Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Kaposi's sarcoma and its associated herpesvirus

Key Points

  • Kaposi's sarcoma herpesvirus (KSHV; also known as human herpesvirus 8 (HHV8)) is the causative agent of Kaposi's sarcoma (KS) and certain lymphoproliferations, and its seroepidemiology correlates with the global incidence of KS.

  • KS is the most common neoplasm in untreated HIV-infected individuals, and also occurs in other states of immunosuppression, including after an organ transplant.

  • KSHV is transmitted through saliva and replicates in oropharyngeal cells.

  • Unlike most cancer cells, KS tumour cells are not fully transformed, do not show autonomous growth, and remain dependent on exogenous cytokines for in vitro growth.

  • KS starts as a proliferation of endothelial-type cells, with an early onset inflammatory and abnormal leaky blood vessel expansion.

  • KSHV is present in the vast majority of KS tumour cells (that is, spindle cells), expressing the latent viral proteins, including viral cyclin, viral FLICE inhibitory protein, latency-associated nuclear antigen (LANA) and a group of viral microRNAs.

  • A proportion of cells in KS lesions seem to undergo lytic replication, expressing lytic viral proteins including K1, viral interleukin-6, viral BCL-2, viral G protein-coupled receptor, K15 and viral chemokines.

  • KSHV latent genes drive cell proliferation and prevent apoptosis; whereas KSHV lytic genes could further contribute to KS tumorigenesis by triggering host signalling cascades that lead to cytokine and growth factor secretion.

  • Biological insights into KSHV oncogenesis are leading to promising rational therapeutic approaches.

Abstract

Kaposi's sarcoma (KS) is the most common cancer in HIV-infected untreated individuals. Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV8)) is the infectious cause of this neoplasm. In this Review we describe the epidemiology of KS and KSHV, and the insights into the remarkable mechanisms through which KSHV can induce KS that have been gained in the past 16 years. KSHV latent transcripts, such as latency-associated nuclear antigen (LANA), viral cyclin, viral FLIP and viral-encoded microRNAs, drive cell proliferation and prevent apoptosis, whereas KSHV lytic proteins, such as viral G protein-coupled receptor, K1 and virally encoded cytokines (viral interleukin-6 and viral chemokines) further contribute to the unique angioproliferative and inflammatory KS lesions through a mechanism called paracrine neoplasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geographical prevalence of KS and seroprevalence of KSHV.
Figure 2: Cellular heterogeneity in KS.
Figure 3: Proposed mechanism of KSHV-induced sarcoma.
Figure 4: Mouse model of KSHV-induced KS.

Similar content being viewed by others

References

  1. Kaposi, M. Idiopathisches multiples Pigmentsarkom der Haut. Arch. Dermatol. Syph. 4 (1872). Original description of KS.

    Google Scholar 

  2. Centers for Disease Control. Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men-New York City and California. MMWR Morb. Mortal. Wkly Rep. 30, 305–308 (1981).

  3. Gottlieb, G. J. et al. A preliminary communication on extensively disseminated Kaposi's sarcoma in young homosexual men. Am. J. Dermatopathol. 3, 111–114 (1981).

    CAS  PubMed  Google Scholar 

  4. Barre-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868–871 (1983).

    CAS  PubMed  Google Scholar 

  5. Gelmann, E. P. et al. Proviral DNA of a retrovirus, human T-cell leukemia virus, in two patients with AIDS. Science 220, 862–865 (1983).

    CAS  PubMed  Google Scholar 

  6. Lisitsyn, N. & Wigler, M. Cloning the differences between two complex genomes. Science 259, 946–951 (1993).

    CAS  PubMed  Google Scholar 

  7. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869 (1994). The molecular discovery of KS-associated herpesvirus.

    CAS  PubMed  Google Scholar 

  8. zur Hausen, H. Oncogenic DNA viruses. Oncogene 20, 7820–7823 (2001).

    CAS  PubMed  Google Scholar 

  9. Russo, J. J. et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc. Natl Acad. Sci. USA 93, 14862–14867 (1996). The original description of the KSHV genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118, 3030–3044 (2006).

    CAS  PubMed  Google Scholar 

  11. Sinfield, R. L. et al. Spectrum and presentation of pediatric malignancies in the HIV era: experience from Blantyre, Malawi, 1998–2003. Pediatr. Blood Cancer 48, 515–520 (2007).

    CAS  PubMed  Google Scholar 

  12. Nguyen, H. Q. et al. Persistent Kaposi sarcoma in the era of highly active antiretroviral therapy: characterizing the predictors of clinical response. AIDS 22, 937–945 (2008).

    CAS  PubMed  Google Scholar 

  13. Gallo, R. C. The enigmas of Kaposi's sarcoma. Science 282, 1837–1839 (1998).

    CAS  PubMed  Google Scholar 

  14. Oettle, A. G. Geographical and racial differences in the frequency of Kaposi's sarcoma as evidence of environmental or genetic causes. Acta Unio Int. Contra Cancrum 18, 330–363 (1962).

    CAS  PubMed  Google Scholar 

  15. Slavin, G., Cameron, H. M., Forbes, C. & Mitchell, R. M. Kaposi's sarcoma in East African children: a report of 51 cases. J. Pathol. 100, 187–199 (1970).

    CAS  PubMed  Google Scholar 

  16. Bhagwat, G. P., Naik, K. G., Sachdeva, R. & Bhushan, V. Disseminated lymphadenopathic Kaposi's sarcoma in Zambian children. Med. J. Zambia 14, 61–63 (1980).

    CAS  PubMed  Google Scholar 

  17. Siegel, J. H. et al. Disseminated visceral Kaposi's sarcoma. Appearance after human renal homograft operation. JAMA 207, 1493–1496 (1969). First description of KS from New York, USA, after an organ transplant.

    CAS  PubMed  Google Scholar 

  18. Wabinga, H. R., Parkin, D. M., Wabwire-Mangen, F. & Mugerwa, J. W. Cancer in Kampala, Uganda, in 1989–1991: changes in incidence in the era of AIDS. Int. J. Cancer 54, 26–36 (1993).

    CAS  PubMed  Google Scholar 

  19. He, J. et al. Seroprevalence of human herpesvirus 8 among Zambian women of childbearing age without Kaposi's sarcoma (KS) and mother-child pairs with KS. J. Infect. Dis. 178, 1787–1790 (1998).

    CAS  PubMed  Google Scholar 

  20. Davidovici, B. et al. Seroepidemiology and molecular epidemiology of Kaposi's sarcoma-associated herpesvirus among Jewish population groups in Israel. J. Natl Cancer Inst. 93, 194–202 (2001).

    CAS  PubMed  Google Scholar 

  21. Pauk, J. et al. Mucosal shedding of human herpesvirus 8 in men. N. Engl. J. Med. 343, 1369–1377 (2000).

    CAS  PubMed  Google Scholar 

  22. Martro, E. et al. Risk factors for human Herpesvirus 8 infection and AIDS-associated Kaposi's sarcoma among men who have sex with men in a European multicentre study. Int. J. Cancer 120, 1129–1135 (2007).

    CAS  PubMed  Google Scholar 

  23. Duus, K. M., Lentchitsky, V., Wagenaar, T., Grose, C. & Webster-Cyriaque, J. Wild-type Kaposi's sarcoma-associated herpesvirus isolated from the oropharynx of immune-competent individuals has tropism for cultured oral epithelial cells. J. Virol. 78, 4074–4084 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Beral, V., Peterman, T. A., Berkelman, R. L. & Jaffe, H. W. Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? Lancet 335, 123–128 (1990). One of the first studies to highlight that KS could be caused by an infectious agent other than HIV.

    CAS  PubMed  Google Scholar 

  25. Martin, J. N. et al. Sexual transmission and the natural history of human herpesvirus 8 infection. N. Engl. J. Med. 338, 948–954 (1998).

    CAS  PubMed  Google Scholar 

  26. Parkin, D. M. et al. Part I: cancer in indigenous Africans-burden, distribution, and trends. Lancet Oncol. 9, 683–692 (2008).

    PubMed  Google Scholar 

  27. Brown, E. E. et al. Associations of classic Kaposi sarcoma with common variants in genes that modulate host immunity. Cancer Epidemiol. Biomarkers Prev. 15, 926–934 (2006).

    CAS  PubMed  Google Scholar 

  28. Cottoni, F. et al. Susceptibility to human herpesvirus-8 infection in a healthy population from Sardinia is not directly correlated with the expression of HLA-DR alleles. Br. J. Dermatol. 151, 247–249 (2004).

    CAS  PubMed  Google Scholar 

  29. Dorak, M. T. et al. HLA-B, -DRB1/3/4/5, and -DQB1 gene polymorphisms in human immunodeficiency virus-related Kaposi's sarcoma. J. Med. Virol. 76, 302–310 (2005).

    CAS  PubMed  Google Scholar 

  30. Gazouli, M. et al. The interleukin-6-174 promoter polymorphism is associated with a risk of development of Kaposi's sarcoma in renal transplant recipients. Anticancer Res. 24, 1311–1314 (2004).

    CAS  PubMed  Google Scholar 

  31. Lehrnbecher, T. L. et al. Variant genotypes of FcγRIIIA influence the development of Kaposi's sarcoma in HIV-infected men. Blood 95, 2386–2390 (2000).

    CAS  PubMed  Google Scholar 

  32. Friedman-Kien, A. E. Disseminated Kaposi's sarcoma syndrome in young homosexual men. J. Am. Acad. Dermatol. 5, 468–471 (1981). One of the original descriptions of KS from New York, USA, heralding the AIDS pandemic.

    CAS  PubMed  Google Scholar 

  33. Safai, B. et al. The natural history of Kaposi's sarcoma in the acquired immunodeficiency syndrome. Ann. Intern. Med. 103, 744–750 (1985).

    CAS  PubMed  Google Scholar 

  34. Krown, S. E., Testa, M. A. & Huang, J. AIDS-related Kaposi's sarcoma: prospective validation of the AIDS Clinical Trials Group staging classification. AIDS Clinical Trials Group Oncology Committee. J. Clin. Oncol. 15, 3085–3092 (1997).

    CAS  PubMed  Google Scholar 

  35. El Amari, E. B. et al. Predicting the evolution of Kaposi sarcoma, in the highly active antiretroviral therapy era. AIDS 22, 1019–1028 (2008).

    CAS  PubMed  Google Scholar 

  36. Jussila, L. et al. Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res. 58, 1599–1604 (1998).

    CAS  PubMed  Google Scholar 

  37. Dupin, N. et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl Acad. Sci. USA 96, 4546–4551 (1999). First antibody-based study to describe the distribution of latent KSHV in KS, PEL and multicentric Castleman's disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Roth, W. K., Brandstetter, H. & Sturzl, M. Cellular and molecular features of HIV-associated Kaposi's sarcoma. AIDS 6, 895–913 (1992).

    CAS  PubMed  Google Scholar 

  39. Orenstein, J. M. Ultrastructure of Kaposi sarcoma. Ultrastruct. Pathol. 32, 211–220 (2008).

    PubMed  Google Scholar 

  40. Hong, Y. K. et al. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nature Genet. 36, 683–685 (2004).

    CAS  PubMed  Google Scholar 

  41. Wang, H. W. et al. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nature Genet. 36, 687–693 (2004).

    CAS  PubMed  Google Scholar 

  42. Beckstead, J. H., Wood, G. S. & Fletcher, V. Evidence for the origin of Kaposi's sarcoma from lymphatic endothelium. Am. J. Pathol. 119, 294–300 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Browning, P. J. et al. Identification and culture of Kaposi's sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. Blood 84, 2711–2720 (1994).

    CAS  PubMed  Google Scholar 

  44. Parsons, C. H., Szomju, B. & Kedes, D. H. Susceptibility of human fetal mesenchymal stem cells to Kaposi sarcoma-associated herpesvirus. Blood 104, 2736–2738 (2004).

    CAS  PubMed  Google Scholar 

  45. Della Bella, S. et al. Peripheral blood endothelial progenitors as potential reservoirs of Kaposi's sarcoma-associated herpesvirus. PLoS ONE 3, e1520 (2008).

    PubMed  PubMed Central  Google Scholar 

  46. Barozzi, P. et al. Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nature Med. 9, 554–561 (2003). Study proposes that KS tumour cells could be transmitted during an organ transplant.

    CAS  PubMed  Google Scholar 

  47. Niedt, G. W. & Prioleau, P. G. Kaposi's sarcoma occurring in a dermatome previously involved by herpes zoster. J. Am. Acad. Dermatol. 18, 448–451 (1988).

    CAS  PubMed  Google Scholar 

  48. Miles, S. A. Pathogenesis of HIV-related Kaposi's sarcoma. Curr. Opin. Oncol. 6, 497–502 (1994).

    CAS  PubMed  Google Scholar 

  49. Ensoli, B. et al. Biology of Kaposi's sarcoma. Eur. J. Cancer 37, 1251–1269 (2001).

    CAS  PubMed  Google Scholar 

  50. Lane, H. C. & Fauci, A. S. Immunologic abnormalities in the acquired immunodeficiency syndrome. Annu. Rev. Immunol. 3, 477–500 (1985).

    CAS  PubMed  Google Scholar 

  51. Salahuddin, S. Z. et al. Angiogenic properties of Kaposi's sarcoma-derived cells after long-term culture in vitro. Science 242, 430–433 (1988). One of the first studies to suggest that KS tumour cells secrete and are dependent on angiogenic factors for survival.

    CAS  PubMed  Google Scholar 

  52. Miles, S. A. et al. Oncostatin M as a potent mitogen for AIDS-Kaposi's sarcoma-derived cells. Science 255, 1432–1434 (1992).

    CAS  PubMed  Google Scholar 

  53. Naidu, Y. M. et al. Role of scatter factor in the pathogenesis of AIDS-related Kaposi sarcoma. Proc. Natl Acad. Sci. USA 91, 5281–5285 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Masood, R. et al. Vascular endothelial growth factor/vascular permeability factor is an autocrine growth factor for AIDS-Kaposi sarcoma. Proc. Natl Acad. Sci. USA 94, 979–984 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rabkin, C. S. et al. Monoclonal origin of multicentric Kaposi's sarcoma lesions. N. Engl. J. Med. 336, 988–993 (1997).

    CAS  PubMed  Google Scholar 

  56. Gill, P. S. et al. Evidence for multiclonality in multicentric Kaposi's sarcoma. Proc. Natl Acad. Sci. USA 95, 8257–8261 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Duprez, R. et al. Evidence for a multiclonal origin of multicentric advanced lesions of Kaposi sarcoma. J. Natl Cancer Inst. 99, 1086–1094 (2007).

    CAS  PubMed  Google Scholar 

  58. Nicolaides, A., Huang, Y. Q., Li, J. J., Zhang, W. G. & Friedman-Kien, A. E. Gene amplification and multiple mutations of the K-ras oncogene in Kaposi's sarcoma. Anticancer Res. 14, 921–926 (1994).

    CAS  PubMed  Google Scholar 

  59. Pillay, P., Chetty, R. & Reddy, R. Bcl-2 and p53 immunoprofile in Kaposi's sarcoma. Pathol. Oncol. Res. 5, 17–20 (1999).

    CAS  PubMed  Google Scholar 

  60. Pyakurel, P. et al. CGH of microdissected Kaposi's sarcoma lesions reveals recurrent loss of chromosome Y in early and additional chromosomal changes in late tumour stages. AIDS 20, 1805–1812 (2006).

    CAS  PubMed  Google Scholar 

  61. Knowles, D. M. et al. Correlative morphologic and molecular genetic analysis demonstrates three distinct categories of posttransplantation lymphoproliferative disorders. Blood 85, 552–565 (1995).

    CAS  PubMed  Google Scholar 

  62. Cesarman, E., Mesri, E. A. & Gershengorn, M. C. Viral G protein-coupled receptor and Kaposi's sarcoma: a model of paracrine neoplasia? J. Exp. Med. 191, 417–422 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu, W. et al. KSHV/HHV-8 infection of human hematopoietic progenitor (CD34+) cells: persistence of infection during hematopoiesis in vitro and in vivo. Blood 108, 141–151 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Moses, A. V. et al. Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J. Virol. 73, 6892–6902 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Delgado, T. et al. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells. Proc. Natl Acad. Sci. USA 107, 10696–10701 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Flore, O. et al. Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature 394, 588–592 (1998).

    CAS  PubMed  Google Scholar 

  67. Ciufo, D. M. et al. Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J. Virol. 75, 5614–5626 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ye, F. C. et al. Kaposi's sarcoma-associated herpesvirus promotes angiogenesis by inducing angiopoietin-2 expression via AP-1 and Ets1. J. Virol. 81, 3980–3991 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sivakumar, R. et al. Kaposi's sarcoma-associated herpesvirus induces sustained levels of vascular endothelial growth factors A and C early during in vitro infection of human microvascular dermal endothelial cells: biological implications. J. Virol. 82, 1759–1776 (2008).

    CAS  PubMed  Google Scholar 

  70. Sadagopan, S. et al. Kaposi's sarcoma-associated herpesvirus upregulates angiogenin during infection of human dermal microvascular endothelial cells, which induces 45S rRNA synthesis, antiapoptosis, cell proliferation, migration, and angiogenesis. J. Virol. 83, 3342–3364 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sharma-Walia, N. et al. Kaposi's sarcoma associated herpes virus (KSHV) induced COX-2: a key factor in latency, inflammation, angiogenesis, cell survival and invasion. PLoS Pathog. 6, e1000777 (2010).

    PubMed  PubMed Central  Google Scholar 

  72. Staskus, K. A. et al. Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol. 71, 715–719 (1997). Analysis of KSHV latent and lytic gene expression in KS spindle cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang, H., Dittmer, D. P., Shin, Y. C., Hong, Y. & Jung, J. U. Role of Notch signal transduction in Kaposi's sarcoma-associated herpesvirus gene expression. J. Virol. 79, 14371–14382 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chandriani, S. & Ganem, D. Array-based transcript profiling and limiting-dilution reverse transcription-PCR analysis identify additional latent genes in Kaposi's sarcoma-associated herpesvirus. J. Virol. 84, 5565–5573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Okuno, T. et al. Activation of human herpesvirus 8 open reading frame K5 independent of ORF50 expression. Virus Res. 90, 77–89 (2002).

    CAS  PubMed  Google Scholar 

  76. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W. & Knowles, D. M. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332, 1186–1191 (1995). Original study describing the association of KSHV with PEL.

    CAS  PubMed  Google Scholar 

  77. Sun, R. et al. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proc. Natl Acad. Sci. USA 95, 10866–10871 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ballestas, M. E., Chatis, P. A. & Kaye, K. M. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644 (1999). Analysis of the role of LANA in maintaining the KSHV episome.

    CAS  PubMed  Google Scholar 

  79. Staudt, M. R. et al. The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res. 64, 4790–4799 (2004).

    CAS  PubMed  Google Scholar 

  80. Coscoy, L. Immune evasion by Kaposi's sarcoma-associated herpesvirus. Nature Rev. Immunol. 7, 391–401 (2007).

    CAS  Google Scholar 

  81. Areste, C. & Blackbourn, D. J. Modulation of the immune system by Kaposi's sarcoma-associated herpesvirus. Trends Microbiol. 17, 119–129 (2009).

    CAS  PubMed  Google Scholar 

  82. Friborg, J., Kong, W., Hottiger, M. O. & Nabel, G. J. p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402, 889–894 (1999).

    CAS  PubMed  Google Scholar 

  83. Si, H. & Robertson, E. S. Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. J. Virol. 80, 697–709 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Radkov, S. A., Kellam, P. & Boshoff, C. The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nature Med. 6, 1121–1127 (2000).

    CAS  PubMed  Google Scholar 

  85. Fujimuro, M. et al. A novel viral mechanism for dysregulation of β-catenin in Kaposi's sarcoma-associated herpesvirus latency. Nature Med. 9, 300–306 (2003).

    CAS  PubMed  Google Scholar 

  86. Di Bartolo, D. L. et al. KSHV LANA inhibits TGF-β signaling through epigenetic silencing of the TGF-β type II receptor. Blood 111, 4731–4740 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cai, Q. L., Knight, J. S., Verma, S. C., Zald, P. & Robertson, E. S. EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog. 2, e116 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. Verma, S. C., Borah, S. & Robertson, E. S. Latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor Sp1. J. Virol. 78, 10348–10359 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Watanabe, T. et al. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen prolongs the life span of primary human umbilical vein endothelial cells. J. Virol. 77, 6188–6196 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chang, Y. et al. Cyclin encoded by KS herpesvirus. Nature 382, 410 (1996). First characterization of the viral-encoded cyclin, revealing that vcyclin could function as a D type cyclin.

    CAS  PubMed  Google Scholar 

  91. Godden-Kent, D. et al. The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J. Virol. 71, 4193–4198 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mittnacht, S. & Boshoff, C. Viral cyclins. Rev. Med. Virol. 10, 175–184 (2000).

    CAS  PubMed  Google Scholar 

  93. Ojala, P. M. et al. The apoptotic v-cyclin-CDK6 complex phosphorylates and inactivates Bcl-2. Nature Cell Biol. 2, 819–825 (2000).

    CAS  PubMed  Google Scholar 

  94. Verschuren, E. W., Klefstrom, J., Evan, G. I. & Jones, N. The oncogenic potential of Kaposi's sarcoma-associated herpesvirus cyclin is exposed by p53 loss in vitro and in vivo. Cancer Cell 2, 229–241 (2002).

    CAS  PubMed  Google Scholar 

  95. Cuomo, M. E. et al. p53-Driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nature Cell Biol. 10, 723–730 (2008).

    CAS  PubMed  Google Scholar 

  96. Sarek, G. et al. Nucleophosmin phosphorylation by v-cyclin-CDK6 controls KSHV latency. PLoS Pathog. 6, e1000818 (2010).

    PubMed  PubMed Central  Google Scholar 

  97. Liu, L. et al. The human herpes virus 8-encoded viral FLICE inhibitory protein physically associates with and persistently activates the Iκ B kinase complex. J. Biol. Chem. 277, 13745–13751 (2002).

    CAS  PubMed  Google Scholar 

  98. Bagneris, C. et al. Crystal structure of a vFlip-IKKγ complex: insights into viral activation of the IKK signalosome. Mol. Cell 30, 620–631 (2008).

    CAS  PubMed  Google Scholar 

  99. Sun, Q., Matta, H., Lu, G. & Chaudhary, P. M. Induction of IL-8 expression by human herpesvirus 8 encoded vFLIP K13 via NF-κB activation. Oncogene 25, 2717–2726 (2006).

    CAS  PubMed  Google Scholar 

  100. Sakakibara, S., Pise-Masison, C. A., Brady, J. N. & Tosato, G. Gene regulation and functional alterations induced by Kaposi's sarcoma-associated herpesvirus-encoded ORFK13/vFLIP in endothelial cells. J. Virol. 83, 2140–2153 (2009).

    CAS  PubMed  Google Scholar 

  101. Guasparri, I., Keller, S. A. & Cesarman, E. KSHV vFLIP is essential for the survival of infected lymphoma cells. J. Exp. Med. 199, 993–1003 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee, J. S. et al. FLIP-mediated autophagy regulation in cell death control. Nature Cell Biol. 11, 1355–1362 (2009).

    CAS  PubMed  Google Scholar 

  103. Grossmann, C., Podgrabinska, S., Skobe, M. & Ganem, D. Activation of NF-κB by the latent vFLIP gene of Kaposi's sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype. J. Virol. 80, 7179–7185 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Sadler, R. et al. A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi's sarcoma-associated herpesvirus. J. Virol. 73, 5722–5730 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Muralidhar, S. et al. Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) transforming gene. J. Virol. 72, 4980–4988 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. McCormick, C. & Ganem, D. The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307, 739–741 (2005).

    CAS  PubMed  Google Scholar 

  107. Prakash, O. et al. Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene. J. Natl Cancer Inst. 94, 926–935 (2002).

    CAS  PubMed  Google Scholar 

  108. Verschuren, E. W. et al. The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res. 64, 581–589 (2004).

    CAS  PubMed  Google Scholar 

  109. Chugh, P. et al. Constitutive NF-κB activation, normal Fas-induced apoptosis, and increased incidence of lymphoma in human herpes virus 8 K13 transgenic mice. Proc. Natl Acad. Sci. USA 102, 12885–12890 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Fakhari, F. D., Jeong, J. H., Kanan, Y. & Dittmer, D. P. The latency-associated nuclear antigen of Kaposi sarcoma-associated herpesvirus induces B cell hyperplasia and lymphoma. J. Clin. Invest. 116, 735–742 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Sugaya, M. et al. Lymphatic dysfunction in transgenic mice expressing KSHV k-cyclin under the control of the VEGFR-3 promoter. Blood 105, 2356–2363 (2005).

    CAS  PubMed  Google Scholar 

  112. Cai, X. et al. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl Acad. Sci. USA 102, 5570–5575 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nature Methods 2, 269–276 (2005).

    CAS  PubMed  Google Scholar 

  114. Samols, M. A., Hu, J., Skalsky, R. L. & Renne, R. Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305 (2005). References 112, 113 and 114 described the identification of KSHV-encoded miRNAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Brown, H. J. et al. NF-κB inhibits γherpesvirus lytic replication. J. Virol. 77, 8532–8540 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lei, X. et al. Regulation of NF-κB inhibitor IκBα and viral replication by a KSHV microRNA. Nature Cell Biol. 12, 193–199 (2010).

    CAS  PubMed  Google Scholar 

  117. Samols, M. A. et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog. 3, e65 (2007).

    PubMed  PubMed Central  Google Scholar 

  118. Hansen, A. et al. KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev. 24, 195–205 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lagos, D. et al. miR-132 regulates antiviral innate immunity through suppression of the p300 transcriptional co-activator. Natures Cell Biol. 12, 513–519 (2010).

    CAS  Google Scholar 

  120. Anand, S. et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nature Med. 16, 909–914 (2010).

    CAS  PubMed  Google Scholar 

  121. Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C. & Cesarman, E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385, 347–350 (1997).

    CAS  PubMed  Google Scholar 

  122. Bais, C. et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391, 86–89 (1998). References 121 and 122 report the initial charaterization of the vGPCR.

    CAS  PubMed  Google Scholar 

  123. Sodhi, A. et al. The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1α. Cancer Res. 60, 4873–4880 (2000).

    CAS  PubMed  Google Scholar 

  124. Vart, R. J. et al. Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6 and G-protein-coupled receptor regulate angiopoietin-2 expression in lymphatic endothelial cells. Cancer Res. 67, 4042–4051 (2007).

    CAS  PubMed  Google Scholar 

  125. Schwarz, M. & Murphy, P. M. Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-κ B and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J. Immunol. 167, 505–513 (2001).

    CAS  PubMed  Google Scholar 

  126. Shepard, L. W. et al. Constitutive activation of NF-κ B and secretion of interleukin-8 induced by the G protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus involve Gα13 and RhoA. J. Biol. Chem. 276, 45979–45987 (2001).

    CAS  PubMed  Google Scholar 

  127. Yang, T. Y. et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi's sarcoma. J. Exp. Med. 191, 445–454 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Guo, H. G. et al. Kaposi's sarcoma-like tumors in a human herpesvirus 8 ORF74 transgenic mouse. J. Virol. 77, 2631–2639 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Grisotto, M. G. et al. The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J. Clin. Invest. 116, 1264–1273 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Montaner, S. et al. Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3, 23–36 (2003).

    CAS  PubMed  Google Scholar 

  131. Montaner, S. et al. The small GTPase Rac1 links the Kaposi sarcoma-associated herpesvirus vGPCR to cytokine secretion and paracrine neoplasia. Blood 104, 2903–2911 (2004).

    CAS  PubMed  Google Scholar 

  132. Sodhi, A. et al. The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell 10, 133–143 (2006).

    CAS  PubMed  Google Scholar 

  133. Ma, Q. et al. Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi's sarcoma. Proc. Natl Acad. Sci. USA 106, 8683–8688 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Nicholas, J. et al. Kaposi's sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nature Med. 3, 287–292 (1997).

    CAS  PubMed  Google Scholar 

  135. Aoki, Y. et al. Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93, 4034–4043 (1999).

    CAS  PubMed  Google Scholar 

  136. Boshoff, C. et al. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278, 290–294 (1997).

    CAS  PubMed  Google Scholar 

  137. Stine, J. T. et al. KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 95, 1151–1157 (2000).

    CAS  PubMed  Google Scholar 

  138. Sarid, R., Sato, T., Bohenzky, R. A., Russo, J. J. & Chang, Y. Kaposi's sarcoma-associated herpesvirus encodes a functional bcl-2 homologue. Nature Med. 3, 293–298 (1997).

    CAS  PubMed  Google Scholar 

  139. Cheng, E. H. et al. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl Acad. Sci. USA 94, 690–694 (1997). References 138 and 139 characterized the viral encoded BCL-2.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Flanagan, A. M. & Letai, A. BH3 domains define selective inhibitory interactions with BHRF-1 and KSHV BCL-2. Cell Death Differ. 15, 580–588 (2008).

    CAS  PubMed  Google Scholar 

  141. Seo, T., Park, J., Lee, D., Hwang, S. G. & Choe, J. Viral interferon regulatory factor 1 of Kaposi's sarcoma-associated herpesvirus binds to p53 and represses p53-dependent transcription and apoptosis. J. Virol. 75, 6193–6198 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Shin, Y. C. et al. Inhibition of the ATM/p53 signal transduction pathway by Kaposi's sarcoma-associated herpesvirus interferon regulatory factor 1. J. Virol. 80, 2257–2266 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Shin, Y. C., Joo, C. H., Gack, M. U., Lee, H. R. & Jung, J. U. Kaposi's sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 α to induce vascular endothelial growth factor expression. Cancer Res. 68, 1751–1759 (2008).

    CAS  PubMed  Google Scholar 

  144. Tomlinson, C. C. & Damania, B. The K1 protein of Kaposi's sarcoma-associated herpesvirus activates the Akt signaling pathway. J. Virol. 78, 1918–1927 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Berkova, Z. et al. Mechanism of Fas signaling regulation by human herpesvirus 8 K1 oncoprotein. J. Natl Cancer Inst. 101, 399–411 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Brinkmann, M. M. et al. Activation of mitogen-activated protein kinase and NF-κB pathways by a Kaposi's sarcoma-associated herpesvirus K15 membrane protein. J. Virol. 77, 9346–9358 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Brinkmann, M. M., Pietrek, M., Dittrich-Breiholz, O., Kracht, M. & Schulz, T. F. Modulation of host gene expression by the K15 protein of Kaposi's sarcoma-associated herpesvirus. J. Virol. 81, 42–58 (2007).

    CAS  PubMed  Google Scholar 

  148. Glaunsinger, B. & Ganem, D. Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Mol. Cell 13, 713–723 (2004).

    CAS  PubMed  Google Scholar 

  149. Orenstein, J. M. et al. Visualization of human herpesvirus type 8 in Kaposi's sarcoma by light and transmission electron microscopy. AIDS 11, F35–F45 (1997).

    CAS  PubMed  Google Scholar 

  150. Martin, D. F. et al. Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N. Engl. J. Med. 340, 1063–1070 (1999). Clinical study indicating that anti-herpesviral agents could prevent KS development.

    CAS  PubMed  Google Scholar 

  151. Wilkinson, J. et al. Identification of Kaposi's sarcoma-associated herpesvirus (KSHV)-specific cytotoxic T-lymphocyte epitopes and evaluation of reconstitution of KSHV-specific responses in human immunodeficiency virus type 1-Infected patients receiving highly active antiretroviral therapy. J. Virol. 76, 2634–2640 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Bourboulia, D. et al. Short- and long-term effects of highly active antiretroviral therapy on Kaposi sarcoma-associated herpesvirus immune responses and viraemia. AIDS 18, 485–493 (2004).

    CAS  PubMed  Google Scholar 

  153. Grundhoff, A. & Ganem, D. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Invest. 113, 124–136 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Montaner, S. et al. The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi's sarcoma. Cancer Res. 66, 168–174 (2006).

    CAS  PubMed  Google Scholar 

  155. Monini, P., Sgadari, C., Toschi, E., Barillari, G. & Ensoli, B. Antitumour effects of antiretroviral therapy. Nature Rev. Cancer 4, 861–875 (2004).

    CAS  Google Scholar 

  156. Bower, M., Palmieri, C. & Dhillon, T. AIDS-related malignancies: changing epidemiology and the impact of highly active antiretroviral therapy. Curr. Opin. Infect. Dis. 19, 14–19 (2006).

    PubMed  Google Scholar 

  157. Sullivan, R., Dezube, B. J. & Koon, H. B. Signal transduction targets in Kaposi's sarcoma. Curr. Opin. Oncol. 18, 456–462 (2006).

    CAS  PubMed  Google Scholar 

  158. Dittmer, D. P. & Krown, S. E. Targeted therapy for Kaposi's sarcoma and Kaposi's sarcoma-associated herpesvirus. Curr. Opin. Oncol. 19, 452–457 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Emuss, V. et al. KSHV manipulates Notch signaling by DLL4 and JAG1 to alter cell cycle genes in lymphatic endothelia. PLoS Pathog. 5, e1000616 (2009).

    PubMed  PubMed Central  Google Scholar 

  160. Curry, C. L. et al. γ secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi's sarcoma tumor cells. Oncogene 24, 6333–6344 (2005).

    CAS  PubMed  Google Scholar 

  161. Liu, R. et al. KSHV-induced notch components render endothelial and mural cell characteristics and cell survival. Blood 115, 887–895 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Hayward, G. S. KSHV strains: the origins and global spread of the virus. Semin. Cancer Biol. 9, 187–199 (1999).

    CAS  PubMed  Google Scholar 

  163. Greene, W. & Gao, S. J. Actin dynamics regulate multiple endosomal steps during Kaposi's sarcoma-associated herpesvirus entry and trafficking in endothelial cells. PLoS Pathog. 5, e1000512 (2009).

    PubMed  PubMed Central  Google Scholar 

  164. Dezube, B. J., Zambela, M., Sage, D. R., Wang, J. F. & Fingeroth, J. D. Characterization of Kaposi sarcoma-associated herpesvirus/human herpesvirus-8 infection of human vascular endothelial cells: early events. Blood 100, 888–896 (2002).

    CAS  PubMed  Google Scholar 

  165. Chen, J. et al. Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc. Natl Acad. Sci. USA 98, 4119–4124 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Lukac, D. M., Renne, R., Kirshner, J. R. & Ganem, D. Reactivation of Kaposi's sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R. protein. Virology 252, 304–312 (1998).

    CAS  PubMed  Google Scholar 

  167. Simas, J. P. & Efstathiou, S. Murine γherpesvirus 68: a model for the study of γherpesvirus pathogenesis. Trends Microbiol. 6, 276–282 (1998).

    CAS  PubMed  Google Scholar 

  168. Orzechowska, B. U. et al. Rhesus macaque rhadinovirus-associated non-Hodgkin lymphoma: animal model for KSHV-associated malignancies. Blood 112, 4227–4234 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Bruce, A. G. et al. High levels of retroperitoneal fibromatosis (RF)-associated herpesvirus in RF lesions in macaques are associated with ORF73 LANA expression in spindleoid tumour cells. J. Gen. Virol. 87, 3529–3538 (2006).

    CAS  PubMed  Google Scholar 

  170. An, F. Q. et al. Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi's sarcoma-associated herpesvirus latency in vitro and in vivo. J. Virol. 80, 4833–4846 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Mutlu, A. D. et al. In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi's sarcoma. Cancer Cell 11, 245–258 (2007). A KSHV-BAC-infected line induces lesions resembling KS in a murine model.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Dittmer, D. et al. Experimental transmission of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J. Exp. Med. 190, 1857–1868 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Parsons, C. H. et al. KSHV targets multiple leukocyte lineages during long-term productive infection in NOD/SCID mice. J. Clin. Invest. 116, 1963–1973 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Chang, H. et al. Non-human primate model of Kaposi's sarcoma-associated herpesvirus infection. PLoS Pathog. 5, e1000606 (2009).

    PubMed  PubMed Central  Google Scholar 

  175. Boshoff, C. & Weiss, R. AIDS-related malignancies. Nature Rev. Cancer 2, 373–382 (2002).

    CAS  Google Scholar 

  176. Heckman, C. A. et al. The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res. 68, 4754–4762 (2008).

    CAS  PubMed  Google Scholar 

  177. Ardavanis, A., Doufexis, D., Kountourakis, P. & Rigatos, G. A Kaposi's sarcoma complete clinical response after sorafenib administration. Ann. Oncol. 19, 1658–1659 (2008).

    CAS  PubMed  Google Scholar 

  178. Brown, L. F., Dezube, B. J., Tognazzi, K., Dvorak, H. F. & Yancopoulos, G. D. Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi's sarcoma and cutaneous angiosarcoma. Am. J. Pathol. 156, 2179–2183 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Moses, A. V. et al. Kaposi's sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J. Virol. 76, 8383–8399 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Koon, H. B. et al. Imatinib-induced regression of AIDS-related Kaposi's sarcoma. J. Clin. Oncol. 23, 982–989 (2005).

    CAS  PubMed  Google Scholar 

  181. Stallone, G. et al. Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N. Engl. J. Med. 352, 1317–1323 (2005). Original description of striking responses of KS lesions after treatment with an mTOR inhibitor.

    CAS  PubMed  Google Scholar 

  182. Giraldo, G., Beth, E. & Haguenau, F. Herpes-type virus particles in tissue culture of Kaposi's sarcoma from different geographic regions. J. Natl Cancer Inst. 49, 1509–1526 (1972).

    CAS  PubMed  Google Scholar 

  183. Huebner, K., Ferrari, A. C., Delli Bovi, P., Croce, C. M. & Basilico, C. The FGF-related oncogene, K-FGF, maps to human chromosome region 11q13, possibly near int-2. Oncogene Res. 3, 263–270 (1988).

    CAS  PubMed  Google Scholar 

  184. Cesarman, E. et al. In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86, 2708–2714 (1995).

    CAS  PubMed  Google Scholar 

  185. Soulier, J. et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276–1280 (1995). First paper to link KSHV to the pathogenesis of multicentric Castleman's disease.

    CAS  PubMed  Google Scholar 

  186. Boshoff, C. et al. Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nature Med. 1, 1274–1278 (1995). Original paper showing KSHV is present in each tumour (spindle cell) in KS lesions.

    CAS  PubMed  Google Scholar 

  187. Renne, R. et al. Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nature Med. 2, 342–346 (1996). First paper describing in vitro lytic growth of the virus.

    CAS  PubMed  Google Scholar 

  188. Gao, S. J. et al. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nature Med. 2, 925–928 (1996).

    CAS  PubMed  Google Scholar 

  189. Kedes, D. H. et al. The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nature Med. 2, 918–924 (1996).

    CAS  PubMed  Google Scholar 

  190. Moore, P. S., Boshoff, C., Weiss, R. A. & Chang, Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274, 1739–1744 (1996).

    CAS  PubMed  Google Scholar 

  191. Neipel, F. et al. Human herpesvirus 8 encodes a homolog of interleukin-6. J. Virol. 71, 839–842 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Coscoy, L. & Ganem, D. Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl Acad. Sci. USA 97, 8051–8056 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Ishido, S. et al. Inhibition of natural killer cell-mediated cytotoxicity by Kaposi's sarcoma-associated herpesvirus K5 protein. Immunity 13, 365–374 (2000).

    CAS  PubMed  Google Scholar 

  194. Ishido, S., Wang, C., Lee, B. S., Cohen, G. B. & Jung, J. U. Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol. 74, 5300–5309 (2000). References 192, 193 and 194 characterized ORFs K3 and K5, which led to the discovery of cellular MIR proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Akula, S. M., Pramod, N. P., Wang, F. Z. & Chandran, B. Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108, 407–419 (2002).

    CAS  PubMed  Google Scholar 

  196. Sun, Q., Matta, H. & Chaudhary, P. M. The human herpes virus 8-encoded viral FLICE inhibitory protein protects against growth factor withdrawal-induced apoptosis via NF-κ B activation. Blood 101, 1956–1961 (2003).

    CAS  PubMed  Google Scholar 

  197. Kaleeba, J. A. & Berger, E. A. Kaposi's sarcoma-associated herpesvirus fusion-entry receptor: cystine transporter xCT. Science 311, 1921–1924 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.A.M. is supported by US National Institutes of Health grants CA75918 and CA136387, and C.B. by Cancer Research UK, the Medical Research Council and the University College London and University College London Hopsitals Comprehensive Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Cancer Incidence in Five Continents

Globocan database

SEER

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesri, E., Cesarman, E. & Boshoff, C. Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 10, 707–719 (2010). https://doi.org/10.1038/nrc2888

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2888

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer