Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shared and separate functions of polo-like kinases and aurora kinases in cancer

Key Points

  • The polo-like kinases 1–5 (PLK1–5), and aurora kinases, aurora kinase A, aurora kinase B and aurora kinase C have essential roles during cell division, and a large number of inhibitors for these kinases are currently being evaluated as anticancer drugs in Phase I and Phase II clinical trials.

  • Information on the selectivity of these compounds in vivo is limited, but it is likely that off-target effects within the same kinase families will affect efficacy and toxicity profiles.

  • The efficacy of polo-like kinase and aurora kinase inhibitors probably primarily depends on their capacity to severely disrupt normal cell division, implying a limited tumour specificity of these types of drugs.

  • It is unclear whether PLK1 and the aurora kinases have oncogenic or tumour suppressor activity when deregulated. However, the increased cancer incidence in heterozygous mice suggests a role for them as tumour suppressors, probably through the prevention of chromosome instability.

  • PLK1 and the aurora kinases co-regulate multiple processes in the dividing cell, such as entry into mitosis, mitotic spindle formation, sister chromatid resolution, chromosome–spindle connections and cytokinesis. Although some overlap in clinical performance can be expected of PLK1 and aurora kinase inhibitors, these kinases can also antagonize one another. Consequently, the outcome of selective PLK1, aurora kinase A or aurora kinase B inhibition, compared with combined inhibition, will certainly be different.

  • Several treatment approaches have been proposed, which consist of PLK1, aurora kinase A or aurora kinase B inhibition combined with conventional chemotherapeutic agents that might enhance the efficacy and specificity of these drugs.

Abstract

Large numbers of inhibitors for polo-like kinases and aurora kinases are currently being evaluated as anticancer drugs. Interest in these drugs is fuelled by the idea that these kinases have unique functions in mitosis. Within the polo-like kinase family, the emphasis for targeted therapies has been on polo-like kinase 1 (PLK1), and in the aurora kinase family drugs have been developed to specifically target aurora kinase A (AURKA; also known as STK6) and/or aurora kinase B (AURKB; also known as STK12). Information on the selectivity of these compounds in vivo is limited, but it is likely that off-target effects within the same kinase families will affect efficacy and toxicity profiles. In addition, it is becoming clear that interplay between polo-like kinases and aurora kinases is much more extensive than initially anticipated, and that both kinase families are important factors in the response to classical chemotherapeutics that damage the genome or the mitotic spindle. In this Review we discuss the implications of these novel insights on the clinical applicability of polo-like kinase and aurora kinase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of PLK1, aurora kinase A and aurora kinase B in the dividing cell.
Figure 2: Cellular phenotypes induced by polo-like kinase and aurora kinase inhibitors.
Figure 3: Crosstalk between PLK1 and aurora kinase A in mitotic entry.
Figure 4: Crosstalk between PLK1 and aurora kinase B in the regulation of kinetochore–microtubule interactions.

Similar content being viewed by others

References

  1. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nature Rev. Cancer 4, 253–265 (2004).

    Article  CAS  Google Scholar 

  2. Sudakin, V. & Yen, T. J. Targeting mitosis for anti-cancer therapy. BioDrugs 21, 225–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Vader, G. & Lens, S. M. The Aurora kinase family in cell division and cancer. Biochim. Biophys. Acta 1786, 60–72 (2008).

    CAS  PubMed  Google Scholar 

  4. Barr, A. R. & Gergely, F. Aurora-A: the maker and breaker of spindle poles. J. Cell Sci. 120, 2987–2996 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Marumoto, T. et al. Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J. Biol. Chem. 278, 51786–51795 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hoar, K. et al. MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol. Cell Biol. 27, 4513–4525 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manfredi, M. G. et al. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc. Natl Acad. Sci. USA 104, 4106–4111 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruchaud, S., Carmena, M. & Earnshaw, W. C. Chromosomal passengers: conducting cell division. Nature Rev. Mol. Cell Biol. 8, 798–812 (2007).

    Article  CAS  Google Scholar 

  9. Vader, G., Medema, R. H. & Lens, S. M. The chromosomal passenger complex: guiding Aurora-B through mitosis. J. Cell Biol. 173, 833–837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, F. et al. Histone H3 Thr-3 phosphorylation by haspin positions aurora B at centromeres in mitosis. Science 330, 231–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kelly, A. E. et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase aurora, B. Science 330, 235–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamagishi, Y., Honda, T., Tanno, Y. & Watanabe, Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science 303, 239–243 (2010).

    Article  CAS  Google Scholar 

  13. Tsukahara, T., Tanno, Y. & Watanabe, Y. Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature 467, 719–723 (2010). In references 10–12 a crucial chromatin factor is identified that dictates centromeric localization of the CPC. Histone H3 phosphorylated at T3 by haspin is directly recognized by the CPC subunit survivin. In human cells, borealin (in addition to survivin) also contributes to the centromeric localization of the CPC through direct interaction with the shugoshin proteins. Reference 13 shows that this interaction requires the phosphorylation of borealin by CDK1.

    Article  CAS  PubMed  Google Scholar 

  14. Fu, J., Bian, M., Liu, J., Jiang, Q. & Zhang, C. A single amino acid change converts Aurora-A into Aurora-B-like kinase in terms of partner specificity and cellular function. Proc. Natl Acad. Sci. USA 106, 6939–6944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hans, F., Skoufias, D. A., Dimitrov, S. & Margolis, R. L. Molecular distinctions between Aurora A and B: a single residue change transforms Aurora A into correctly localized and functional Aurora, B. Mol. Biol. Cell 20, 3491–3502 (2009). References 14 and 15 demonstrate that a single amino acid change can convert aurora kinase A into an aurora kinase B-like kinase in terms of partner specificity and cellular function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lewis, K. D. et al. A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma. Invest. New Drugs 15 Oct 2009 (doi:10.1007/s10637-009-9333–9336).

  17. Hansen, J. B. et al. SPC3042: a proapoptotic survivin inhibitor. Mol. Cancer Ther. 7, 2736–2745 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaestner, P., Stolz, A. & Bastians, H. Determinants for the efficiency of anticancer drugs targeting either Aurora-A or Aurora-B kinases in human colon carcinoma cells. Mol. Cancer Ther. 8, 2046–2056 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Cheung, C. H., Coumar, M. S., Hsieh, H. P. & Chang, J. Y. Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin. Investig Drugs 18, 379–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Kimmins, S. et al. Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Mol. Endocrinol. 21, 726–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Tang, C. J., Lin, C. Y. & Tang, T. K. Dynamic localization and functional implications of Aurora-C kinase during male mouse meiosis. Dev. Biol. 290, 398–410 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lu, L. Y. et al. Aurora A is essential for early embryonic development and tumor suppression. J. Biol. Chem. 283, 31785–31790 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sasai, K. et al. Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell. Motil. Cytoskeleton 59, 249–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Li, X. et al. Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J. Biol. Chem. 279, 47201–47211 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Yan, X. et al. Aurora C is directly associated with Survivin and required for cytokinesis. Genes Cells 10, 617–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Brown, J. R., Koretke, K. K., Birkeland, M. L., Sanseau, P. & Patrick, D. R. Evolutionary relationships of Aurora kinases: implications for model organism studies and the development of anti-cancer drugs. BMC Evol. Biol. 4, 39 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wilkinson, R. W. et al. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin. Cancer Res. 13, 3682–3688 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nature Rev. Cancer 6, 321–330 (2006).

    Article  CAS  Google Scholar 

  31. Park, J. E. et al. Polo-box domain: a versatile mediator of polo-like kinase function. Cell. Mol. Life Sci. 67, 1957–1970.

    Article  CAS  Google Scholar 

  32. Elia, A. E. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Archambault, V., D'Avino, P. P., Deery, M. J., Lilley, K. S. & Glover, D. M. Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev. 22, 2707–2720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garcia-Alvarez, B., de Carcer, G., Ibanez, S., Bragado-Nilsson, E. & Montoya, G. Molecular and structural basis of polo-like kinase 1 substrate recognition: Implications in centrosomal localization. Proc. Natl Acad. Sci. USA 104, 3107–3112 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R. & Fang, G. Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655–1658 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lowery, D. M. et al. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J. 26, 2262–2273 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burns, T. F., Fei, P., Scata, K. A., Dicker, D. T. & El-Deiry, W. S. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol. Cell Biol. 23, 5556–5571 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Warnke, S. et al. Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr. Biol. 14, 1200–1207 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Ang, X. L., Seeburg, D. P., Sheng, M. & Harper, J. W. Regulation of postsynaptic RapGAP SPAR by Polo-like kinase 2 and the SCFbeta-TRCP ubiquitin ligase in hippocampal neurons. J. Biol. Chem. 283, 29424–29432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Inglis, K. J. et al. Polo-like kinase 2 (PLK2) phosphorylates α-synuclein at serine 129 in central nervous system. J. Biol. Chem. 284, 2598–2602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seeburg, D. P., Feliu-Mojer, M., Gaiottino, J., Pak, D. T. & Sheng, M. Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron 58, 571–583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seeburg, D. P. & Sheng, M. Activity-induced Polo-like kinase 2 is required for homeostatic plasticity of hippocampal neurons during epileptiform activity. J. Neurosci. 28, 6583–6591 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie, S. et al. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J. Biol. Chem. 276, 36194–36199 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Xie, S. et al. Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J. Biol. Chem. 276, 43305–43312 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Bahassi el, M. et al. Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene 21, 6633–6640 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. Wang, L., Gao, J., Dai, W. & Lu, L. Activation of Polo-like kinase 3 by hypoxic stresses. J. Biol. Chem. 283, 25928–25935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nigg, E. A. Centrosome duplication: of rules and licenses. Trends Cell Biol. 17, 215–221 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Andrysik, Z. et al. The novel mouse Polo-like kinase 5 responds to DNA damage and localizes in the nucleolus. Nucleic Acids Res. 38, 2931–2943 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yang, Y. et al. Polo-like kinase 3 functions as a tumor suppressor and is a negative regulator of hypoxia-inducible factor-1 alpha under hypoxic conditions. Cancer Res. 68, 4077–4085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Steegmaier, M. et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17, 316–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lane, H. A. & Nigg, E. A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135, 1701–1713 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Seong, Y. S. et al. A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J. Biol. Chem. 277, 32282–32293 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Sumara, I. et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol. 14, 1712–1722 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Van Vugt, M. A. et al. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for APC/Cdc20 activation and initiation of cytokinesis. J. Biol. Chem. 279, 36841–36854 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Archambault, V. & Glover, D. M. Polo-like kinases: conservation and divergence in their functions and regulation. Nature Rev. Mol. Cell Biol. 10, 265–275 (2009).

    Article  CAS  Google Scholar 

  56. Cogswell, J. P., Brown, C. E., Bisi, J. E. & Neill, S. D. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ. 11, 615–623 (2000).

    CAS  PubMed  Google Scholar 

  57. Liu, X., Lei, M. & Erikson, R. L. Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol. Cell Biol. 26, 2093–2108 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Bischoff, J. R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J. 17, 3052–3065 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20, 189–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A. R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3, 51–62 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J. 21, 483–492 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, D. et al. Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene 23, 8720–8730 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, D. et al. Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice. Oncogene 27, 4305–4314 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Tatsuka, M. et al. Overexpression of Aurora-A potentiates HRAS-mediated oncogenic transformation and is implicated in oral carcinogenesis. Oncogene 24, 1122–1127 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Kanda, A. et al. Aurora-B/AIM-1 kinase activity is involved in Ras-mediated cell transformation. Oncogene 24, 7266–7272 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Nguyen, H. G. et al. Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB J. 23, 2741–2748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ota, T. et al. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res. 62, 5168–5177 (2002).

    CAS  PubMed  Google Scholar 

  68. Tchatchou, S. et al. Aurora kinases A and B and familial breast cancer risk. Cancer Lett. 247, 266–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Davies, H. et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res. 65, 7591–7595 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Smith, M. R. et al. Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem. Biophys. Res. Commun. 234, 397–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Mundt, K. E., Golsteyn, R. M., Lane, H. A. & Nigg, E. A. On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem. Biophys. Res. Commun. 239, 377–385 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Jang, Y. J., Lin, C. Y., Ma, S. & Erikson, R. L. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl Acad. Sci. USA 99, 1984–1989 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Simizu, S. & Osada, H. Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nature Cell Biol. 2, 852–854 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Macmillan, J. C., Hudson, J. W., Bull., S., Dennis, J. W. & Swallow, C. J. Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer. Ann. Surg. Oncol. 8, 729–740 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Kimura, M. T. et al. Two functional coding single nucleotide polymorphisms in STK15 (Aurora-A) coordinately increase esophageal cancer risk. Cancer Res. 65, 3548–3554 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Syed, N. et al. Transcriptional silencing of Polo-like kinase 2 (SNK/PLK2) is a frequent event in B-cell malignancies. Blood 107, 250–256 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Dai, W. et al. PRK, a cell cycle gene localized to 8p21, is downregulated in head and neck cancer. Genes Chromosom. Cancer 27, 332–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Li, B. et al. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J. Biol. Chem. 271, 19402–19408 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Wiest, J., Clark, A. M. & Dai, W. Intron/exon organization and polymorphisms of the PLK3/PRK gene in human lung carcinoma cell lines. Genes Chromosom. Cancer 32, 384–389 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Conn, C. W., Hennigan, R. F., Dai, W., Sanchez, Y. & Stambrook, P. J. Incomplete cytokinesis and induction of apoptosis by overexpression of the mammalian polo-like kinase, Plk3. Cancer Res. 60, 6826–6831 (2000).

    CAS  PubMed  Google Scholar 

  81. Fode, C., Binkert, C. & Dennis, J. W. Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol. Cell Biol. 16, 4665–4672 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ko, M. A. et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nature Genet. 37, 883–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Rosario, C. O. et al. Plk4 is required for cytokinesis and maintenance of chromosomal stability. Proc. Natl Acad. Sci. USA 107, 6888–6893 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lu, L. Y. et al. Polo-like kinase 1 is essential for early embryonic development and tumor suppression. Mol. Cell Biol. 28, 6870–6876 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lugo, T. G., Pendergast, A. M., Muller, A. J. & Witte, O. N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247, 1079–1082 (1990).

    Article  CAS  PubMed  Google Scholar 

  86. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med. 2, 561–566 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Weinstein, I. B. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Harrington, E. A. et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Med. 10, 262–267 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Soncini, C. et al. PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin. Cancer Res. 12, 4080–4089 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Oke, A. et al. AZD1152 rapidly and negatively affects the growth and survival of human acute myeloid leukemia cells in vitro and in vivo. Cancer Res. 69, 4150–4158 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hardwicke, M. A. et al. GSK1070916, a potent Aurora B/C kinase inhibitor with broad antitumor activity in tissue culture cells and human tumor xenograft models. Mol. Cancer Ther. 8, 1808–1817 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Otto, T. et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 15, 67–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Leber, B. et al. Proteins required for centrosome clustering in cancer cells. Sci. Transl. Med. 2, 33–38 (2010).

    Article  CAS  Google Scholar 

  94. Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 22, 2189–2203 (2008). Reference 94 shows that tumour cells with multiple centrosomes can be made susceptible to deleterious multipolar cell divisions when centrosome clustering is perturbed. In reference 93, this finding was used to screen for proteins involved in centrosome clustering in tumour cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009). PLK1 and APC/C were identified in a synthetic lethal screen with oncogenic KRAS-G13D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. van Vugt, M. A., Bras., A. & Medema, R. H. Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol. Cell 15, 799–811 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Lei, M. & Erikson, R. L. Plk1 depletion in nontransformed diploid cells activates the DNA-damage checkpoint. Oncogene 27, 3935–3943 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Lindqvist, A., Rodriguez-Bravo, V. & Medema, R. H. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J. Cell Biol. 185, 193–202 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Watanabe, N. et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc. Natl Acad. Sci. USA 101, 4419–4424 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roshak, A. K. et al. The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal 12, 405–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Hanisch, A., Wehner, A., Nigg, E. A. & Sillje, H. H. Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol. Biol. Cell 17, 448–459 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. van de Weerdt, B. C. et al. Polo-box domains confer target specificity to the Polo-like kinase family. Biochim. Biophys. Acta 1783, 1015–1022 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Hirota, T. et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114, 585–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Dutertre, S. et al. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J. Cell Sci. 117, 2523–2531 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Macurek, L. et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455, 119–123 (2008). References 35 and 105 show that PLK1 is phosphorylated and activated by aurora kinase A and its cofactor BORA to promote mitotic entry.

    Article  CAS  PubMed  Google Scholar 

  106. Chan, E. H., Santamaria, A., Sillje, H. H. & Nigg, E. A. Plk1 regulates mitotic Aurora A function through betaTrCP-dependent degradation of hBora. Chromosoma 117, 457–469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Van Horn, R. D. et al. Cdk1 activity is required for mitotic activation of Aurora A during G2/M transition of human cells. J. Biol. Chem. 285, 21849–21857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hata, T. et al. RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res. 65, 2899–2905 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Liu, Q. & Ruderman, J. V. Aurora A, mitotic entry, and spindle bipolarity. Proc. Natl Acad. Sci. USA 103, 5811–5816 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Marumoto, T. et al. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 7, 1173–1182 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Hayashi-Takanaka, Y., Yamagata, K., Nozaki, N. & Kimura, H. Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. J. Cell Biol. 187, 781–790 (2009). This study shows that transient inhibition of aurora kinase B activity and histone H3 phosphorylation in interphase can affect accurate chromosome segregation in anaphase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438, 1176–1180 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Nozawa, R. S. et al. Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nature Cell Biol. 12, 719–727 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Monaco, L. et al. Inhibition of Aurora-B kinase activity by poly(ADP-ribosyl)ation in response to DNA damage. Proc. Natl Acad. Sci. USA 102, 14244–14248 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Casenghi, M. et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell 5, 113–125 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Oshimori, N., Ohsugi, M. & Yamamoto, T. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nature Cell Biol. 8, 1095–1101 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Toji, S. et al. The centrosomal protein Lats2 is a phosphorylation target of Aurora-A kinase. Genes Cells 9, 383–397 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Mori, D. et al. NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol. Cell Biol. 27, 352–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Giet, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol. 156, 437–451 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roghi, C. et al. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci. 111, 557–572 (1998).

    CAS  PubMed  Google Scholar 

  123. Soung, N. K. et al. Requirement of hCenexin for proper mitotic functions of polo-like kinase 1 at the centrosomes. Mol. Cell Biol. 26, 8316–8335 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tsai, M. Y. & Zheng, Y. Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly. Curr. Biol. 15, 2156–2163 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, X., Ems-McClung, S. C. & Walczak, C. E. Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol. Biol. Cell 19, 2752–2765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ohi, R., Sapra, T., Howard, J. & Mitchison, T. J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell 15, 2895–2906 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gadea, B. B. & Ruderman, J. V. Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/Stathmin. Proc. Natl Acad. Sci. USA 103, 4493–4498 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Maresca, T. J. et al. Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr. Biol. 19, 1210–1215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Clarke, P. R. & Zhang, C. Spatial and temporal coordination of mitosis by Ran GTPase. Nature Rev. Mol. Cell Biol. 9, 464–477 (2008).

    Article  CAS  Google Scholar 

  130. Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Gandhi, R., Gillespie, P. J. & Hirano, T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16, 2406–2417 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol. 3, e69 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16, 3004–3016 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol. Cell 9, 515–525 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Gimenez-Abian, J. F. et al. Regulation of sister chromatid cohesion between chromosome arms. Curr. Biol. 14, 1187–1193 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Peters, J. M., Tedeschi, A. & Schmitz, J. The cohesin complex and its roles in chromosome biology. Genes Dev. 22, 3089–3114 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43, 525–558 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Dai, J., Sullivan, B. A. & Higgins, J. M. Regulation of mitotic chromosome cohesion by Haspin and Aurora, B. Dev. Cell 11, 741–750 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441, 46–52 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell 10, 575–585 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Xu, Z. et al. Structure and function of the PP2A-shugoshin interaction. Mol. Cell 35, 426–441 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J. M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol. 3, e86 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Famulski, J. K. & Chan, G. K. Aurora B kinase-dependent recruitment of hZW10 and hROD to tensionless kinetochores. Curr. Biol. 17, 2143–2149 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Kawashima, S. A., Yamagishi, Y., Honda, T., Ishiguro, K. & Watanabe, Y. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327, 172–177 (2010). This elegant study explains how BUB1 regulates the localization of shugoshin, the protector of centromere cohesin. Through phosphorylation of histone H2A, BUB1 creates a docking site for shugoshin at the centromere.

    Article  CAS  PubMed  Google Scholar 

  147. Resnick, T. D. et al. INCENP and Aurora B promote meiotic sister chromatid cohesion through localization of the Shugoshin MEI-S332 in Drosophila. Dev. Cell 11, 57–68 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Pouwels, J. et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plk1. Cell Cycle 6, 1579–1585 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Tanno, Y. et al. Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres. Genes Dev. 24, 2169–2179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tanaka, T. U. et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Lampson, M. A., Renduchitala, K., Khodjakov, A. & Kapoor, T. M. Correcting improper chromosome-spindle attachments during cell division. Nature Cell Biol. 6, 232–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science 323, 1350–1353 (2009). Experimental evidence for the model that chromosome bi-orientation spatially separates kinetochore substrates from aurora kinase B localized at the inner centromere, allowing stabilization of bipolar attachments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell 127, 969–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Welburn, J. P. et al. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell 38, 383–392 (2010). This study shows that aurora kinase B phosphorylates three spatially distinct targets in the KMN network, the microtubule binding unit of the kinetochore. Differential phosphorylation of these targets in response to changes in tension probably affects the stability of kinetochore-microtubule attachments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol. 188, 809–820 (2010). Through phosphorylation of KNL1, aurora kinase B regulates the kinetochore localization of its counteracting phosphatase PP1γ.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Goto, H. et al. Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nature Cell Biol. 8, 180–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Rosasco-Nitcher, S. E., Lan, W., Khorasanizadeh, S. & Stukenberg, P. T. Centromeric Aurora-B activation requires TD-60, microtubules, and substrate priming phosphorylation. Science 319, 469–472 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Lenart, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol. 17, 304–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  161. Lampson, M. A. & Kapoor, T. M. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nature Cell Biol. 7, 93–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Elowe, S., Hummer, S., Uldschmid, A., Li, X. & Nigg, E. A. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev. 21, 2205–2219 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Elowe, S. et al. Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J. Cell Sci. 123, 84–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Coelho, P. A. et al. Dual role of topoisomerase II in centromere resolution and aurora B activity. PLoS Biol. 6, e207 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  Google Scholar 

  166. Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell 13, 1099–1108 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hummer, S. & Mayer, T. U. Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr. Biol. 19, 607–612 (2009).

    Article  CAS  PubMed  Google Scholar 

  168. Neef, R. et al. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nature Cell Biol. 9, 436–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Petronczki, M., Glotzer, M., Kraut, N. & Peters, J. M. Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev. Cell 12, 713–725 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Guse, A., Mishima, M. & Glotzer, M. Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr. Biol. 15, 778–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Wolfe, B. A., Takaki, T., Petronczki, M. & Glotzer, M. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol. 7, e1000110 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Burkard, M. E. et al. Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc. Natl Acad. Sci. USA 104, 4383–4388 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gruneberg, U., Neef, R., Honda, R., Nigg, E. A. & Barr, F. A. Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J. Cell Biol. 166, 167–172 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Burkard, M. E. et al. Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biol. 7, e1000111 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol. 10, 1172–1181 (2000).

    Article  CAS  PubMed  Google Scholar 

  176. Neef, R., Klein, U. R., Kopajtich, R. & Barr, F. A. Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr. Biol. 16, 301–307 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Douglas, M. E., Davies, T., Joseph, N. & Mishima, M. Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis. Curr. Biol. 20, 927–933.

  178. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  180. Floyd, S., Pines, J. & Lindon, C. APC/C Cdh1 targets aurora kinase to control reorganization of the mitotic spindle at anaphase. Curr. Biol. 18, 1649–1658 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. van Leuken, R. et al. Polo-like kinase-1 controls Aurora A destruction by activating APC/C-Cdh1. PLoS One 4, e5282 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Huang, H. C., Shi, J., Orth, J. D. & Mitchison, T. J. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 16, 347–358 (2009). Knock down of the APC/C subunit CDC20 prevented cells from exiting mitosis. The resulting mitotic arrest promoted cell death in mitosis. The cell killing effect of this approach appeared to be more effective than that of anti-mitotic drugs and correlated with duration of the mitotic arrest.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Janssen, A., Kops, G. J. & Medema, R. H. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc. Natl Acad. Sci. USA 106, 19108–19113 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Scharer, C. D. et al. Aurora kinase inhibitors synergize with paclitaxel to induce apoptosis in ovarian cancer cells. J. Transl. Med. 6, 79 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Bedard, P. L., Di Leo, A. & Piccart-Gebhart, M. J. Taxanes: optimizing adjuvant chemotherapy for early-stage breast cancer. Nature Rev. Clin. Oncol. 7, 22–36 (2010).

    Article  CAS  Google Scholar 

  188. VanderPorten, E. C. et al. The Aurora kinase inhibitor SNS-314 shows broad therapeutic potential with chemotherapeutics and synergy with microtubule-targeted agents in a colon carcinoma model. Mol. Cancer Ther. 8, 930–939 (2009).

    Article  CAS  PubMed  Google Scholar 

  189. Nair, J. S., de Stanchina, E. & Schwartz, G. K. The topoisomerase I poison CPT-11 enhances the effect of the aurora B kinase inhibitor AZD1152 both in vitro and in vivo. Clin. Cancer Res. 15, 2022–2030 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Wysong, D. R., Chakravarty, A., Hoar, K. & Ecsedy, J. A. The inhibition of Aurora A abrogates the mitotic delay induced by microtubule perturbing agents. Cell Cycle 8, 876–888 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Vader, G., Maia, A. F. & Lens, S. M. The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond. Cell Div. 3, 10 (2008).

  192. Knight, Z. A. & Shokat, K. M. Chemical genetics: where genetics and pharmacology meet. Cell 128, 425–430 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Schoffski, P. Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist 14, 559–570 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Degenhardt, Y. & Lampkin, T. Targeting Polo-like kinase in cancer therapy. Clin. Cancer Res. 16, 384–389 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Reindl, W., Yuan, J., Kramer, A., Strebhardt, K. & Berg, T. Inhibition of polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions. Chem. Biol. 15, 459–466 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Reindl, W., Yuan, J., Kramer, A., Strebhardt, K. & Berg, T. A pan-specific inhibitor of the polo-box domains of polo-like kinases arrests cancer cells in mitosis. Chembiochem 10, 1145–1148 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Garland, L. L., Taylor, C., Pilkington, D. L., Cohen, J. L. & Von Hoff, D. D. A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1-interacting properties, in patients with advanced solid tumors. Clin. Cancer Res. 12, 5182–5189 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Watanabe, N. et al. Deficiency in chromosome congression by the inhibition of Plk1 polo box domain-dependent recognition. J. Biol. Chem. 284, 2344–2353 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Peters, U., Cherian, J., Kim, J. H., Kwok, B. H. & Kapoor, T. M. Probing cell-division phenotype space and Polo-like kinase function using small molecules. Nature Chem. Biol. 2, 618–626 (2006).

    Article  CAS  Google Scholar 

  200. Kitzen, J. J., de Jonge, M. J. & Verweij, J. Aurora kinase inhibitors. Crit. Rev. Oncol. Hematol. 73, 99–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  201. Mountzios, G., Terpos, E. & Dimopoulos, M. A. Aurora kinases as targets for cancer therapy. Cancer Treat Rev. 34, 175–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Soung, N. K. et al. Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev. Cell 16, 539–550 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kang, Y. H. et al. Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol. Cell 24, 409–422 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Qi, W., Tang, Z. & Yu, H. Phosphorylation- and polo-box-dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol. Biol. Cell 17, 3705–3716 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Nishino, M. et al. NudC is required for Plk1 targeting to the kinetochore and chromosome congression. Curr. Biol. 16, 1414–1421 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Neef, R. et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 162, 863–875 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Petretti, C. et al. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep. 7, 418–424 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Terada, Y., Uetake, Y. & Kuriyama, R. Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells. J. Cell Biol. 162, 757–763 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kufer, T. A. et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol. 158, 617–623 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Eyers, P. A., Erikson, E., Chen, L. G. & Maller, J. L. A novel mechanism for activation of the protein kinase Aurora, A. Curr. Biol. 13, 691–697 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Du, J., Jablonski, S., Yen, T. J. & Hannon, G. J. Astrin regulates Aurora-A localization. Biochem. Biophys. Res. Commun. 370, 213–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M. & Earnshaw, W. C. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol. 143, 1763–1774 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kiyomitsu, T., Iwasaki, O., Obuse, C. & Yanagida, M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J. Cell Biol. 188, 791–807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lens, S. M. et al. Uncoupling the central spindle-associated function of the chromosomal passenger complex from its role at centromeres. Mol. Biol. Cell 17, 1897–1909 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Vader, G., Kauw, J. J., Medema, R. H. & Lens, S. M. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep. 7, 85–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  216. Klein, U. R., Nigg, E. A. & Gruneberg, U. Centromere targeting of the chromosomal passenger complex requires a ternarysubcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol. Biol. Cell 17, 2547–2558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Jeyaprakash, A. A. et al. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell 131, 271–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  218. Schvartzman, J. M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nature Rev. Cancer 10, 102–115 (2010).

    Article  CAS  Google Scholar 

  219. Pellegrino, R. et al. Oncogenic and tumor suppressive roles of polo-like kinases in human hepatocellular carcinoma. Hepatology 51, 857–868 (2010).

    CAS  PubMed  Google Scholar 

  220. Wang, X. et al. Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25, 7148–7158 (2006).

    Article  CAS  PubMed  Google Scholar 

  221. Li, C. C., Chu, H. Y., Yang, C. W., Chou, C. K. & Tsai, T. F. Aurora-A overexpression in mouse liver causes p53-dependent premitotic arrest during liver regeneration. Mol. Cancer Res. 7, 678–688 (2009).

    Article  CAS  PubMed  Google Scholar 

  222. Kitajima, S. et al. Constitutive phosphorylation of aurora-a on ser51 induces its stabilization and consequent overexpression in cancer. PLoS One 2, e944 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Zeng, W. F., Navaratne, K., Prayson, R. A. & Weil, R. J. Aurora B expression correlates with aggressive behaviour in glioblastoma multiforme. J. Clin. Pathol. 60, 218–221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Chen, Y. J. et al. Overexpression of Aurora B is associated with poor prognosis in epithelial ovarian cancer patients. Virchows Arch. 455, 431–440 (2009).

    Article  CAS  PubMed  Google Scholar 

  225. Tanaka, S. et al. Aurora kinase B is a predictive factor for the aggressive recurrence of hepatocellular carcinoma after curative hepatectomy. Br. J. Surg. 95, 611–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  226. Forbes, S. A. et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc Hum. Genet. 57, 10.11.1–1011.26 (2008).

    Google Scholar 

  227. Ulisse, S. et al. Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int. J. Cancer 119, 275–282 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.M.A.L. was supported by the Netherlands Organization for Scientific Research (NWO-Vidi: ZonMW 917.66.332) and the Dutch Cancer Society (UU2009-4311). R.H.M. was supported by the Netherlands Organization for Scientific Research (NWO-Vici: ZonMW 918.46.616, NWO-ALW 81802003, the Netherlands Genomics Initiative of NWO) and the Dutch Cancer Society (UU2006-3579).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susanne M. A. Lens or René H. Medema.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

AZD1152

cisplatin

doxorubicin

ENMD-2076

LY2181308

MLN8054

MLN8237

paclitaxel

YM155

FURTHER INFORMATION

René H. Medema's homepage

Glossary

Taxanes

A group of chemotherapeutic agents (such as paclitaxel and its semi-synthetic analogue docetaxel) that stabilize microtubules and are considered to function as anti-mitotic drugs.

Vinca alkaloids

A class of chemotherapeutic agents (including, vincristine, vinblastine, vinorelbine, vindesine and vinflunine) originally isolated from periwinkle leaves (sometimes known as Vinca rosea) that destabilize microtubules and are considered to act as anti-mitotic drugs.

Anti-mitotic

A drug that induces a mitotic delay and subsequent cell death in mitosis.

Kinesins

A family of motor proteins that move along microtubules powered by the hydrolysis of ATP.

Central spindle

A bundled array of anti-parallel microtubules that forms between the segregating chromosomes in anaphase. It controls the position and assembly of the actinomyosin-based contractile ring required for cleavage furrow ingression and that regulates the final step of cytokinesis: abscission.

Midbody

A dense structure containing the central spindle and associated proteins that control cytokinesis. It connects the two newly formed daughter cells from telophase until final abscission.

Chromosomal passenger protein

A protein that localizes to the centromeric region of the chromosomes in prometaphase, moves from the chromosomes to the central spindle in anaphase and accumulates in the midbody in telophase.

Chemical genetics

A strategy whereby a kinase is genetically engineered to render it sensitive to synthetic ATP analogues.

Neutropenia

A haematological disorder characterized by an abnormally low number of neutrophils.

Mitotic checkpoint

A surveillance mechanism active in the mitotic cell that senses the attachment status of kinetochores and prevents anaphase onset until all kinetochores are stably connected to the mitotic spindle.

γ-tubulin ring complex

A large protein complex containing a ring of γ-tubulin subunits that can serve as a template for microtubule nucleation.

Cohesin

A complex of four subunits, structural maintenance of chromosomes 1 (SMC1), SMC3, SCC1 (also known as RAD21) and SCC3 (also known as STAG1 and STAG2 in vertebrates) that holds sister chromatids together after S phase and until anaphase.

Chrmosome disjunction

Severing of the cohesin linkage between paired sister chromatids.

KMN network

A conserved outer-kinetochore protein network consisting of KNL1 and the MIS12 and NDC80 protein complexes, a key player in kinetochore–microtubule attachments.

Central spindlin

A tetrameric complex consisting of a dimer of the kinesin 6 protein MKLP1 and a dimer of the Rho family GTPase-activating protein (GAP) CYK4 that localizes to the centre of the central spindle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lens, S., Voest, E. & Medema, R. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10, 825–841 (2010). https://doi.org/10.1038/nrc2964

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2964

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer