Research UK grant number C1513/A7047, the European Union NOTE project (FI6R 036465) and the US National Institutes of Health (5P01CA095227-02) for funding their work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Prise.

Related links

Related links

FURTHER INFORMATION

Kevin M. Prise's homepage

Glossary

Photodynamic therapy

A therapeutic approach in which photosensitive chemicals are taken up into tumours and then activated by laser or other light source to produce damaging free radicals

Ganciclovir

A synthetic analogue of 2′-deoxyguanosine that becomes phosphorylated when taken up by cells and is incorporated into DNA by DNA polymerase and leads to chain termination of the replicating DNA strands.

Clastogenic factors

A species that can break chromosomes.

Sister chromatid exchanges

Exchange of chromosomal material between the chromatids of a chromosome.

Lindane

A neurotoxin that can inhibit gap-junctional intercellular communication.

Reconstruct models

In vitro models in which individual cell types can be co-cultured and used to form three-dimensional representations of the original tissue.

Bilateral pneumonitis

Inflammation of lung tissue in both lungs.

Radionuclide therapy

The use of radioisotopes tagged to molecules or proteins for treating cancer

Dose rate

The amount of dose delivered per unit time.

Intensity-modulated radiation therapy

IMRT. An advanced mode of radiotherapy that uses multiple modulated beams in which the intensity is varied to allow maximal conformation of the beam delivery to the tumour in three dimensions.

Linear accelerator

A device for the acceleration of subatomic particles that can produce electron beams for radiotherapy.

Heavy ion particle therapies

The use of accelerated beams of high-atomic-mass elements (for example, carbon) for therapy.

Microplanar X-ray microbeams

Parallel beams of X-rays only a few micrometres across that are used for localized irradiation.

Auger electron cascades

Decay of radioactive isotopes by K-shell electron capture leads to the Auger effect, resulting in the loss of several orbital electrons.

Linear no-threshold hypothesis

A model used for radiation protection that aims to describe the relationship between radiation dose and risk, a linear relationship that has no dose threshold for increased risk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prise, K., O'Sullivan, J. Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9, 351–360 (2009). https://doi.org/10.1038/nrc2603

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2603

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing