Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A20: from ubiquitin editing to tumour suppression

Key Points

  • Protracted activation of the immune system by persistent inflammation or chronic infection can be oncogenic.

  • Nuclear factor-κB (NF-κB) transcription factors are normally activated in a transient manner in response to inflammation, infection and other cellular stresses to provide pro-inflammatory and pro-survival signals to regain homeostasis.

  • Failure to downregulate persistent NF-κB signalling can instead facilitate the manifestation of all six hallmarks of cancer: self-sufficient cell growth, insensitivity to growth-inhibitory signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis.

  • Ubiquitylation is a post-translational modification that tightly regulates the activity of signalling proteins in NF-κB transduction cascades.

  • A20 is a central regulator of inflammation and functions as a ubiquitin-editing enzyme to potently downregulate NF-κB signalling.

  • A20 is inactivated in various haematological malignancies and results in constitutive NF-κB activation in tumour cells; therefore, A20 is a crucial tumour suppressor.

  • The identification of A20 as a tumour suppressor establishes new links between ubiquitylation, NF-κB activation and tumorigenesis that may be exploited in the clinic for improved patient care.

Abstract

Clinicians have suspected for hundreds of years that chronic activation of the immune system contributes to the development of cancer. However, the molecular mechanisms that mediate this precarious interplay are only now being elucidated. Recent reports have identified A20 as a crucial tumour suppressor in various lymphomas. A20 is a ubiquitin-editing enzyme that attenuates the activity of proximal signalling complexes at pro-inflammatory receptors. In this Review we summarize the evidence linking chronic inflammation with tumorigenesis and consider how A20 modulates inflammatory signalling cascades, thereby providing a mechanism to explain how deregulation of ubiquitylation can promote tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of NF-κB signalling by ubiquitylation.
Figure 2: A20 domain structure and location of lymphoma-associated mutations.
Figure 3: A20 ubiquitin editing.

Similar content being viewed by others

References

  1. McCulloch, C. A., Downey, G. P. & El-Gabalawy, H. Signalling platforms that modulate the inflammatory response: new targets for drug development. Nature Rev. Drug Discov. 5, 864–876 (2006).

    CAS  Google Scholar 

  2. Boone, D. L. et al. Recent advances in understanding NF-κB regulation. Inflamm. Bowel Dis. 8, 201–212 (2002).

    PubMed  Google Scholar 

  3. Karin, M. Nuclear factor-κB in cancer development and progression. Nature 441, 431–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Balkwill, F. & Mantovani, A. Inflammation and cancer: back to Virchow? Lancet 357, 539–545 (2001).

    CAS  PubMed  Google Scholar 

  5. Aggarwal, B. B. & Gehlot, P. Inflammation and cancer: how friendly is the relationship for cancer patients? Curr. Opin. Pharmacol. 9, 351–369 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Karin, M. The IκB kinase — a bridge between inflammation and cancer. Cell Res. 18, 334–342 (2008).

    CAS  PubMed  Google Scholar 

  8. Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    CAS  PubMed  Google Scholar 

  9. Prasad, S,. Ravindran, J. & Aggarwal, B. B. NF-κB and cancer: how intimate is this relationship. Mol. Cell Biochem. 336, 25–37 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    PubMed  Google Scholar 

  11. Xia, Z. P. & Chen, Z. J. TRAF2: a double-edged sword? Sci. STKE 2005, pe7 (2005).

    PubMed  Google Scholar 

  12. Greten, F. R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004). This work provided definitive evidence in an in vivo system that constitutive NF-κB activity activated by persistent inflammation can promote tumorigenesis.

    CAS  PubMed  Google Scholar 

  13. Becker, C. et al. TGF-β suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21, 491–501 (2004).

    CAS  PubMed  Google Scholar 

  14. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Naugler, W. E. & Karin, M. The wolf in sheep's clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol. Med. 14, 109–119 (2008).

    CAS  PubMed  Google Scholar 

  16. Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H. & Karin, M. Inhibition of NF-κB in cancer cells converts inflammation-induced tumor growth mediated by TNFα to TRAIL-mediated tumor regression. Cancer Cell 6, 297–305 (2004).

    CAS  PubMed  Google Scholar 

  17. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  PubMed  Google Scholar 

  18. Baud, V. & Karin, M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nature Rev. Drug Discov. 8, 33–40 (2009).

    CAS  Google Scholar 

  19. Liu, Y. C., Penninger, J. & Karin, M. Immunity by ubiquitylation: a reversible process of modification. Nature Rev. Immunol. 5, 941–952 (2005).

    CAS  Google Scholar 

  20. Dixit, V. M. et al. Tumor necrosis factor-α induction of novel gene products in human endothelial cells including a macrophage-specific chemotaxin. J. Biol. Chem. 265, 2973–2978 (1990). The initial characterization of A20 as a cytokine-inducible factor.

    CAS  PubMed  Google Scholar 

  21. Krikos, A., Laherty, C. D. & Dixit, V. M. Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J. Biol. Chem. 267, 17971–17976 (1992).

    CAS  PubMed  Google Scholar 

  22. Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758–765 (2005).

    CAS  PubMed  Google Scholar 

  23. Beyaert, R., Heyninck, K. & Van Huffel, S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochem. Pharmacol. 60, 1143–1151 (2000).

    CAS  PubMed  Google Scholar 

  24. Laherty, C. D., Perkins, N. D. & Dixit, V. M. Human T cell leukemia virus type I Tax and phorbol 12-myristate 13-acetate induce expression of the A20 zinc finger protein by distinct mechanisms involving nuclear factor κB. J. Biol. Chem. 268, 5032–5039 (1993).

    CAS  PubMed  Google Scholar 

  25. Heyninck, K. et al. The zinc finger protein A20 inhibits TNF-induced NF-κB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. J. Cell Biol. 145, 1471–1482 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Heyninck, K. & Beyaert, R. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-κB activation at the level of TRAF6. FEBS Lett. 442, 147–150 (1999).

    CAS  PubMed  Google Scholar 

  27. Lee, E. G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000). The first in vivo evidence that A20 is essential for terminating NF-κB signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Opipari, A. W. Jr, Boguski, M. S. & Dixit, V. M. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J. Biol. Chem. 265, 14705–14708 (1990).

    CAS  PubMed  Google Scholar 

  29. Song, H. Y., Rothe, M. & Goeddel, D. V. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc. Natl Acad. Sci. USA 93, 6721–6725 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Makarova, K. S., Aravind, L. & Koonin, E. V. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem. Sci. 25, 50–52 (2000). The initial description of the OTU domain as a highly conserved cysteine protease.

    CAS  PubMed  Google Scholar 

  31. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004). This work identified RIP as an A20 substrate, characterized the ubiquitin ligase activity of A20 and introduced the concept of ubiquitin editing.

    CAS  PubMed  Google Scholar 

  32. Chen, Z. J., Parent, L. & Maniatis, T. Site-specific phosphorylation of IkBa by a novel ubiquitination-dependent protein kinase activity. Cell 84, 853–862 (1996). The first report indicating that a unique form of polyubiquitylation that does not promote substrate degradation activates kinases in NF-κB signalling cascades.

  33. Jackson, P. K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429–439 (2000).

    CAS  PubMed  Google Scholar 

  34. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    CAS  PubMed  Google Scholar 

  35. Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169–178 (2001).

    CAS  Google Scholar 

  36. Chiu, Y. H., Zhao, M. & Chen, Z. J. Ubiquitin in NF-κB signaling. Chem. Rev. 109, 1549–1560 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Reyes-Turcu, F. E., Ventii, K. H. & Wilkinson, K. D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363–397 (2009).

    CAS  PubMed  Google Scholar 

  38. Balakirev, M. Y., Tcherniuk, S. O., Jaquinod, M. & Chroboczek, J. Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep. 4, 517–522 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Borodovsky, A. et al. Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149–1159 (2002).

    CAS  PubMed  Google Scholar 

  40. Evans, P. C. et al. A novel type of deubiquitinating enzyme. J. Biol. Chem. 278, 23180–23186 (2003).

    CAS  PubMed  Google Scholar 

  41. Evans, P. C. et al. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J. 378, 727–734 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin, S. C. et al. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J. Mol. Biol. 376, 526–540 (2008).

    CAS  PubMed  Google Scholar 

  43. Komander, D. & Barford, D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem. J. 409, 77–85 (2008).

    CAS  PubMed  Google Scholar 

  44. Boone, D. L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nature Immunol. 5, 1052–1060 (2004).

    CAS  Google Scholar 

  45. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    CAS  PubMed  Google Scholar 

  46. Naito, A. et al. Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 4, 353–362 (1999).

    CAS  PubMed  Google Scholar 

  47. Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Legler, D. F., Micheau, O., Doucey, M. A., Tschopp, J. & Bron, C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFα-mediated NF-κB activation. Immunity 18, 655–664 (2003).

    CAS  PubMed  Google Scholar 

  49. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    CAS  PubMed  Google Scholar 

  50. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    CAS  PubMed  Google Scholar 

  51. Xia, Z. P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, M,. Skaug, B,. Zeng, W. & Chen, Z. J. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFα and IL-1β. Mol. Cell 36, 302–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    CAS  PubMed  Google Scholar 

  54. Newton, K. et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134, 668–678 (2008). Characterization of endogenous RIP and IRAK polyubiquitylation in activated NF-κB signalling complexes using ubiquitin linkage-specific antibodies.

    CAS  PubMed  Google Scholar 

  55. Hutti, J. E. et al. IkappaB kinase beta phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol. Cell. Biol. 27, 7451–7461 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Klinkenberg, M,. Van Huffel, S,. Heyninck, K. & Beyaert, R. Functional redundancy of the zinc fingers of A20 for inhibition of NF-kB activation and protein-protein interactions. FEBS Lett. 498, 93–97 (2001). A detailed characterization of the NF-κB-inhibitory functions of the A20 zinc fingers.

    CAS  PubMed  Google Scholar 

  57. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    CAS  PubMed  Google Scholar 

  58. Zhang, S. Q., Kovalenko, A., Cantarella, G. & Wallach, D. Recruitment of the IKK signalosome to the p55 TNF receptor: RIP and A20 bind to NEMO (IKKγ) upon receptor stimulation. Immunity 12, 301–311 (2000). This work showed that RIP is post-translationally modified on TNFR1 recruitment and that modified RIP recruits both NEMO and A20 to the activated signalling complex.

    CAS  PubMed  Google Scholar 

  59. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    CAS  PubMed  Google Scholar 

  60. Mattera, R., Tsai, Y. C., Weissman, A. M. & Bonifacino, J. S. The Rab5 guanine nucleotide exchange factor Rabex-5 binds ubiquitin (Ub) and functions as a Ub ligase through an atypical Ub-interacting motif and a zinc finger domain. J. Biol. Chem. 281, 6874–6883 (2006).

    CAS  PubMed  Google Scholar 

  61. Lee, S. et al. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nature Struct. Mol. Biol. 13, 264–271 (2006). References 60 and 61 show that the A20-like ZnF in RABGEF1 has intrinsic ubiquitin ligase activity.

    CAS  Google Scholar 

  62. Penengo, L. et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell 124, 1183–1195 (2006).

    CAS  PubMed  Google Scholar 

  63. Sato, Y. et al. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 28, 2461–2468 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kulathu, Y., Akutsu, M., Bremm, A., Hofmann, K. & Komander, D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nature Struct. Mol. Biol. 16, 1328–1330 (2009).

    CAS  Google Scholar 

  65. Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nature Immunol. 9, 254–262 (2008).

    CAS  Google Scholar 

  66. Shembade, N., Parvatiyar, K., Harhaj, N. S. & Harhaj, E. W. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling. EMBO J. 28, 513–522 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shi, C. S. & Kehrl, J. H. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J. Biol. Chem. 278, 15429–15434 (2003).

    CAS  PubMed  Google Scholar 

  68. Shembade, N., Ma, A. & Harhaj, E. W. Inhibition of NF-κB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135–1139 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee, T. H., Shank, J., Cusson, N. & Kelliher, M. A. The kinase activity of Rip1 is not required for TNF-α-induced IκB or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J. Biol. Chem. 279, 33185–33191 (2004).

    CAS  PubMed  Google Scholar 

  70. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Haas, T. L. et al. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831–844 (2009).

    CAS  PubMed  Google Scholar 

  72. Turer, E. E. et al. Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J. Exp. Med. 205, 451–464 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hitotsumatsu, O. et al. The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28, 381–390 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Jin, Z. et al. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137, 721–735 (2009).

    CAS  PubMed  Google Scholar 

  75. Lin, R. et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J. Biol. Chem. 281, 2095–2103 (2006).

    CAS  PubMed  Google Scholar 

  76. Coornaert, B., Carpentier, I. & Beyaert, R. A20: central gatekeeper in inflammation and immunity. J. Biol. Chem. 284, 8217–8221 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, L., Soetandyo, N., Wang, Q. & Ye, Y. The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim. Biophys. Acta 1793, 346–353 (2009).

    CAS  PubMed  Google Scholar 

  78. Vereecke, L., Beyaert, R. & van Loo, G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 30, 383–391 (2009).

    CAS  PubMed  Google Scholar 

  79. Honma, K. et al. TNFAIP3 is the target gene of chromosome band 6q23.3-q24.1 loss in ocular adnexal marginal zone B cell lymphoma. Genes Chromosom. Cancer 47, 1–7 (2008).

    CAS  PubMed  Google Scholar 

  80. Novak, U. et al. The NF-κB negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 113, 4918–4921 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature 459, 717–721 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 459, 712–716 (2009).

    CAS  PubMed  Google Scholar 

  83. Honma, K. et al. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-Hodgkin lymphomas. Blood 114, 2467–2475 (2009).

    CAS  PubMed  Google Scholar 

  84. Chanudet, E. et al. A20 deletion is associated with copy number gain at the TNFA/B/C locus and occurs preferentially in translocation-negative MALT lymphoma of the ocular adnexa and salivary glands. J. Pathol. 217, 420–430 (2009).

    CAS  PubMed  Google Scholar 

  85. Chanudet, E. et al. A20 is targeted by promoter methylation, deletion and inactivating mutation in MALT lymphoma. Leukemia 24, 483–487.

    PubMed  Google Scholar 

  86. Schmitz, R. et al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J. Exp. Med. 206, 981–989 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schumacher, M. A. et al. Mutations in the genes coding for the NF-κB regulating factors IkBa and A20 are uncommon in nodular lymphocyte-predominant Hodgkin's lymphoma. Haematologica 95, 153–157.

    PubMed  PubMed Central  Google Scholar 

  88. Thome, M. Multifunctional roles for MALT1 in T-cell activation. Nature Rev. Immunol. 8, 495–500 (2008).

    CAS  Google Scholar 

  89. Li, L. et al. Localization of A20 to a lysosome-associated compartment and its role in NFκB signaling. Biochim. Biophys. Acta 1783, 1140–1149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Vucic, D. & Fairbrother, W. J. The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin. Cancer Res. 13, 5995–6000 (2007).

    CAS  PubMed  Google Scholar 

  91. Packham, G. The role of NF-κB in lymphoid malignancies. Br. J. Haematol. 143, 3–15 (2008).

    CAS  PubMed  Google Scholar 

  92. Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    CAS  PubMed  Google Scholar 

  93. Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

    CAS  PubMed  Google Scholar 

  94. Baker, K. P. et al. Generation and characterization of LymphoStat-B, a human monoclonal antibody that antagonizes the bioactivities of B lymphocyte stimulator. Arthritis Rheum. 48, 3253–3265 (2003).

    CAS  PubMed  Google Scholar 

  95. Cummings, S. R. et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 361, 756–765 (2009).

    CAS  PubMed  Google Scholar 

  96. Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nature Rev. Mol. Cell Biol. 10, 319–331 (2009).

    CAS  Google Scholar 

  97. Iwai, K. & Tokunaga, F. Linear polyubiquitination: a new regulator of NF-κB activation. EMBO Rep. 10, 706–713 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kirkpatrick, D. S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biol. 8, 700–710 (2006).

    CAS  PubMed  Google Scholar 

  100. Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653–665 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ikeda, F. & Dikic, I. Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep. 9, 536–542 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Reyes-Turcu, F. E. & Wilkinson, K. D. Polyubiquitin binding and disassembly by deubiquitinating enzymes. Chem. Rev. 109, 1495–1508 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mauro, C. et al. ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB. J. Biol. Chem. 281, 18482–18488 (2006).

    CAS  PubMed  Google Scholar 

  104. Duwel, M. et al. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J. Immunol. 182, 7718–7728 (2009).

    PubMed  Google Scholar 

  105. Zetoune, F. S. et al. A20 inhibits NF-κB activation downstream of multiple Map3 kinases and interacts with the I kappa B signalosome. Cytokine 15, 282–298 (2001).

    CAS  PubMed  Google Scholar 

  106. Fries, K. L., Miller, W. E. & Raab-Traub, N. The A20 protein interacts with the Epstein-Barr virus latent membrane protein 1 (LMP1) and alters the LMP1/TRAF1/TRADD complex. Virology 264, 159–166 (1999).

    CAS  PubMed  Google Scholar 

  107. Colland, F. et al. Functional proteomics mapping of a human signaling pathway. Genome Res. 14, 1324–1332 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. De Valck, D. et al. The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene 18, 4182–4190 (1999).

    CAS  PubMed  Google Scholar 

  109. Wang, Y. Y., Li, L., Han, K. J., Zhai, Z. & Shu, H. B. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-κB and ISRE and IFN-β promoter. FEBS Lett. 576, 86–90 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank I. Bosanac for insightful discussions and V. Dixit for continued enthusiasm about A20-related proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid E. Wertz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

A20 Cys2–Cys2 zinc finger (ZnF) motif

This motif is found in all eukaryotes, especially in proteins involved in ubiquitin signalling pathways. It is a conserved ubiquitin binding module that functions in diverse biological contexts.

Ovarian tumour (OTU) domain

The OTU domain was first identified in an ovarian tumour gene from Drosophila melanogaster, and is now recognized as a highly conserved domain. Functional and structural studies have confirmed that OTU domains function as deubiquitylases using a conserved cysteine protease fold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hymowitz, S., Wertz, I. A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 10, 332–341 (2010). https://doi.org/10.1038/nrc2775

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing