Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Killing a cancer: what are the alternatives?

Key Points

  • A number of alternative cell death programmes, such as necroptosis, lysosomal-mediated programmed cell death (LM-PCD) and autophagy have been established alongside classical apoptosis. These are now known to act both as a backup to apoptosis and also as preferred death pathways in certain cell types.

  • Necroptosis can be triggered by a RIP1- and RIP3-containing complex. This complex can form downstream of death receptors or in the cytosol following stress stimuli. It is tightly regulated by the initiator caspase 8, as well as inhibitors of apoptosis (IAPs) and FLICE-like inhibitory protein (FLIP). Hence, caspase inhibitors, as well as second mitochondria-derived activator of caspases (SMAC) mimetics, are strong sensitizers for necroptosis.

  • LM-PCD, which occurs because of a loss of lysosomal integrity, is frequently seen in cancer cells. This is due to increased metabolism and protein turnover, as well as a reduction of important lysosomal structural proteins. Cancer cells are thus particularly responsive to drugs that target the lysosomes, and drugs ranging from lysosomotropic agents to monoclonal antibodies and microtubule-disrupting agents have all been shown to induce LM-PCD.

  • Autophagy can have both tumour suppressive and tumour-promoting activities. Large-scale autophagy can eventually lead to cell death; however, it is not clear precisely how this type of death is induced. Inhibition and induction of autophagy have both proved to be beneficial under certain circumstances, and the decision as to whether inhibition or activation is preferable is still largely empirical.

  • The alternative pathways of cell death prove to be intricately interconnected with many points of convergence, such as JUN N-terminal kinase (JNK), AMP-activated protein kinase (AMPK) or reactive oxygen species (ROS). Necroptosis has LM-PCD as a frequent downstream occurrence, and an impaired lysosomal compartment affects the ability of autophagosomes to mature. These converging and diverging features are increasingly better understood, leading to a number of targeted approaches aimed at these alternative pathways.

Abstract

Evading programmed cell death is one of the hallmarks of cancer. Conversely, inducing cell death by pharmacological means is the basis of almost every non-invasive cancer therapy. Research over the past decade has greatly increased our understanding of non-apoptotic programmed cell death events, such as lysosomal-mediated cell death, necroptosis and cell death with autophagy. It is becoming clear that an intricate effector network connects many of these classical and non-classical death pathways. In this Review, we discuss converging and diverging features of these pathways, as well as attempts to exploit this newly gained knowledge pharmacologically to provide therapeutics for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The interplay between caspase 8 and RIP1 activity determines the outcome of many death stimuli.
Figure 2: Schematic overview of selected inducers of LMP.
Figure 3: Schematic outline of the key events and regulators during autophagy.
Figure 4: Simplified illustration of the network connecting three alternative programmed cell death pathways.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode, C. elegans. Cell 44, 817–829 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Earnshaw, W. C., Martins, L. M. & Kaufmann, S. H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383–424 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Lavrik, I., Golks, A. & Krammer, P. H. Death receptor signaling. J. Cell Sci. 118, 265–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. & Green, D. R. The BCL-2 family reunion. Mol. Cell 37, 299–310 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsujimoto, Y., Cossman, J., Jaffe, E. & Croce, C. M. Involvement of the bcl-2 gene in human follicular lymphoma. Science 228, 1440–1443 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Galluzzi, L. et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 19, 107–120 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Kreuzaler, P. A. et al. Stat3 controls lysosomal-mediated cell death in vivo. Nature Cell Biol. 13, 303–309 (2011). This study demonstrated for the first time that a lysosomal-mediated pathway of cell death is the principal pathway in a physiological cell death event. It also indicated that cells can withstand widespread LMP, if protective factors to inhibit cathepsin activity are upregulated in the cytosol.

    Article  CAS  PubMed  Google Scholar 

  12. Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nature Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  Google Scholar 

  13. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol. 1, 112–119 (2005). This paper identifies the RIP1 inhibitor necrostatin 1 (NEC1) as a potent inhibitor of necroptosis and also demonstrates its efficacy in delaying ischaemic brain injury in mice. It formed the basis of many studies using NEC1 as a tool to study necroptosis.

    Article  CAS  Google Scholar 

  14. Weinlich, R., Dillon, C. P. & Green, D. R. Ripped to death. Trends Cell Biol. 21, 630–637 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boya, P. & Kroemer, G. Lysosomal membrane permeabilization in cell death. Oncogene 27, 6434–6451 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Vitale, I., Galluzzi, L., Castedo, M. & Kroemer, G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nature Rev. Mol. Cell Biol. 12, 385–392 (2011).

    Article  CAS  Google Scholar 

  17. Overholtzer, M. et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131, 966–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kepp, O. et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Met. Rev. 30, 61–69 (2011).

    Article  CAS  Google Scholar 

  19. Laster, S. M., Wood, J. G. & Gooding, L. R. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immun. 141, 2629–2634 (1988).

    CAS  PubMed  Google Scholar 

  20. Lemaire, C., Andréau, K., Souvannavong, V. & Adam, A. Inhibition of caspase activity induces a switch from apoptosis to necrosis. FEBS Lett. 425, 266–270 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998). This is one of the first studies showing a cytoprotective effect of caspases downstream of TNFR. It also establishes ROS as a mediator for necrosis following concomitant TNFα stimulation and caspase inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000).

    Article  CAS  Google Scholar 

  23. Vanlangenakker, N., Vanden Berghe, T. & Vandenabeele, P. Many stimuli pull the necrotic trigger, an overview. Cell Death Diff. 19, 75–86 (2011).

    Article  CAS  Google Scholar 

  24. Varfolomeev, E. E. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. & Goeddel, D. V. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Ea, C.-K., Deng, L., Xia, Z.-P., Pineda, G. & Chen, Z. J. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245–257 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Cho, Y. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, D.-W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009). This study showed that RIP3 is an obligate partner of RIP1-induced necroptosis. More importantly, it revealed that RIP3 recruits and activates many metabolic enzymes, thus coordinating some of the metabolic shifts that are thought to drive necroptosis.

    Article  CAS  PubMed  Google Scholar 

  30. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, J., Cado, D., Chen, A., Kabra, N. H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Yeh, W. C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Yeh, W. C. et al. Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 12, 633–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Oberst, A. et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, H. et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373–376 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011). References 36, 37 and 38 identified the cytoprotective role of caspase 8 on the RIP1–RIP3 complex and explained why the knockout of caspase 8 or FADD was embryonic lethal. Reference 36 also showed that a caspase 8–FLIPL complex retains sufficient activity to suppress necrosis, but too little to induce apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Donnell, M. A. et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nature Cell Biol. 13, 1437–1442 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Tenev, T. et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011). Along with reference 83, this study established the ripoptosome as a death receptor-independent cell death signalling platform that forms after genotoxic stress or SMAC-mimetic treatment.

    Article  CAS  PubMed  Google Scholar 

  41. Leist, M., Single, B., Castoldi, A. F., Kühnle, S. & Nicotera, P. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185, 1481–1486 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schulze-Osthoff, K. et al. Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317–5323 (1992).

    CAS  PubMed  Google Scholar 

  43. Suffys, P. et al. Tumour-necrosis-factor-mediated cytotoxicity is correlated with phospholipase-A2 activity, but not with arachidonic acid release per se. Eur. J. Biochem. 195, 465–475 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. Edinger, A. L. & Thompson, C. B. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article  CAS  Google Scholar 

  46. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012). Through a large compound screen, this paper identified MLKL as an obligate member of the RIP1–RIP3 complex, leading to induction of necroptosis. MLKL is phosphorylated by RIP3 and its absence blocks necroptosis after formation of the necroptosome.

    Article  CAS  PubMed  Google Scholar 

  47. Guicciardi, M. E., Leist, M. & Gores, G. J. Lysosomes in cell death. Oncogene 23, 2881–2890 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Ferri, K. F. & Kroemer, G. Organelle-specific initiation of cell death pathways. Nature Cell Biol. 3, E255–E263 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Foghsgaard, L. et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol. 153, 999–1010 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, N. et al. NF-kappaB protects from the lysosomal pathway of cell death. EMBO J. 22, 5313–5322 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Groth-Pedersen, L. & Jäättelä, M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 30 Jun 2010 (doi:10.1016/j.canlet.2010.05.021).

  52. Jäättelä, M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746–2756 (2004).

    Article  PubMed  CAS  Google Scholar 

  53. Turk, B. et al. Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol. Chem. 376, 225–230 (1995).

    CAS  Google Scholar 

  54. Droga-Mazovec, G. et al. Cysteine cathepsins trigger caspase-dependent cell death through cleavage of bid and antiapoptotic Bcl-2 homologues. J. Biol. Chem. 283, 19140–19150 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Hishita, T. et al. Caspase-3 activation by lysosomal enzymes in cytochrome c-independent apoptosis in myelodysplastic syndrome-derived cell line P39. Cancer Res. 61, 2878–2884 (2001).

    CAS  PubMed  Google Scholar 

  56. Roberts, L. R. et al. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology 113, 1714–1726 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Vancompernolle, K. et al. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS Lett. 438, 150–158 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Jäättelä, M. & Tschopp, J. Caspase-independent cell death in T lymphocytes. Nature Immunol. 4, 416–423 (2003).

    Article  CAS  Google Scholar 

  59. Turk, V. et al. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophhys. Acta 1824, 68–88 (2012).

    Article  CAS  Google Scholar 

  60. Liu, N. et al. Serine protease inhibitor 2A is a protective factor for memory T cell development. Nature Immunol. 5, 919–926 (2004).

    Article  CAS  Google Scholar 

  61. Klionsky, D. J. Autophagy: from phenomenology to molecular understanding in less than a decade. Nature Rev. Mol. Cell Biol. 8, 931–937 (2007).

    Article  CAS  Google Scholar 

  62. Kroemer, G., Mariño, G. & Levine, B. Autophagy and the integrated stress response. Molecular Cell 40, 280–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee, J. W., Park, S., Takahashi, Y. & Wang, H.-G. The association of AMPK with ULK1 regulates autophagy. PloS ONE 5, e15394 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kim, J., Kundu, M., Viollet, B. & Guan, K.-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005). Using Bax−/−; Bak−/− cells that are resistant to apoptosis, this study established the importance of autophagy in sustaining cellular metabolism in growth factor-deprived cells. Cells remained viable for weeks and responded to growth factors when these were supplemented.

    Article  CAS  PubMed  Google Scholar 

  66. Baehrecke, E. H. Autophagic programmed cell death in Drosophila. Cell Death Diff. 10, 940–945 (2003).

    Article  CAS  Google Scholar 

  67. Tresse, E., Kosta, A., Luciani, M.-F. & Golstein, P. From autophagic to necrotic cell death in Dictyostelium. Semin. Cancer Biol. 17, 94–100 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Shimizu, S. et al. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nature Cell Biol. 6, 1221–1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Yu, L. et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Eskelinen, E.-L. The dual role of autophagy in cancer. Curr. Opin. Pharmacol. 11, 294–300 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Notte, A., Leclere, L. & Michiels, C. Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem. Pharmacol. 82, 427–434 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Lee, J.-S. et al. FLIP-mediated autophagy regulation in cell death control. Nature Cell Biol. 11, 1355–1362 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Maiuri, M. C. et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26, 2527–2539 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wirawan, E. et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 1, e18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nature Cell Biol. 8, 1124–1132 (2006). This paper showed that overexpression of ATG5 sensitizes cells to apoptotic stimuli. This is mediated by the cleavage of ATG5 by calpains and subsequent concomitant translocation of the N-terminal product and BCL-X L to the mitochondrion, where cytochrome c is released.

    Article  CAS  PubMed  Google Scholar 

  76. Giansanti, V., Torriglia, A. & Scovassia, I. Conversation between apoptosis and autophagy: “Is it your turn or mine?”. Apoptosis 16, 321–333 (2011).

    Article  PubMed  Google Scholar 

  77. Yu, L. et al. Autophagic programmed cell death by selective catalase degradation. Proc. Natl Acad. Sci. 103, 4952–4957 (2006). This study showed that in some circumstances attenuation of autophagy can reduce accumulation of ROS. This is due to the autophagic degradation of the enzymatic ROS scavenger catalase, which is initiated by caspase inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Brosh, R. & Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nature Rev. Cancer 9, 701–713 (2009).

    Article  CAS  Google Scholar 

  79. Kelly, P. N. & Strasser, A. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Diff. 18, 1414–1424 (2011).

    Article  CAS  Google Scholar 

  80. Coupienne, I., Fettweis, G. & Piette, J. RIP3 expression induces a death profile change in U2OS osteosarcoma cells after 5-ALA-PDT. Las. Surg. Med. 43, 557–564 (2011).

    Article  Google Scholar 

  81. Mantel, F. et al. Combination of ionising irradiation and hyperthermia activates programmed apoptotic and necrotic cell death pathways in human colorectal carcinoma cells. Strahlenth. Onkol. 186, 587–599 (2010).

    Article  Google Scholar 

  82. Nehs, M. A. et al.Necroptosis is a novel mechanism of radiation-induced cell death in anaplastic thyroid and adrenocortical cancers. Surgery 150, 1032–1039 (2011).

    Article  PubMed  Google Scholar 

  83. Feoktistova, M. et al. cIAPs block ripoptosome formation, a RIP1/Caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011). This publication, along with Reference 40, studied the formation and regulation of the ripoptosome. It has a special focus on the influence of the ripoptosome on TLR3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Krueger, A., Schmitz, I., Baumann, S., Krammer, P. H. & Kirchhoff, S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J. Biol. Chem. 276, 20633–20640 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Bertrand, M. J. M. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008). This study established IAP1 and IAP2 as E3 ligases that ubiquitylate RIP1 in cancer cells. This impedes cell death and inhibition of IAPs with the compound AEG40730 restores death induction.

    Article  CAS  PubMed  Google Scholar 

  87. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Chai, J. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Darding, M. & Meier, P. IAPs: Guardians of RIPK1. Cell Death Differ. 19, 58–66 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Vanlangenakker, N., Bertrand, M. J. M., Bogaert, P., Vandenabeele, P. & Vanden Berghe, T. TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2, e230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sloane, B. F., Dunn, J. R. & Honn, K. V. Lysosomal cathepsin B: correlation with metastatic potential. Science 212, 1151–1153 (1981).

    Article  CAS  PubMed  Google Scholar 

  93. Joyce, J. A. et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell 5, 443–453 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Vasiljeva, O. et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 66, 5242–5250 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Sevenich, L. et al. Transgenic expression of human cathepsin B promotes progression and metastasis of polyoma-middle-T-induced breast cancer in mice. Oncogene 30, 54–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Leto, G. et al. Lysosomal cathepsins B and L and Stefin A blood levels in patients with hepatocellular carcinoma and/or liver cirrhosis: potential clinical implications. Oncology 54, 79–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Mikhaylov, G. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nature Nanotech. 6, 594–602 (2011).

    Article  CAS  Google Scholar 

  98. Sevenich, L. et al. Synergistic antitumor effects of combined cathepsin B and cathepsin Z. deficiencies on breast cancer progression and metastasis in mice. Proc. Natl Acad. Sci. USA 107, 2497–2502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Reeves, J. P. Accumulation of amino acids by lysosomes incubated with amino acid methyl esters. J. Biol. Chem. 254, 8914–8921 (1979).

    CAS  PubMed  Google Scholar 

  100. Kirkegaard, T. & Jäättelä, M. Lysosomal involvement in cell death and cancer. Biochim. Biophys. Acta 1793, 746–754 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Fehrenbacher, N. et al. Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2. Cancer Res. 68, 6623–6633 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Fehrenbacher, N. et al. Sensitization to the lysosomal cell death pathway upon immortalization and transformation. Cancer Res. 64, 5301–5310 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Kagedal, K., Zhao, M., Svensson, I., Brunk, U. T. & Kågedal, K. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335–343 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rammer, P. et al. BAMLET activates a lysosomal cell death program in cancer cells. Molecular Cancer Therap. 9, 24–32 (2010).

    Article  CAS  Google Scholar 

  105. Boya, P. et al. Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22, 3927–3936 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Ostenfeld, M. S. et al. Effective tumor cell death by sigma-2 receptor ligand siramesine involves lysosomal leakage and oxidative stress. Cancer Res. 65, 8975–8983 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Terman, A., Kurz, T., Gustafsson, B. & Brunk, U. T. Lysosomal labilization. IUBMB Life 58, 531–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Puissant, A. et al. Cathepsin B release after imatinib-mediated lysosomal membrane permeabilization triggers BCR-ABL cleavage and elimination of chronic myelogenous leukemia cells. Leukemia 24, 115–124 (2010). This paper showed that the BCR–ABL inhibitor imatinib not only acts directly on BCR-ABL, but also induces an amplifying loop in which lysosomes become leaky and cathepsin B degrades the oncogenic protein BCR-ABL itself.

    Article  CAS  PubMed  Google Scholar 

  109. Alduaij, W. et al. Novel type II anti-CD20 monoclonal antibody (GA101) evokes homotypic adhesion and actin-dependent, lysosome-mediated cell death in B-cell malignancies. Blood 117, 4519–4529 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bröker, L. E. et al. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res. 64, 27–30 (2004).

    Article  PubMed  Google Scholar 

  111. Groth-Pedersen, L., Ostenfeld, M. S., Høyer-Hansen, M., Nylandsted, J. & Jäättelä, M. Vincristine induces dramatic lysosomal changes and sensitizes cancer cells to lysosome-destabilizing siramesine. Cancer Res. 67, 2217–2225 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Zamora, J. M. & Beck, W. T. Chloroquine enhancement of anticancer drug cytotoxicity in multiple drug resistant human leukemic cells. Biochem. Pharmacol. 35, 4303–4310 (1986).

    Article  CAS  PubMed  Google Scholar 

  113. De Milito, A. et al. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species. Cancer Res. 67, 5408–5417 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Mak, I. T. & Weglicki, W. B. Characterization of iron-mediated peroxidative injury in isolated hepatic lysosomes. J. Clin. Invest 75, 58–63 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Baird, S. K., Kurz, T. & Brunk, U. T. Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem. J. 394, 275–283 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Persson, H. L., Yu, Z., Tirosh, O., Eaton, J. W. & Brunk, U. T. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Rad. Biol. Med. 34, 1295–1305 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B. & Ciocca, D. R. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem. Sci. 31, 164–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Leu, J. I.-J., Pimkina, J., Frank, A., Murphy, M. E. & George, D. L. A small molecule inhibitor of inducible heat shock protein 70. Mol. Cell 36, 15–27 (2009). In this study, the authors established a chemical inhibitor (PES) for HSP70. They showed that it induces caspase-independent cell death, which is accompanied by impaired lysosomal function and accumulation of large vacuoles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kirkegaard, T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463, 549–553 (2010). This study showed that HSP70 stabilizes lysosomes by activating the acid sphingomyelinase ( ASM ). This rationale was used to block cell death in cells from patients with Nieman–Pick disease.

    Article  CAS  PubMed  Google Scholar 

  120. Mohamed, M. M. & Sloane, B. F. Cysteine cathepsins: multifunctional enzymes in cancer. Nature Rev. Cancer 6, 764–775 (2006).

    Article  CAS  Google Scholar 

  121. Appelqvist, H. et al. Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation. Am. J. Pathol. 178, 629–639 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sehested, M., Skovsgaard, T., van Deurs, B. & Winther-Nielsen, H. Increased plasma membrane traffic in daunorubicin resistant P388 leukaemic cells. Effect of daunorubicin and verapamil. Br. J. Cancer 56, 747–751 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shiraishi, N., Akiyama, S., Kobayashi, M. & Kuwano, M. Lysosomotropic agents reverse multiple drug resistance in human cancer cells. Cancer Lett. 30, 251–259 (1986).

    Article  CAS  PubMed  Google Scholar 

  124. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang, X., Bai, H.-M., Chen, L., Li, B. & Lu, Y.-C. Reduced expression of LC3B-II and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors. J. Clin. Neuro. 17, 1515–1519 (2010).

    Article  CAS  Google Scholar 

  126. Iqbal, J. et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia 23, 1139–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Mathew, R. et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009). This study showed that defective autophagy leads to increased levels of ROS and p62. Furthermore, it established that the accumulation of p62 enhances oxidative stress, alters NF-κB signalling and leads to a more tumorigenic gene signature.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367–1381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Jin, S. Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2, 80–84 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Koukourakis, M. I. et al. Beclin 1 over- and underexpression in colorectal cancer: distinct patterns relate to prognosis and tumour hypoxia. Br. J. Cancer 103, 1209–1214 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fung, C., Lock, R., Gao, S., Salas, E. & Debnath, J. Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol. Biol. Cell 19, 797–806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Martinez-Outschoorn, U. E. et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9, 3256–3276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Abedin, M. J., Wang, D., McDonnell, M. A., Lehmann, U. & Kelekar, A. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 14, 500–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  136. Zhu, K., Dunner, K. & McConkey, D. J. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451–462 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Vazquez-Martin, A., Oliveras-Ferraros, C. & Menendez, J. A. Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PloS ONE 4, e6251 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011). This study showed that oncogenic RAS-driven tumours become addicted to autophagy, which is crucial to maintain a pool of healthy mitochondria. Impairment of autophagy leads to accumulation of abnormal mitochondria and depletion of TCA cycle intermediates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Elgendy, M., Sheridan, C., Brumatti, G. & Martin, S. J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell 42, 23–35 (2011). This study showed that oncogenic RAS can kill cells via an autophagic pathway in culture. Mechanistically, this happens through the upregulation of the death promoting protein NOXA and beclin 1. NOXA can displace MCL1 from beclin 1, thus enhancing autophagy which is followed by cell death.

    Article  CAS  PubMed  Google Scholar 

  140. Nylandsted, J. et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med. 200, 425–435 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim, Y.-S., Morgan, M. J., Choksi, S. & Liu, Z.-G. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell 26, 675–687 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Schütze, S., Tchikov, V. & Schneider-Brachert, W. Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nature Rev. Mol. Cell Biol. 9, 655–662 (2008).

    Article  CAS  Google Scholar 

  143. Los, M. et al. Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell 13, 978–988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ono, K. et al. Metaxin deficiency alters mitochondrial membrane permeability and leads to resistance to TNF-induced cell killing. Protein Cell 1, 161–173 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Temkin, V., Huang, Q., Liu, H., Osada, H. & Pope, R. M. Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol. Cell. Biol. 26, 2215–2225 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biol. 13, 1016–1023 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Scherz-Shouval, R. & Elazar, Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Scien. 36, 30–38 (2011).

    Article  CAS  Google Scholar 

  148. Seglen, P. O. & Gordon, P. B. 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl Acad. Sci. USA 79, 1889–1892 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Powis, G. et al. Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res. 54, 2419–2423 (1994).

    CAS  PubMed  Google Scholar 

  150. Blommaart, E. F., Krause, U., Schellens, J. P., Vreeling-Sindelárová, H. & Meijer, A. J. The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. FEBS 243, 240–246 (1997).

    CAS  Google Scholar 

  151. Yang, Z. J., Chee, C. E., Huang, S. & Sinicrope, F. a The role of autophagy in cancer: therapeutic implications. Mol. Cancer Therap. 10, 1533–1541 (2011).

    Article  CAS  Google Scholar 

  152. Boya, P. et al. Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 25, 1025–1040 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Yamamoto, A. et al. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struc. Func. 23, 33–42 (1998).

    Article  CAS  Google Scholar 

  154. Kroemer, G. & Jäättelä, M. Lysosomes and autophagy in cell death control. Nature Rev. Cancer 5, 886–897 (2005).

    Article  CAS  Google Scholar 

  155. Shingu, T. et al. Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. International journal of cancer. J. Int. Cancer 124, 1060–1071 (2009).

    Article  CAS  Google Scholar 

  156. Shen, S. et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 30, 4544–4556 (2011).

    Article  CAS  PubMed  Google Scholar 

  157. Gottlieb, R. A. & Mentzer, R. M. Autophagy during cardiac stress: joys and frustrations of autophagy. Ann. Rev. Phys. 72, 45–59 (2010).

    Article  CAS  Google Scholar 

  158. Yang, Y. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    Article  CAS  PubMed  Google Scholar 

  159. LaCasse, E. C. et al. IAP-targeted therapies for cancer. Oncogene 27, 6252–6275 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Riedl, S. J. & Salvesen, G. S. The apoptosome: signalling platform of cell death. Nature Rev. Mol. Cell Biol. 8, 405–413 (2007).

    Article  CAS  Google Scholar 

  161. Malladi, S., Challa-Malladi, M., Fearnhead, H. O. & Bratton, S. B. The Apaf-1 procaspase-9 apoptosome complex functions as a proteolytic-based molecular timer. EMBO J. 28, 1916–1925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Mace, P. D. & Riedl, S. J. Molecular cell death platforms and assemblies. Curr. Opin. Cell Biol. 22, 828–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Janssens, S., Tinel, A., Lippens, S. & Tschopp, J. PIDD mediates NF-kappaB activation in response to DNA damage. Cell 123, 1079–1092 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Katayama, M., Kawaguchi, T., Berger, M. S. & Pieper, R. O. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ. 14, 548–558 (2007).

    Article  CAS  PubMed  Google Scholar 

  165. Cosse, J.-P., Rommelaere, G., Ninane, N., Arnould, T. & Michiels, C. BNIP3 protects HepG2 cells against etoposide-induced cell death under hypoxia by an autophagy-independent pathway. Biochem. Pharmacol. 80, 1160–1169 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Biton, S. & Ashkenazi, A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 145, 92–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Paquet, C., Sané, A.-T., Beauchemin, M. & Bertrand, R. Caspase- and mitochondrial dysfunction-dependent mechanisms of lysosomal leakage and cathepsin B activation in DNA damage-induced apoptosis. Leukemia 19, 784–791 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Han, J. et al. Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J. Biol. Chem. 283, 19665–19677 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Tristão, V. R. et al. Nec-1 protects against nonapoptotic cell death in cisplatin-induced kidney injury. Ren. Fail. 34, 373–377 (2012).

    Article  PubMed  CAS  Google Scholar 

  170. Liu, D., Yang, Y., Liu, Q. & Wang, J. Inhibition of autophagy by 3-MA potentiates cisplatin-induced apoptosis in esophageal squamous cell carcinoma cells. Medical Oncol. 28, 105–111 (2011).

    Article  CAS  Google Scholar 

  171. Bien, S. et al. Doxorubicin-induced cell death requires cathepsin B in HeLa cells. Biochem. Pharmacol. 80, 1466–1477 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Lin, C.-I. et al. Autophagy induction with RAD001 enhances chemosensitivity and radiosensitivity through Met inhibition in papillary thyroid cancer. MCR 8, 1217–1226 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Laussmann, M. A. et al. Proteasome inhibition can induce an autophagy-dependent apical activation of caspase-8. Cell Death Differ. 18, 1584–1597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Yeung, B. H. Y., Huang, D.-C. & Sinicrope, F. A. PS-341 (bortezomib) induces lysosomal cathepsin B release and a caspase-2-dependent mitochondrial permeabilization and apoptosis in human pancreatic cancer cells. J. Biol. Chem. 281, 11923–11932 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Hu, J. et al. Herceptin conjugates linked by EDC boost direct tumor cell death via programmed tumor cell necrosis. PloS ONE 6, e23270 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Meurette, O. et al. TRAIL induces receptor-interacting protein 1-dependent and caspase-dependent necrosis-like cell death under acidic extracellular conditions. Cancer Res. 67, 218–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Nagaraj, N. S., Vigneswaran, N. & Zacharias, W. Cathepsin B mediates TRAIL-induced apoptosis in oral cancer cells. J. Cancer Res. Clin. Oncol. 132, 171–183 (2006).

    Article  CAS  PubMed  Google Scholar 

  178. Herrero-Martín, G. et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 28, 677–685 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Guicciardi, M. E. et al. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest 106, 1127–1137 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Djavaheri-Mergny, M. et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J. Biol. Chem. 281, 30373–30382 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Deiss, L. P., Galinka, H., Berissi, H., Cohen, O. & Kimchi, A. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 15, 3861–3870 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhang, Y. et al. Fas-mediated autophagy requires JNK activation in HeLa cells. Biochem. Biophys. Res. Comm. 377, 1205–1210 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Thapa, R. J. et al. NF-κB protects cells from gamma interferon-induced RIP1-dependent necroptosis. Mol. Cell. Biol. 31, 2934–2946 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pyo, J.-O. et al. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J. Biol. Chem. 280, 20722–20729 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Gowran, A. & Campbell, V. A. A role for p53 in the regulation of lysosomal permeability by delta 9-tetrahydrocannabinol in rat cortical neurones: implications for neurodegeneration. J. Neurochem. 105, 1513–1524 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Salazar, M. et al. Cannabinoid action induces autophagy- mediated cell death through stimulation of ER stress in human glioma cells. Autophagy 119, 1359–1372 (2009).

    CAS  Google Scholar 

  187. Jang, M.-S., Lee, S.-J., Kang, N. S. & Kim, E. Cooperative phosphorylation of FADD by Aur-A and Plk1 in response to taxol triggers both apoptotic and necrotic cell death. Cancer Res. 71, 7207–7215 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Zou, C.-F. et al. Re-expression of ARHI (DIRAS3) induces autophagy in breast cancer cells and enhances the inhibitory effect of paclitaxel. BMC Cancer 11, 22 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Xi, G. et al. Autophagy inhibition promotes paclitaxel-induced apoptosis in cancer cells. Cancer Lett. 307, 141–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  190. Löder, S. et al. RIP1 is required for IAP inhibitor-mediated sensitization of childhood acute leukemia cells to chemotherapy-induced apoptosis. Leukemia 16 Dec 2011 (doi: 10.1038/leu.2011.353).

  191. Crazzolara, R. et al. Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 113, 3297–3306 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Stühmer, T. et al. Preclinical anti-myeloma activity of the novel HDAC-inhibitor JNJ-26481585. British J. Haem. 149, 529–536 (2010).

    Article  CAS  Google Scholar 

  193. Mitchell, C. et al. Extrinsic pathway- and cathepsin-dependent induction of mitochondrial dysfunction are essential for synergistic flavopiridol and vorinostat lethality in breast cancer cells. Mol. Cancer Therap. 6, 3101–3112 (2007).

    Article  CAS  Google Scholar 

  194. Liu, Y.-L. et al. Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy 6, 1057–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  195. Carew, J. S. et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110, 313–322 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Behrends, C., Sowa, M. E., Gygi, S. P., Harper, J. W. Network organization of the human autophagy system. Nature 466, 68–76 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to apologise to their colleagues, whose work they have not been able to cite owing to space limitations. Furthermore, they thank Trinity College Cambridge for financial support of P.K. through a Junior Research Fellowship. Research in the Watson laboratory is funded by the BBSRC, MRC, CRUK, Breast Cancer Campaign and the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine J. Watson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Christine Watson's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreuzaler, P., Watson, C. Killing a cancer: what are the alternatives?. Nat Rev Cancer 12, 411–424 (2012). https://doi.org/10.1038/nrc3264

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3264

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer