Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

MicroRNAs — the micro steering wheel of tumour metastases

Abstract

Recently, microRNAs (miRNAs) have been discovered to have a role in metastasis. Here we describe how miRNAs are involved in advanced stages of tumour progression, stressing their roles as metastasis activators or suppressors, and discuss their possible use in the clinic as predictive markers and as therapeutic strategies for patients with metastases. Furthermore, we develop the concept that the same miRNAs could be involved both in the cancer stem cell phenotype and in the ability of specific cancer cells to produce metastases, thus representing a mechanistic link between the initial and the final steps of tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: microRNA (miRNA)-regulated pathways in tumour metastasis.

Similar content being viewed by others

References

  1. Eccles, S. A. & Welch, D. R. Metastasis: recent discoveries and novel treatment strategies. Lancet 369, 1742–1757 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nguyen, D. X. & Massague, J. Genetic determinants of cancer metastasis. Nature Rev. Genet. 8, 341–352 (2007).

    CAS  PubMed  Google Scholar 

  3. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6, 857–866 (2006).

    CAS  Google Scholar 

  4. Calin, G. A. & Croce, C. M. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66, 7390–7394 (2006).

    CAS  PubMed  Google Scholar 

  5. Esquela-Kerscher, A. & Slack, F. J. Oncomirs — microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006).

    CAS  Google Scholar 

  6. Hammond, S. M. MicroRNAs as tumor suppressors. Nature Genet. 39, 582–583 (2007).

    CAS  PubMed  Google Scholar 

  7. Chivukula, R. R. & Mendell, J. T. Circular reasoning: microRNAs and cell-cycle control. Trends Biochem. Sci. 33, 474–481 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    CAS  PubMed  Google Scholar 

  9. Lujambio, A. & Esteller, M. CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle 6, 1455–1459 (2007).

    CAS  PubMed  Google Scholar 

  10. Calin, G. A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999–3004 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang, T. C. et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol. Cell 26, 745–752 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang, T. C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet. 40, 43–50 (2008).

    CAS  PubMed  Google Scholar 

  13. Lodygin, D. et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7, 2591–2600 (2008).

    CAS  PubMed  Google Scholar 

  14. Wei, J. S. et al. The MYCN oncogene is a direct target of miR-34a. Oncogene 27, 5204–5213 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. He, L., He, X., Lowe, S. W. & Hannon, G. J. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nature Rev. Cancer 7, 819–822 (2007).

    CAS  Google Scholar 

  16. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V. & Mendell, J. T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–43 (2005).

    CAS  PubMed  Google Scholar 

  17. Lotterman, C. D., Kent, O. A. & Mendell, J. T. Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle 7, 2493–2499 (2008).

    CAS  PubMed  Google Scholar 

  18. Ma, L., Teruya-Feldstein, J. & Weinberg, R. A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    CAS  PubMed  Google Scholar 

  19. Kong, W. et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol. Cell. Biol. 28, 6773–6784 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lujambio, A. et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl Acad. Sci. USA 105, 13556–13561 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Iorio, M. V. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065–7070 (2005).

    CAS  PubMed  Google Scholar 

  22. Yang, J., Mani, S. A. & Weinberg, R. A. Exploring a new twist on tumor metastasis. Cancer Res. 66, 4549–4552 (2006).

    CAS  PubMed  Google Scholar 

  23. Gee, H. E. et al. MicroRNA-10b and breast cancer metastasis. Nature 455, E8–E9; author reply E9 (2008).

    CAS  PubMed  Google Scholar 

  24. Myers, C., Charboneau, A., Cheung, I., Hanks, D. & Boudreau, N. Sustained expression of homeobox D10 inhibits angiogenesis. Am. J. Pathol. 161, 2099–2109 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    CAS  PubMed  Google Scholar 

  26. Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nature Cell Biol. 10, 202–210 (2008).

    CAS  PubMed  Google Scholar 

  27. Zhu, S. et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18, 350–359 (2008).

    CAS  PubMed  Google Scholar 

  28. Volinia, S. et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl Acad. Sci. USA 103, 2257–2261 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, S., Si, M. L., Wu, H. & Mo, Y. Y. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J. Biol. Chem. 282, 14328–14336 (2007).

    CAS  PubMed  Google Scholar 

  30. Asangani, I. A. et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128–2136 (2008).

    CAS  PubMed  Google Scholar 

  31. Gabriely, G. et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol. Cell. Biol. 28, 5369–5380 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Meng, F. et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133, 647–658 (2007).

    CAS  PubMed  Google Scholar 

  33. Tavazoie, S. F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoser, M. et al. Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. J. Neurosci. 27, 5495–5505 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liao, Y. L. et al. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 27, 5578–5589 (2008).

    CAS  PubMed  Google Scholar 

  36. Orend, G. & Chiquet-Ehrismann, R. Tenascin-C induced signaling in cancer. Cancer Lett. 244, 143–163 (2006).

    CAS  PubMed  Google Scholar 

  37. Crawford, M. et al. MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines. Biochem. Biophys. Res. Commun. 373, 607–612 (2008).

    CAS  PubMed  Google Scholar 

  38. Feller, S. M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 20, 6348–6371 (2001).

    CAS  PubMed  Google Scholar 

  39. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nature Rev. Cancer (in the press).

  40. Sengupta, S. et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc. Natl Acad. Sci. USA 105, 5874–5878 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    CAS  PubMed  Google Scholar 

  42. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

    CAS  Google Scholar 

  43. Sahai, E. & Marshall, C. J. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature Cell Biol. 5, 711–719 (2003).

    CAS  PubMed  Google Scholar 

  44. Lin, S. L., Chiang, A., Chang, D. & Ying, S. Y. Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14, 417–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bhaumik, D. et al. Expression of microRNA-146 suppresses NF-κB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27, 5643–5647 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Naugler, W. E. & Karin, M. NF-κB and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev. 18, 19–26 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez, P. L., Sahay, S., Olabisi, O. O. & Whitehead, I. P. ROCK I-mediated activation of NF-κB by RhoB. Cell Signal. 19, 2361–2369 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Rev. Cancer 8, 755–768 (2008).

    CAS  Google Scholar 

  49. Hatfield, S. & Ruohola-Baker, H. microRNA and stem cell function. Cell Tissue Res. 331, 57–66 (2008).

    CAS  PubMed  Google Scholar 

  50. Calabrese, J. M., Seila, A. C., Yeo, G. W. & Sharp, P. A. RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 104, 18097–18102 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Marson, A. et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Polyak, K. & Weinberg, R. A. Epithelial and mesenchymal transitions: acquisition of malignant and stem cell traits. Nature Rev. Cancer 5 Mar 2009 (doi: 10.1038/nrc2620).

    CAS  PubMed  Google Scholar 

  53. Mani, S. A. et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer 2, 442–454 (2002).

    CAS  Google Scholar 

  55. Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004).

    CAS  PubMed  Google Scholar 

  56. Ansieau, S. et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14, 79–89 (2008).

    CAS  PubMed  Google Scholar 

  57. Dalerba, P. & Clarke, M. F. Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell 1, 241–242 (2007).

    CAS  PubMed  Google Scholar 

  58. Costinean, S. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc. Natl Acad. Sci. USA 103, 7024–7029 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    CAS  PubMed  Google Scholar 

  60. Greco, S. J. & Rameshwar, P. MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc. Natl Acad. Sci. USA 104, 15484–15489 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Budhu, A. et al. Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47, 897–907 (2008).

    CAS  PubMed  Google Scholar 

  63. Fletcher, A. M., Heaford, A. C. & Trask, D. K. Detection of metastatic head and neck squamous cell carcinoma using the relative expression of tissue-specific mir-205. Transl. Oncol. 1, 202–208 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Nass, D. et al. MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can. be used to differentiate primary from metastatic brain tumors. Brain Pathol. 8 Jul 2008 (doi:10.1111/j.1750-3639.2008.00184.x).

    CAS  PubMed  Google Scholar 

  65. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    CAS  PubMed  Google Scholar 

  66. Rosenfeld, N. et al. MicroRNAs accurately identify cancer tissue origin. Nature Biotechnol. 26, 462–469 (2008).

    CAS  Google Scholar 

  67. Tili, E. et al. miRNAs and their potential for use against cancer and other diseases. Future Oncol. 3, 521–537 (2007).

    CAS  PubMed  Google Scholar 

  68. Calin, G. A. et al. Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12, 215–229 (2007).

    CAS  PubMed  Google Scholar 

  69. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008).

    CAS  PubMed  Google Scholar 

  70. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    CAS  PubMed  Google Scholar 

  71. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    CAS  PubMed  Google Scholar 

  72. Orom, U. A., Nielsen, F. C. & Lund, A. H. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30, 460–471 (2008).

    PubMed  Google Scholar 

  73. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    CAS  PubMed  Google Scholar 

  74. Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science 315, 97–100 (2007).

    CAS  PubMed  Google Scholar 

  75. Place, R. F., Li, L. C., Pookot, D., Noonan, E. J. & Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl Acad. Sci. USA 105, 1608–1613 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gregory, P. A., Bracken, C. P., Bert, A. G. & Goodall, G. J. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7, 3112–3118 (2008).

    CAS  PubMed  Google Scholar 

  77. Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Rev. Cancer 7, 415–428 (2007).

    CAS  Google Scholar 

  78. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol. 10, 593–601 (2008).

    CAS  PubMed  Google Scholar 

  80. Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bracken, C. P. et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial–mesenchymal transition. Cancer Res. 68, 7846–7854 (2008).

    CAS  PubMed  Google Scholar 

  83. Yan, L. X. et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 2348–2360 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gleave, M. E. & Monia, B. P. Antisense therapy for cancer. Nature Rev. Cancer. 5, 468–479 (2005).

    CAS  Google Scholar 

  85. Opalinska, J. B. & Gewirtz, A. M. Nucleic-acid therapeutics: basic principles and recent applications. Nature Rev. Drug Discov. 1, 503–514 (2002).

    CAS  Google Scholar 

  86. Esau, C. C. Inhibition of microRNA with antisense oligonucleotides. Methods 44, 55–60 (2008).

    CAS  PubMed  Google Scholar 

  87. Naguibneva, I. et al. An LNA-based loss-of-function assay for micro-RNAs. Biomed. Pharmacother. 60, 633–638 (2006).

    CAS  PubMed  Google Scholar 

  88. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    PubMed  Google Scholar 

  89. Kulshreshtha, R. et al. A microRNA signature of hypoxia. Mol. Cell. Biol. 27, 1859–1867 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mertens-Talcott, S. U., Chintharlapalli, S., Li, X. & Safe, S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcriptionfactors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 67, 11001–11011 (2007).

    CAS  PubMed  Google Scholar 

  91. Pulkkinen, K., Malm, T., Turunen, M., Koistinaho, J. & Yla-Herttuala, S. Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett. 582, 2397–2401 (2008).

    CAS  PubMed  Google Scholar 

  92. Hua, Z. et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 1, e116 (2006).

    PubMed  PubMed Central  Google Scholar 

  93. le Sage, C. et al. Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J. 26, 3699–3708 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Baldassarre, G. et al. p27Kip1–stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7, 51–63 (2005).

    CAS  PubMed  Google Scholar 

  95. Fish, J. E. et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Dews, M. et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genet. 38, 1060–1065 (2006).

    CAS  PubMed  Google Scholar 

  97. Kuehbacher, A., Urbich, C., Zeiher, A. M. & Dimmeler, S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ. Res. 101, 59–68 (2007).

    CAS  PubMed  Google Scholar 

  98. Urbich, C., Kuehbacher, A. & Dimmeler, S. Role of microRNAs in vascular diseases, inflammation and angiogenesis. Cardiovasc. Res. 79, 581–588 (2008).

    CAS  PubMed  Google Scholar 

  99. Roldo, C. et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J. Clin. Oncol. 24, 4677–4684 (2006).

    CAS  PubMed  Google Scholar 

  100. Loffler, D. et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110, 1330–1333 (2007).

    PubMed  Google Scholar 

  101. Wang, S. et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271 (2008).

    PubMed  PubMed Central  Google Scholar 

  102. Harris, T. A., Yamakuchi, M., Ferlito, M., Mendell, J. T. & Lowenstein, C. J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl Acad. Sci. USA 105, 1516–1521 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Saito, Y. et al. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem. Biophys. Res. Commun. 379, 726–731 (2009).

    CAS  PubMed  Google Scholar 

  104. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hurst, D. R. et al. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res. 69, 1279–1283 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Pekarsky, Y. et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66, 11590–11593 (2006).

    CAS  PubMed  Google Scholar 

  107. Yanaihara, N. et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9, 189–198 (2006).

    CAS  PubMed  Google Scholar 

  108. Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances oncogene transformation. Science 315, 1576–1579 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.A.C. is supported as a Fellow at The University of Texas M. D. Anderson Research Trust, and as a Fellow of The University of Texas System Regents Research Scholar and by the Ladjevardian Regents Research Scholar Fund. This study was supported in part by an Institutional Research Grant, by a Cancer Center Support Grant (New Faculty Award), by a CTT/3I-TD grant and by a Breast Cancer SPORE Developmental Award to G.A.C.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

miRBase

miR-107

miR-10a

miR-10b

miR-126

miR-141

miR-146a

miR-148a

miR-155

miR-15a

miR-16-1

miR-200a

miR-200b

miR-200c

miR-205

miR-206

miR-20a

miR-20b

miR-21

miR-210

miR-221

miR-222

miR-27a

miR-27b

miR-29c

miR-335

miR-34a

miR-34b

miR-34c

miR-373

miR-429

miR-520c

miR-9-3

miR-92a

FURTHER INFORMATION

G. A. Calin's homepage

miRGen

RNA22

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicoloso, M., Spizzo, R., Shimizu, M. et al. MicroRNAs — the micro steering wheel of tumour metastases. Nat Rev Cancer 9, 293–302 (2009). https://doi.org/10.1038/nrc2619

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing