Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

When mutants gain new powers: news from the mutant p53 field

Key Points

  • The tumour suppressor p53 (encoded by TP53 in humans) functions primarily as a transcription factor, which, upon cellular stress signals, regulates a plethora of genes that promote cell cycle arrest, senescence, apoptosis, differentiation, DNA repair and other processes.

  • TP53 is somatically mutated in the majority of sporadic human cancers, and mutations in TP53 are also associated with Li–Fraumeni Syndrome, a familial cancer predisposition syndrome.

  • The majority of cancer-associated mutations in TP53 are missense mutations in its DNA-binding domain. These mutations usually lead to the formation of a full-length mutant protein (mutant p53) incapable of activating p53 target genes and suppressing tumorigenesis. Besides losing their wild-type activities, many p53 mutants also function as dominant-negative proteins that inactivate wild-type p53 expressed from the remaining wild-type allele. Moreover, some mutant p53 forms also acquire new oncogenic properties that are independent of wild-type p53, known as 'gain-of-function' properties.

  • In the past three decades ample data were collected in support of the importance of mutant p53 gain-of-function properties for tumorigenesis. These data include cell culture studies that demonstrated the capability of mutant p53 to impinge on pivotal cellular regulatory networks, mouse models that established the ability of mutant p53 to increase tumour aggressiveness and metastatic potential, as well as clinical studies that revealed associations between TP53 mutations and poor clinical outcome in a variety of malignancies.

  • This Review describes recent advances in the research field of mutant p53, with an emphasis on the transcriptional effects of mutant p53, the expression signatures associated with TP53 mutations in vitro and in vivo and the diagnostic, prognostic and predictive value of TP53 mutations in human cancer.

Abstract

Ample data indicate that mutant p53 proteins not only lose their tumour suppressive functions, but also gain new abilities that promote tumorigenesis. Moreover, recent studies have modified our view of mutant p53 proteins, portraying them not as inert mutants, but rather as regulated proteins that influence the cancer cell transcriptome and phenotype. This influence is clinically manifested as association of TP53 mutations with poor prognosis and drug resistance in a growing array of malignancies. Here, we review recent studies on mutant p53 regulation, gain-of-function mechanisms, transcriptional effects and prognostic association, with a focus on the clinical implications of these findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected oncogenic properties of mutant p53 and their underlying mechanisms.
Figure 2: Distribution of TP53 somatic mutations according to the IARC TP53 Mutation Database.
Figure 3: Association of TP53 mutations and clinical outcome in selected cancer types.

Similar content being viewed by others

References

  1. Lane, D. P. & Crawford, L. V. T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Linzer, D. I. & Levine, A. J. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17, 43–52 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. Kress, M., May, E., Cassingena, R. & May, P. Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J. Virol. 31, 472–483 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rotter, V., Witte, O. N., Coffman, R. & Baltimore, D. Abelson murine leukemia virus-induced tumors elicit antibodies against a host cell protein, P50. J. Virol. 36, 547–555 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. DeLeo, A. B. et al. Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc. Natl Acad. Sci. USA 76, 2420–2424 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rotter, V., Boss, M. A. & Baltimore, D. Increased concentration of an apparently identical cellular protein in cells transformed by either Abelson murine leukemia virus or other transforming agents. J. Virol. 38, 336–346 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Weisz, L., Oren, M. & Rotter, V. Transcription regulation by mutant p53. Oncogene 26, 2202–2211 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Bullock, A. N. & Fersht, A. R. Rescuing the function of mutant p53. Nature Rev. Cancer 1, 68–76 (2001).

    Article  CAS  Google Scholar 

  9. Oren, M. Decision making by p53: life, death and cancer. Cell Death Differ. 10, 431–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991). The first comprehensive analysis of TP53 mutations in various cancers, including identification of hotspot residues and aetiological factors that shape the distribution of TP53 mutations.

    Article  CAS  PubMed  Google Scholar 

  11. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Peller, S. & Rotter, V. TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum. Mutat. 21, 277–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Schuijer, M. & Berns, E. M. TP53 and ovarian cancer. Hum. Mutat. 21, 285–291 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Iacopetta, B. TP53 mutation in colorectal cancer. Hum. Mutat. 21, 271–276 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Blons, H. & Laurent-Puig, P. TP53 and head and neck neoplasms. Hum. Mutat. 21, 252–257 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238 (1990). This study reveals the association between germline mutations in TP53 and LFS.

    Article  CAS  PubMed  Google Scholar 

  17. Kato, S. et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl Acad. Sci. USA 100, 8424–8429 (2003). A yeast-based assay for the transactivation ability of 2,314 TP53 mutants (representing all possible non-synonymous point mutations) towards several p53 target genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Milner, J., Medcalf, E. A. & Cook, A. C. Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol. Cell Biol. 11, 12–19 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Milner, J. & Medcalf, E. A. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65, 765–774 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000).

    CAS  PubMed  Google Scholar 

  21. Wolf, D., Harris, N. & Rotter, V. Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell 38, 119–126 (1984). The earliest direct demonstration of mutant p53 gain of function: when injected into mice, virally transformed L12 cells (that do not produce p53) normally cause local tumours that later regress. Following transfection with mutant p53, these cells caused lethal tumours in mice.

    Article  CAS  PubMed  Google Scholar 

  22. Shaulsky, G., Goldfinger, N. & Rotter, V. Alterations in tumor development in vivo mediated by expression of wild type or mutant p53 proteins. Cancer Res. 51, 5232–5237 (1991).

    CAS  PubMed  Google Scholar 

  23. Dittmer, D. et al. Gain of function mutations in p53. Nature Genet. 4, 42–46 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Bergh, J., Norberg, T., Sjogren, S., Lindgren, A. & Holmberg, L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nature Med. 1, 1029–1034 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Aas, T. et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nature Med. 2, 811–814 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Blandino, G., Levine, A. J. & Oren, M. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18, 477–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Lu, C. & El-Deiry, W. S. Targeting p53 for enhanced radio- and chemo-sensitivity. Apoptosis 14, 597–606 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Chin, K. V., Ueda, K., Pastan, I. & Gottesman, M. M. Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255, 459–462 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Bush, J. A. & Li, G. Cancer chemoresistance: the relationship between p53 and multidrug transporters. Int. J. Cancer 98, 323–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Li, R. et al. Mutant p53 protein expression interferes with p53-independent apoptotic pathways. Oncogene 16, 3269–3277 (1998). References 26 and 30 demonstrate in cancer cell lines gain of function for p53 mutants in apoptosis inhibition.

    Article  CAS  PubMed  Google Scholar 

  31. Kim, E. & Deppert, W. The versatile interactions of p53 with DNA: when flexibility serves specificity. Cell Death Differ. 13, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Petitjean, A. et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum. Mutat. 28, 622–629 (2007). An overview of the data and lessons from the IARC TP53 Mutation Database.

    Article  CAS  PubMed  Google Scholar 

  33. Soussi, T. in 25 Years of p53 Research (eds P. Hainaut & K. G. Wiman) 255–292 (Springer, 2005).

    Book  Google Scholar 

  34. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Soussi, T. p53 alterations in human cancer: more questions than answers. Oncogene 26, 2145–2156 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Petitjean, A., Achatz, M. I., Borresen-Dale, A. L., Hainaut, P. & Olivier, M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Olivier, M., Hainaut, P. & Borresen, A. L. in 25 Years of p53 Research (eds P. Hainaut & K. G. Wiman) 321–338 (Springer, 2005).

    Book  Google Scholar 

  38. Shi, H., Le Calvez, F., Olivier, M. & Hainaut, P. in 25 Years of p53 Research (eds P. Hainaut & K. G. Wiman) 293–319 (Springer, 2005).

    Book  Google Scholar 

  39. Aguilar, F., Hussain, S. P. & Cerutti, P. Aflatoxin B1 induces the transversion of G-->T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc. Natl Acad. Sci. USA 90, 8586–8590 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rotter, V. p53, a transformation-related cellular-encoded protein, can be used as a biochemical marker for the detection of primary mouse tumor cells. Proc. Natl Acad. Sci. USA 80, 2613–2617 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iggo, R., Gatter, K., Bartek, J., Lane, D. & Harris, A. L. Increased expression of mutant forms of p53 oncogene in primary lung cancer. Lancet 335, 675–679 (1990).

    Article  CAS  PubMed  Google Scholar 

  42. Bartek, J. et al. Aberrant expression of the p53 oncoprotein is a common feature of a wide spectrum of human malignancies. Oncogene 6, 1699–1703 (1991). A large scale IHC analysis of human tumour samples demonstrating tumour-specific accumulation of mutant p53.

    CAS  PubMed  Google Scholar 

  43. Soussi, T. & Beroud, C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nature Rev. Cancer 1, 233–240 (2001).

    Article  CAS  Google Scholar 

  44. Reich, N. C. & Levine, A. J. Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature 308, 199–201 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. Barak, Y., Juven, T., Haffner, R. & Oren, M. Mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997). This study describes the negative-feedback loop between p53 and MDM2.

    Article  CAS  PubMed  Google Scholar 

  47. Midgley, C. A. & Lane, D. P. p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15, 1179–1189 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Lukashchuk, N. & Vousden, K. H. Ubiquitination and degradation of mutant p53. Mol. Cell Biol. 27, 8284–8295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muller, P., Hrstka, R., Coomber, D., Lane, D. P. & Vojtesek, B. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27, 3371–3383 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Song, H., Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nature Cell Biol. 9, 573–580 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Terzian, T. et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev. 22, 1337–1344 (2008). References 50–53 describe knock-in mouse models for different hotspot p53 mutants and their associated gain-of function properties in vivo .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Article  CAS  Google Scholar 

  56. Bossi, G. et al. Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 25, 304–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Bossi, G. et al. Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle 7, 1870–1879 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Trotman, L. C. & Pandolfi, P. P. PTEN and p53: who will get the upper hand? Cancer Cell 3, 97–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Li, Y. et al. PTEN has tumor-promoting properties in the setting of gain-of-function p53 mutations. Cancer Res. 68, 1723–1731 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, J., Pickering, C. R., Holst, C. R., Gauthier, M. L. & Tlsty, T. D. p16INK4a modulates p53 in primary human mammary epithelial cells. Cancer Res. 66, 10325–10331 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Hinds, P. W., Finlay, C. A., Frey, A. B. & Levine, A. J. Immunological evidence for the association of p53 with a heat shock protein, hsc70, in p53-plus-ras-transformed cell lines. Mol. Cell Biol. 7, 2863–2869 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Blagosklonny, M. V., Toretsky, J., Bohen, S. & Neckers, L. Mutant conformation of p53 translated in vitro or in vivo requires functional HSP90. Proc. Natl Acad. Sci. USA 93, 8379–8383 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sepehrnia, B., Paz, I. B., Dasgupta, G. & Momand, J. Heat shock protein 84 forms a complex with mutant p53 protein predominantly within a cytoplasmic compartment of the cell. J. Biol. Chem. 271, 15084–15090 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Whitesell, L., Sutphin, P. D., Pulcini, E. J., Martinez, J. D. & Cook, P. H. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol. Cell Biol. 18, 1517–1524 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin, K., Rockliffe, N., Johnson, G. G., Sherrington, P. D. & Pettitt, A. R. Hsp90 inhibition has opposing effects on wild-type and mutant p53 and induces p21 expression and cytotoxicity irrespective of p53/ATM status in chronic lymphocytic leukaemia cells. Oncogene 27, 2445–2455 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Esser, C., Scheffner, M. & Hohfeld, J. The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J. Biol. Chem. 280, 27443–27448 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Solit, D. B. & Rosen, N. Hsp90: a novel target for cancer therapy. Curr. Top. Med. Chem. 6, 1205–1214 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Rotter, V., Abutbul, H. & Ben-Ze'ev, A. P53 transformation-related protein accumulates in the nucleus of transformed fibroblasts in association with the chromatin and is found in the cytoplasm of non-transformed fibroblasts. EMBO J. 2, 1041–1047 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shaulsky, G., Goldfinger, N., Ben-Ze'ev, A. & Rotter, V. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol. Cell Biol. 10, 6565–6577 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nie, L., Sasaki, M. & Maki, C. G. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J. Biol. Chem. 282, 14616–14625 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Morselli, E. et al. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 7, 3056–3061 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Maiuri, M. C. et al. Control of autophagy by oncogenes and tumor suppressor genes. Cell Death Differ. 16, 87–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Eliyahu, D., Raz, A., Gruss, P., Givol, D. & Oren, M. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312, 646–649 (1984).

    Article  CAS  PubMed  Google Scholar 

  75. Parada, L. F., Land, H., Weinberg, R. A., Wolf, D. & Rotter, V. Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312, 649–651 (1984).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, E. & Deppert, W. Transcriptional activities of mutant p53: when mutations are more than a loss. J. Cell Biochem. 93, 878–886 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Strano, S. et al. Mutant p53: an oncogenic transcription factor. Oncogene 26, 2212–2219 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Di Como, C. J., Gaiddon, C. & Prives, C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell Biol. 19, 1438–1449 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gaiddon, C., Lokshin, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell Biol. 21, 1874–1887 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Deyoung, M. P. & Ellisen, L. W. p63 and p73 in human cancer: defining the network. Oncogene 26, 5169–5183 (2007). References 79 and 80 demonstrate mutant p53 gain of function in inactivating p63 and p73.

    Article  CAS  PubMed  Google Scholar 

  81. Flores, E. R. et al. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7, 363–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Irwin, M. S. Family feud in chemosensitvity: p73 and mutant p53. Cell Cycle 3, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Li, Y. & Prives, C. Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26, 2220–2225 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Bergamaschi, D. et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3, 387–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Di Agostino, S. et al. The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle 7, 3440–3447 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Kravchenko, J. E. et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc. Natl Acad. Sci. USA 105, 6302–6307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin, J., Teresky, A. K. & Levine, A. J. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene 10, 2387–2390 (1995).

    CAS  PubMed  Google Scholar 

  88. Matas, D. et al. Integrity of the N-terminal transcription domain of p53 is required for mutant p53 interference with drug-induced apoptosis. EMBO J. 20, 4163–4172 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gohler, T. et al. Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Res. 33, 1087–1100 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Koga, H. & Deppert, W. Identification of genomic DNA sequences bound by mutant p53 protein (Gly245-->Ser.) in vivo. Oncogene 19, 4178–4183 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Brazdova, M. et al. Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences. Nucleic Acids Res., 37, 1486–1500 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Di Agostino, S. et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 10, 191–202 (2006). This study demonstrates mutant p53 gain of function in the NFY pathway.

    Article  CAS  PubMed  Google Scholar 

  93. Olivier, M. et al. Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther. 16, 1–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Weisz, L. et al. Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res. 67, 2396–2401 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Scian, M. J. et al. Tumor-derived p53 mutants induce NF-κB2 gene expression. Mol. Cell Biol. 25, 10097–10110 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jain, A. N. et al. Quantitative analysis of chromosomal CGH in human breast tumors associates copy number abnormalities with p53 status and patient survival. Proc. Natl Acad. Sci. USA 98, 7952–7957 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kleivi, K. et al. TP53 mutations are associated with a particular pattern of genomic imbalances in breast carcinomas. J. Pathol. 207, 14–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Sotiriou, C. & Pusztai, L. Gene-expression signatures in breast cancer. N.Engl. J. Med. 360, 790–800 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Potti, A. & Nevins, J. R. Utilization of genomic signatures to direct use of primary chemotherapy. Curr. Opin. Genet. Dev. 18, 62–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Frazier, M. W. et al. Activation of c-myc gene expression by tumor-derived p53 mutants requires a discrete C-terminal domain. Mol. Cell Biol. 18, 3735–3743 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tepper, C. G. et al. Profiling of gene expression changes caused by p53 gain-of-function mutant alleles in prostate cancer cells. Prostate 65, 375–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Scian, M. J. et al. Modulation of gene expression by tumor-derived p53 mutants. Cancer Res. 64, 7447–7454 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Langerod, A. et al. TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res. 9, R30 (2007). References 103 and 104 provide comprehensive analyses of breast cancer expression profiles, their association with TP53 mutations, and their prognostic value.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Troester, M. A. et al. Gene expression patterns associated with p53 status in breast cancer. BMC Cancer 6, 276 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Miller, L. D. et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc. Natl Acad. Sci. U S. A 102, 13550–13555 (2005).

    CAS  Google Scholar 

  107. Brosh, R. & Rotter, V. Transcriptional control of the proliferation cluster by the tumor suppressor p53. Molec. Biosyst. (in the press).

  108. Scian, M. J. et al. Tumor-derived p53 mutants induce oncogenesis by transactivating growth-promoting genes. Oncogene 23, 4430–4443 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Sanchez-Carbayo, M. et al. Genomic and proteomic profiles reveal the association of gelsolin to TP53 status and bladder cancer progression. Am. J. Pathol. 171, 1650–1658 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sur, S. et al. A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53. Proc. Natl Acad. Sci. USA 106, 3964–3969 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Whitfield, M. L., George, L. K., Grant, G. D. & Perou, C. M. Common markers of proliferation. Nature Rev. Cancer 6, 99–106 (2006).

    Article  CAS  Google Scholar 

  112. Salvatore, G. et al. A cell proliferation and chromosomal instability signature in anaplastic thyroid carcinoma. Cancer Res. 67, 10148–10158 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Tabach, Y. et al. The promoters of human cell cycle genes integrate signals from two tumor suppressive pathways during cellular transformation. Mol. Syst. Biol. 1, 2005.0022 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Brosh, R. et al. p53-repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol. Syst. Biol. 4, 229 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Imbriano, C. et al. Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol. Cell Biol. 25, 3737–3751 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Donzelli, S. et al. Oncogenomic approaches in exploring gain of function of mutant p53. Curr. Genomics 9, 200–207 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Vikhanskaya, F., Lee, M. K., Mazzoletti, M., Broggini, M. & Sabapathy, K. Cancer-derived p53 mutants suppress p53-target gene expression--potential mechanism for gain of function of mutant p53. Nucleic Acids Res. 35, 2093–2104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Alsner, J. et al. A comparison between p53 accumulation determined by immunohistochemistry and TP53 mutations as prognostic variables in tumours from breast cancer patients. Acta Oncol. 47, 600–607 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Mollevi, D. G. et al. Mutations in TP53 are a prognostic factor in colorectal hepatic metastases undergoing surgical resection. Carcinogenesis 28, 1241–1246 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Ahmed, I. A. et al. The predictive value of p53 and p33(ING1b) in patients with Dukes'C colorectal cancer. Colorectal Dis. 10, 344–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Ryu, M. H. et al. Prognostic significance of p53 gene mutations and protein overexpression in localized gastrointestinal stromal tumours. Histopathology 51, 379–389 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Bartel, F. et al. Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival. Clin. Cancer Res. 14, 89–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Ma, X. et al. TP53 and KRAS mutations as markers of outcome of adjuvant cisplatin-based chemotherapy in completely resected non-small-cell lung cancer (NSCL): the International Adjuvant Lung Cancer Trial (IALT) biological program. Ann. Oncol. Abstr. 19, viii61–62, (2008).

    Google Scholar 

  124. Poeta, M. L. et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 357, 2552–2561 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Monti, P. et al. Transcriptional functionality of germ line p53 mutants influences cancer phenotype. Clin. Cancer Res. 13, 3789–3795 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sakuragi, N. et al. Functional analysis of p53 gene and the prognostic impact of dominant-negative p53 mutation in endometrial cancer. Int. J. Cancer 116, 514–519 (2005).

    Article  CAS  PubMed  Google Scholar 

  127. Salinas-Sanchez, A. S. et al. Implications of p53 gene mutations on patient survival in transitional cell carcinoma of the bladder: a long-term study. Urol. Oncol. 26, 620–626 (2008).

    Article  CAS  PubMed  Google Scholar 

  128. Ecke, T. H., Sachs, M. D., Lenk, S. V., Loening, S. A. & Schlechte, H. H. TP53 gene mutations as an independent marker for urinary bladder cancer progression. Int. J. Mol. Med. 21, 655–661 (2008).

    CAS  PubMed  Google Scholar 

  129. Olivier, M. et al. The clinical value of somatic TP53 gene mutations in 1, 794 patients with breast cancer. Clin. Cancer Res. 12, 1157–1167 (2006). A large-scale analysis of the prognostic association of TP53 mutations in breast cancer, including comparison of the clinical effects of different mutation categories.

    Article  CAS  PubMed  Google Scholar 

  130. Young, K. H. et al. Mutations in the DNA-binding codons of TP53, which are associated with decreased expression of TRAILreceptor-2, predict for poor survival in diffuse large B-cell lymphoma. Blood 110, 4396–4405 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Young, K. H. et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood 112, 3088–3098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, Y., Kristensen, G. B., Borresen-Dale, A. L. & Helland, A. TP53 mutations and codon 72 genotype--impact on survival among ovarian cancer patients. Ann. Oncol. 18, 964–966 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Batchelor, T. T. et al. Age-dependent prognostic effects of genetic alterations in glioblastoma. Clin. Cancer Res. 10, 228–233 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Chang, S. C. et al. Relationship between genetic alterations and prognosis in sporadic colorectal cancer. Int. J. Cancer 118, 1721–1727 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Ruano, Y. et al. Worse outcome in primary glioblastoma multiforme with concurrent epidermal growth factor receptor and p53 alteration. Am. J. Clin. Pathol. 131, 257–263 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Yang, Y. C. et al. Joint association of polymorphism of the FGFR4 gene and mutation TP53 gene with bladder cancer prognosis. Br. J. Cancer 95, 1455–1458 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Boersma, B. J. et al. Association of breast cancer outcome with status of p53 and MDM2 SNP309. J. Natl Cancer Inst. 98, 911–919 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Burke, L. et al. Prognostic implications of molecular and immunohistochemical profiles of the Rb and p53 cell cycle regulatory pathways in primary non-small cell lung carcinoma. Clin. Cancer Res. 11, 232–241 (2005).

    CAS  PubMed  Google Scholar 

  139. Bull., S. B. et al. The combination of p53 mutation and neu/erbB-2 amplification is associated with poor survival in node-negative breast cancer. J. Clin. Oncol. 22, 86–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Dearth, L. R. et al. Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28, 289–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Ahrendt, S. A. et al. Rapid p53 sequence analysis in primary lung cancer using an oligonucleotide probe array. Proc. Natl Acad. Sci. USA 96, 7382–7387 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tonisson, N. et al. Evaluating the arrayed primer extension resequencing assay of TP53 tumor suppressor gene. Proc. Natl Acad. Sci. USA 99, 5503–5508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kringen, P. et al. Evaluation of arrayed primer extension for TP53 mutation detection in breast and ovarian carcinomas. Biotechniques 39, 755–761 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Dicker, F. et al. The detection of TP53 mutations in chronic lymphocytic leukemia independently predicts rapid disease progression and is highly correlated with a complex aberrant karyotype. Leukemia 23, 117–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Balogh, G. A. et al. Mutant p53 protein in serum could be used as a molecular marker in human breast cancer. Int. J. Oncol. 28, 995–1002 (2006).

    CAS  PubMed  Google Scholar 

  146. Chang, S. C., Lin, J. K., Lin, T. C. & Liang, W. Y. Genetic alteration of p53, but not overexpression of intratumoral p53 protein, or serum p53 antibody is a prognostic factor in sporadic colorectal adenocarcinoma. Int. J. Oncol. 26, 65–75 (2005).

    CAS  PubMed  Google Scholar 

  147. Soussi, T. p53 Antibodies in the sera of patients with various types of cancer: a review. Cancer Res. 60, 1777–1788 (2000).

    CAS  PubMed  Google Scholar 

  148. Kumar, S., Mohan, A. & Guleria, R. Prognostic implications of circulating anti-p53 antibodies in lung cancer--a review. Eur. J. Cancer Care (Engl.) 18, 248–254 (2009).

    Article  CAS  Google Scholar 

  149. Usui, H. & Otani, T. Detection of K-ras and p53 gene mutations in pancreatic juice for the diagnosis of intraductal papillary mucinous tumors. Pancreas 22, 108–109 (2001).

    Article  CAS  PubMed  Google Scholar 

  150. Dong, S. M. et al. Detecting colorectal cancer in stool with the use of multiple genetic targets. J. Natl Cancer Inst. 93, 858–865 (2001).

    Article  CAS  PubMed  Google Scholar 

  151. Done, S. J., Eskandarian, S., Bull., S., Redston, M. & Andrulis, I. L. p53 missense mutations in microdissected high-grade ductal carcinoma in situ of the breast. J. Natl Cancer Inst. 93, 700–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Keohavong, P., Gao, W. M., Mady, H. H., Kanbour-Shakir, A. & Melhem, M. F. Analysis of p53 mutations in cells taken from paraffin-embedded tissue sections of ductal carcinoma in situ and atypical ductal hyperplasia of the breast. Cancer Lett. 212, 121–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Lazarus, P. et al. A low incidence of p53 mutations in pre-malignant lesions of the oral cavity from non-tobacco users. Int. J. Cancer 60, 458–463(1995).

    Article  CAS  PubMed  Google Scholar 

  154. Qin, G. Z., Park, J. Y., Chen, S. Y. & Lazarus, P. A high prevalence of p53 mutations in pre-malignant oral erythroplakia. Int. J. Cancer 80, 345–348 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Bougeard, G. et al. Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. J. Med. Genet. 45, 535–538 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Sigal, A., Matas, D., Almog, N., Goldfinger, N. & Rotter, V. The C-terminus of mutant p53 is necessary for its ability to interfere with growth arrest or apoptosis. Oncogene 20, 4891–4898 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Ventura, A. & Jacks, T. MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586–591 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, W. & El-Deiry, W. S. Restoration of p53 to limit tumor growth. Curr. Opin. Oncol. 20, 90–96 (2008).

    Article  PubMed  CAS  Google Scholar 

  159. Joerger, A. C. & Fersht, A. R. Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26, 2226–2242 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Suad, O. et al. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations. J. Mol. Biol. 385, 249–265 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Kurose, K. et al. Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nature Genet. 32, 355–357 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Patocs, A. et al. Breast-cancer stromal cells with TP53 mutations and nodal metastases. N. Engl. J. Med. 357, 2543–2551 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Campbell, I. G., Qiu, W., Polyak, K. & Haviv, I. Breast-cancer stromal cells with TP53 mutations. N. Engl. J. Med. 358, 1634–1635 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Zander, C. S. & Soussi, T. Breast-cancer stromal cells with TP53 mutations. N. Engl. J. Med. 358, 1635 (2008).

    CAS  PubMed  Google Scholar 

  165. Haupt, S. et al. Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res. 69, 4818–4826 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Harris, N. et al. Molecular basis for heterogeneity of the human p53 protein. Mol. Cell Biol. 6, 4650–4656 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Whibley, C., Pharoah, P. D. & Hollstein, M. p53 polymorphisms: cancer implications. Nature Rev. Cancer 9, 95–107 (2009).

    Article  CAS  Google Scholar 

  168. Li, F. P. & Fraumeni, J. F. Jr Rhabdomyosarcoma in children: epidemiologic study and identification of a familial cancer syndrome. J. Natl Cancer Inst. 43, 1365–1373 (1969).

    CAS  PubMed  Google Scholar 

  169. Li, F. P. & Fraumeni, J. F. Jr Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann. Intern. Med. 71, 747–752 (1969).

    Article  CAS  PubMed  Google Scholar 

  170. Varley, J. M. Germline TP53 mutations and Li-Fraumeni syndrome. Hum. Mutat. 21, 313–320 (2003).

    Article  CAS  PubMed  Google Scholar 

  171. Birch, J. M. et al. Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene 17, 1061–1068 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Iwanaga, Y. & Jeang, K. T. Expression of mitotic spindle checkpoint protein hsMAD1 correlates with cellular proliferation and is activated by a gain-of-function p53 mutant. Cancer Res. 62, 2618–2624 (2002).

    CAS  PubMed  Google Scholar 

  173. Preuss, U., Kreutzfeld, R. & Scheidtmann, K. H. Tumor-derived p53 mutant C174Y is a gain-of-function mutant which activates the fos promoter and enhances colony formation. Int. J. Cancer 88, 162–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  174. Deb, S., Jackson, C. T., Subler, M. A. & Martin, D. W. Modulation of cellular and viral promoters by mutant human p53 proteins found in tumor cells. J. Virol. 66, 6164–6170 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Mizuarai, S., Yamanaka, K. & Kotani, H. Mutant p53 induces the GEF-H1 oncogene, a guanine nucleotide exchange factor-H1 for RhoA, resulting in accelerated cell proliferation in tumor cells. Cancer Res. 66, 6319–6326 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Yan, W., Liu, G., Scoumanne, A. & Chen, X. Suppression of inhibitor of differentiation 2, a target of mutant p53, is required for gain-of-function mutations. Cancer Res. 68, 6789–6796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Werner, H., Karnieli, E., Rauscher, F. J. & LeRoith, D. Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc. Natl Acad. Sci. USA 93, 8318–8323 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Yan, W. & Chen, X. Identification of GRO1 as a critical determinant for mutant p53 gain of function. J. Biol. Chem., 284, 12178–12187 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Weisz, L. et al. Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res. 64, 8318–8327 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Buganim, Y. et al. Mutant p53 protects cells from 12-O-tetradecanoylphorbol-13-acetate-induced death by attenuating activating transcription factor 3 induction. Cancer Res. 66, 10750–10759, (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Lavra, L. et al. Gal-3 is stimulated by gain-of-function p53 mutations and modulates chemoresistance in anaplastic thyroid carcinomas. J. Pathol. 218, 66–75 (2008).

    Article  CAS  Google Scholar 

  182. Zalcenstein, A. et al. Mutant p53 gain of function: repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 22, 5667–5676 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Zalcenstein, A. et al. Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene 25, 359–369 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Lee, Y. I., Lee, S., Das, G. C., Park, U. S. & Park, S. M. Activation of the insulin-like growth factor II transcription by aflatoxin B1 induced p53 mutant 249 is caused by activation of transcription complexes; implications for a gain-of-function during the formation of hepatocellular carcinoma. Oncogene 19, 3717–3726 (2000).

    Article  CAS  PubMed  Google Scholar 

  185. Yang, X., Pater, A. & Tang, S. C. Cloning and characterization of the human BAG-1 gene promoter: upregulation by tumor-derived p53 mutants. Oncogene 18, 4546–4553 (1999).

    Article  CAS  PubMed  Google Scholar 

  186. Pugacheva, E. N. et al. Novel gain of function activity of p53 mutants: activation of the dUTPase gene expression leading to resistance to 5-fluorouracil. Oncogene 21, 4595–4600 (2002).

    Article  CAS  PubMed  Google Scholar 

  187. Kalo, E. et al. Mutant p53 attenuates the SMAD-dependent transforming growth factor β1 (TGF-β1) signaling pathway by repressing the expression of TGF-β receptor type II. Mol. Cell Biol. 27, 8228–8242 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kelavkar, U. P. & Badr, K. F. Effects of mutant p53 expression on human 15-lipoxygenase-promoter activity and murine 12/15-lipoxygenase gene expression: evidence that 15-lipoxygenase is a mutator gene. Proc. Natl Acad. Sci. USA 96, 4378–4383 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Loging, W. T. & Reisman, D. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53. Cancer Epidemiol. Biomarkers Prev. 8, 1011–1016 (1999).

    CAS  PubMed  Google Scholar 

  190. Dhar, G. et al. Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2. Cancer Res. 68, 4580–4587 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Khromova, N. V., Kopnin, P. B., Stepanova, E. V., Agapova, L. S. & Kopnin, B. P. p53 hot-spot mutants increase tumor vascularization via ROS-mediated activation of the HIF1/VEGF-A pathway. Cancer Lett. 276, 143–151 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by a Center of Excellence grant from the Flight Attendant Medical Research Institute (FAMRI). V.R. is the incumbent of the Norman and Helen Asher Professorial Chair for Cancer Research at the Weizmann institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varda Rotter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

doxorubicin

vitamin D

OMIM

Li–Fraumeni Syndrome

FURTHER INFORMATION

IARC TP53 Mutation Database

Glossary

Loss of heterozygosity

(LOH). A genetic event at a particular locus heterozygous for a mutant allele and a wild-type allele in which the wild-type allele is either deleted (rendering the cell hemizygous for the mutated allele) or mutated (rendering the cell homozygous for the mutant allele).

Missense mutation

A single base-pair substitution that results in the translation of a different amino acid at that position.

Transition

A mutation that results in a substitution of a purine for a purine or a pyrimidine for a pyrimidine.

Transversion

A mutation that results in a substitution of a purine for a pyrimidine or vice versa.

Aflatoxin B1

A potent mutagenic fungal-produced toxin. Human exposure to aflatoxin B1 largely stems from Aspergillus spp. food contamination, which occurs primarily in eastern Asia and sub-Saharan Africa. Aflatoxin B1 promotes GT transversions and is associated with a substitution of an arginine (AGG) to a serine (AGT) at TP53 codon R249, the most common TP53 mutation in hepatocellular carcinoma.

Focus formation assay

An in vitro assay used to measure the oncogenic potential of a gene. Usually, the gene of interest is delivered into animal cells which normally show contact inhibition. A bona fide oncogene grants the cells the ability to form areas of multi-layered densely-packed cells (called foci).

Penetrance

A measure of the proportion of individuals carrying a gene variation (for example, a mutation or single nucleotide polymorphism) that also express a phenotypical trait associated with that genetic variation (for example, a disease).

Autophagy

A cellular catabolic degradation response to stress involving engulfing, degradation and recycling of intracellular material.

Single nucleotide polymorphism

(SNP). A germline variation in a single nucleotide that exists at a frequency of at least 1% in the general population.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brosh, R., Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9, 701–713 (2009). https://doi.org/10.1038/nrc2693

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2693

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing