Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance

Key Points

  • DNA repair defects are targets for chemotherapy drugs.

  • DNA damage response (DDR) genes are also targets for resistance mechanisms that are acquired during chemotherapy treatment.

  • To enhance chemotherapy response, the DDR may be targeted by reactivation of p53, by inhibition of cell cycle checkpoints or by inhibition of DNA repair processes.

  • Therapy resistance of homologous recombination (HR)-deficient tumours may be caused by genetic reversion of the HR defect, by residual HR activity, by rewiring of DNA repair pathways or by tumour heterogeneity.

  • Robust biomarkers are required to maximize the effectiveness of therapy targeting HR deficiency.

  • The best possible treatments might involve combinations of chemotherapy drugs and/or targeted therapeutics to eradicate tumours before resistant tumour cell clones arise.

Abstract

Tumours with specific DNA repair defects can be completely dependent on back-up DNA repair pathways for their survival. This dependence can be exploited therapeutically to induce synthetic lethality in tumour cells. For instance, homologous recombination (HR)-deficient tumours can be effectively targeted by DNA double-strand break-inducing agents. However, not all HR-defective tumours respond equally well to this type of therapy. Tumour cells may acquire resistance by invoking biochemical mechanisms that reduce drug action or by acquiring additional alterations in DNA damage response pathways. A thorough understanding of these processes is important for predicting treatment response and for the development of novel treatment strategies that prevent the emergence of therapy-resistant tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA damage-induced cell cycle checkpoints.
Figure 2: DDR-related mechanisms of therapy resistance.
Figure 3: Genetic reversion of DNA damage response deficiency.
Figure 4: Restoration of DNA repair by pathway rewiring.
Figure 5: Biomarkers of DDR deficiency.

Similar content being viewed by others

References

  1. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010). An extensive review of factors and pathways involved in the DDR.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bergink, S. & Jentsch, S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461–467 (2009).

    CAS  PubMed  Google Scholar 

  3. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    CAS  PubMed  Google Scholar 

  4. Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-directed repair of chromosomal breaks. Mol. Cell 7, 263–272 (2001).

    CAS  PubMed  Google Scholar 

  5. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    CAS  PubMed  Google Scholar 

  6. Wooster, R. et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378, 789–792 (1995).

    CAS  PubMed  Google Scholar 

  7. Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038 (1993).

    CAS  PubMed  Google Scholar 

  8. Leach, F. S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).

    CAS  PubMed  Google Scholar 

  9. Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    CAS  PubMed  Google Scholar 

  10. Lynch, H. T. et al. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet. 76, 1–18 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Martin, L. P., Hamilton, T. C. & Schilder, R. J. Platinum resistance: the role of DNA repair pathways. Clin. Cancer Res. 14, 1291–1295 (2008).

    CAS  PubMed  Google Scholar 

  12. Neijenhuis, S., Verwijs-Janssen, M., van den Broek, L. J., Begg, A. C. & Vens, C. Targeted radiosensitization of cells expressing truncated DNA polymerase β. Cancer Res. 70, 8706–8714 (2010).

    CAS  PubMed  Google Scholar 

  13. Audeh, M. W. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376, 245–251 (2010).

    CAS  PubMed  Google Scholar 

  14. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  PubMed  Google Scholar 

  15. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  16. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    CAS  PubMed  Google Scholar 

  17. Tutt, A. et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376, 235–244 (2010).

    CAS  PubMed  Google Scholar 

  18. Ashworth, A., Lord, C. J. & Reis-Filho, J. S. Genetic interactions in cancer progression and treatment. Cell 145, 30–38 (2011).

    CAS  PubMed  Google Scholar 

  19. Cotta-Ramusino, C. et al. A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science 332, 1313–1317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Menzel, T. et al. A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance. EMBO Rep. 12, 705–712 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jirawatnotai, S. et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 474, 230–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    CAS  PubMed  Google Scholar 

  23. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    CAS  PubMed  Google Scholar 

  24. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Feldser, D. M. et al. Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468, 572–575 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Junttila, M. R. et al. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468, 567–571 (2010). References 22–26 explore the effect of p53 restoration in mouse tumour models. Activation of p53 in established tumours leads to regression (references 22–24), but it does not affect early lesions with low expression of p19ARF (references 25 and 26).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Christophorou, M. A., Ringshausen, I., Finch, A. J., Swigart, L. B. & Evan, G. I. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443, 214–217 (2006).

    CAS  PubMed  Google Scholar 

  28. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    CAS  PubMed  Google Scholar 

  29. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Med. 10, 1321–1328 (2004).

    CAS  PubMed  Google Scholar 

  30. Bykov, V. J. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Med. 8, 282–288 (2002). References 28–30 were the first studies to describe small molecule activators of the p53 tumour suppressor.

    CAS  PubMed  Google Scholar 

  31. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nature Rev. Cancer 11, 726–734 (2011).

    CAS  Google Scholar 

  32. Cheok, C. F., Verma, C. S., Baselga, J. & Lane, D. P. Translating p53 into the clinic. Nature Rev. Clin. Oncol. 8, 25–37 (2011).

    CAS  Google Scholar 

  33. Reinhardt, H. C., Aslanian, A. S., Lees, J. A. & Yaffe, M. B. p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11, 175–189 (2007). This article shows that p53-deficient tumour cells depend on the p38MAPK–MK2 pathway to prevent DNA damage-induced mitotic catastrophe.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Reinhardt, H. C. et al. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol. Cell 40, 34–49 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Q. et al. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J. Natl Cancer Inst. 88, 956–965 (1996).

    CAS  PubMed  Google Scholar 

  36. Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).

    CAS  PubMed  Google Scholar 

  37. Dai, Y. & Grant, S. New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin. Cancer Res. 16, 376–383 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, Q. et al. Chk1 is an essential kinase that is regulated by Atr and required for the G2/M DNA damage checkpoint. Genes Dev. 14, 1448–1459 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Takai, H. et al. Aberrant cell cycle checkpoint function and early embryonic death in Chk1−/− mice. Genes Dev. 14, 1439–1447 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824–1827 (2000).

    CAS  PubMed  Google Scholar 

  41. Takai, H. et al. Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 21, 5195–5205 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bao, S. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).

    CAS  PubMed  Google Scholar 

  43. Squatrito, M. et al. Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18, 619–629 (2010).

    CAS  PubMed  Google Scholar 

  44. Niida, H. et al. Cooperative functions of Chk1 and Chk2 reduce tumour susceptibility in vivo. EMBO J. 29, 3558–3570 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang, H. et al. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev. 23, 1895–1909 (2009). This article shows that mechanisms commonly used by tumours to bypass early neoplastic checkpoints — such as inactivation of TP53 or ATM — determine chemotherapeutic response.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mir, S. E. et al. In silico analysis of kinase expression identifies WEE1 as a gatekeeper against mitotic catastrophe in glioblastoma. Cancer Cell 18, 244–257 (2010). This article shows that inhibition of WEE1 in a preclinical mouse model sensitizes glioblastomas to DNA damaging therapy without causing significant side effects.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Calabrese, C. R. et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl Cancer Inst. 96, 56–67 (2004).

    CAS  PubMed  Google Scholar 

  48. Donawho, C. K. et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 13, 2728–2737 (2007).

    CAS  PubMed  Google Scholar 

  49. Evers, B. et al. Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin. Clin. Cancer Res. 14, 3916–3925 (2008).

    CAS  PubMed  Google Scholar 

  50. Rottenberg, S. et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl Acad. Sci. USA 105, 17079–17084 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Adhikari, S. et al. Targeting base excision repair for chemosensitization. Anticancer Agents Med. Chem. 8, 351–357 (2008).

    CAS  Google Scholar 

  52. Doles, J. et al. Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl Acad. Sci. USA 107, 20786–20791 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie, K., Doles, J., Hemann, M. T. & Walker, G. C. Error-prone translesion synthesis mediates acquired chemoresistance. Proc. Natl Acad. Sci. USA 107, 20792–20797 (2010). References 52 and 53 demonstrate the use of preclinical mouse models to investigate mechanisms of chemotherapy resistance, and show that suppression of TLS not only sensitizes tumours to DNA damaging therapy but also limits acquired drug resistance.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhaskara, S. et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol. Cell 30, 61–72 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhaskara, S. et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell 18, 436–447 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kao, G. D. et al. Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. J. Cell Biol. 160, 1017–1027 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller, K. M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Struct. Mol. Biol. 17, 1144–1151 (2010).

    CAS  Google Scholar 

  58. Fan, W. & Luo, J. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell 39, 247–258 (2010).

    CAS  PubMed  Google Scholar 

  59. Ming, M. et al. Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc. Natl Acad. Sci. USA 107, 22623–22628 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, R. H. et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14, 312–323 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yamamori, T. et al. SIRT1 deacetylates APE1 and regulates cellular base excision repair. Nucleic Acids Res. 38, 832–845 (2010).

    CAS  PubMed  Google Scholar 

  62. Yuan, Z., Zhang, X., Sengupta, N., Lane, W. S. & Seto, E. SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol. Cell 27, 149–162 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kaidi, A., Weinert, B. T., Choudhary, C. & Jackson, S. P. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science 329, 1348–1353 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mostoslavsky, R. et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315–329 (2006).

    CAS  PubMed  Google Scholar 

  65. Wang, R. H. et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol. Cell 32, 11–20 (2008).

    PubMed  PubMed Central  Google Scholar 

  66. Johnson, N. et al. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nature Med. 17, 875–882 (2011).

    CAS  PubMed  Google Scholar 

  67. Johnson, N. et al. Cdk1 participates in BRCA1-dependent S phase checkpoint control in response to DNA damage. Mol. Cell 35, 327–339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Krawczyk, P. M. et al. Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc. Natl Acad. Sci. USA 108, 9851–9856 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer 2, 48–58 (2002).

    CAS  Google Scholar 

  70. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ishida, S., McCormick, F., Smith-McCune, K. & Hanahan, D. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17, 574–583 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

    CAS  PubMed  Google Scholar 

  73. Sakai, W. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008). References 72 and 73 were the first studies to show that genetic reversion of BRCA mutations can cause resistance to therapy targeting HR deficiency.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Norquist, B. et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29, 3008–3015 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Swisher, E. M. et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68, 2581–2586 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, X. et al. Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc. Natl Acad. Sci. USA 104, 12111–12116 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rottenberg, S. et al. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc. Natl Acad. Sci. USA 104, 12117–12122 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ikeda, H. et al. Genetic reversion in an acute myelogenous leukemia cell line from a Fanconi anemia patient with biallelic mutations in BRCA2. Cancer Res. 63, 2688–2694 (2003).

    CAS  PubMed  Google Scholar 

  79. Litman, R. et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8, 255–265 (2005).

    CAS  PubMed  Google Scholar 

  80. Sy, S. M., Huen, M. S. & Chen, J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl Acad. Sci. USA 106, 7155–7160 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, F., Fan, Q., Ren, K. & Andreassen, P. R. PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol. Cancer Res. 7, 1110–1118 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, F. et al. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr. Biol. 19, 524–529 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Xia, B. et al. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nature Genet. 39, 159–161 (2007).

    CAS  PubMed  Google Scholar 

  84. Lo, T. F. Jr et al. Somatic mosaicism in Fanconi anemia: molecular basis and clinical significance. Eur. J. Hum. Genet. 5, 137–148 (1997).

    Google Scholar 

  85. Waisfisz, Q. et al. Spontaneous functional correction of homozygous fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nature Genet. 22, 379–383 (1999).

    CAS  PubMed  Google Scholar 

  86. Levine, A. J. & Oren, M. The first 30 years of p53: growing ever more complex. Nature Rev. Cancer 9, 749–758 (2009).

    CAS  Google Scholar 

  87. Lang, G. A. et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872 (2004).

    CAS  PubMed  Google Scholar 

  88. Olive, K. P. et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119, 847–860 (2004).

    CAS  PubMed  Google Scholar 

  89. Bergamaschi, D. et al. p53 polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3, 387–402 (2003).

    CAS  PubMed  Google Scholar 

  90. Irwin, M. S. et al. Chemosensitivity linked to p73 function. Cancer Cell 3, 403–410 (2003).

    CAS  PubMed  Google Scholar 

  91. Song, H., Hollstein, M. & Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nature Cell Biol. 9, 573–580 (2007).

    CAS  PubMed  Google Scholar 

  92. Wang, H. et al. Allele-specific tumor spectrum in Pten knockin mice. Proc. Natl Acad. Sci. USA 107, 5142–5147 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mendes-Pereira, A. M. et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Saal, L. H. et al. Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nature Genet. 40, 102–107 (2008).

    CAS  PubMed  Google Scholar 

  95. Shakya, R. et al. BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 334, 525–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Drost, R. et al. BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell 20, 797–809 (2011). This article shows that the BRCA1-C61G mutation in the N-terminal RING domain predisposes to HR-deficient mammary tumours in mice, but also allows rapid resistance to therapy targeting HR deficiency without evidence for genetic reversion.

    CAS  PubMed  Google Scholar 

  97. Shafee, N. et al. Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res. 68, 3243–3250 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. ElShamy, W. M. & Livingston, D. M. Identification of BRCA1-IRIS, a BRCA1 locus product. Nature Cell Biol. 6, 954–967 (2004).

    CAS  PubMed  Google Scholar 

  99. Pettigrew, C. A. et al. Identification and functional analysis of novel BRCA1 transcripts, including mouse Brca1-Iris and human pseudo-BRCA1. Breast Cancer Res. Treat. 119, 239–247 (2010).

    CAS  Google Scholar 

  100. Chock, K. L., Allison, J. M., Shimizu, Y. & ElShamy, W. M. BRCA1-IRIS overexpression promotes cisplatin resistance in ovarian cancer cells. Cancer Res. 70, 8782–8791 (2010).

    CAS  PubMed  Google Scholar 

  101. Ben David, Y. et al. Effect of BRCA mutations on the length of survival in epithelial ovarian tumors. J. Clin. Oncol. 20, 463–466 (2002).

    CAS  PubMed  Google Scholar 

  102. Viguier, J. et al. ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer. Clin. Cancer Res. 11, 6212–6217 (2005).

    CAS  PubMed  Google Scholar 

  103. Zhou, W. et al. Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin. Cancer Res. 10, 4939–4943 (2004).

    CAS  PubMed  Google Scholar 

  104. Zheng, H. et al. Nucleotide excision repair- and polymerase ε-mediated error-prone removal of mitomycin C interstrand cross-links. Mol. Cell. Biol. 23, 754–761 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Al-Minawi, A. Z. et al. The ERCC1/XPF endonuclease is required for completion of homologous recombination at DNA replication forks stalled by inter-strand cross-links. Nucleic Acids Res. 37, 6400–6413 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Olaussen, K. A. et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N. Engl. J. Med. 355, 983–991 (2006).

    CAS  PubMed  Google Scholar 

  107. Postel-Vinay, S. et al. The potential of exploiting DNA-repair defects for optimizing lung cancer treatment. Nature Rev. Clin. Oncol. 9, 144–155 (2012).

    CAS  Google Scholar 

  108. Adamo, A. et al. Preventing nonhomologous end joining suppresses DNA repair defects of Fanconi anemia. Mol. Cell 39, 25–35 (2010).

    CAS  PubMed  Google Scholar 

  109. Pace, P. et al. Ku70 corrupts DNA repair in the absence of the Fanconi anemia pathway. Science 329, 219–223 (2010).

    CAS  PubMed  Google Scholar 

  110. Fattah, F. et al. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS. Genet. 6, e1000855 (2010).

    PubMed  PubMed Central  Google Scholar 

  111. Bouwman, P. et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nature Struct. Mol. Biol. 17, 688–695 (2010).

    CAS  Google Scholar 

  112. Bunting, S. F. et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141, 243–254 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Cao, L. et al. A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Mol. Cell 35, 534–541 (2009). Together, references 111–113 show that loss of 53BP1 can partially restore HR in BRCA1-deficient cells and thereby decrease the response to therapy targeting HR deficiency.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Xie, A. et al. Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol. Cell 28, 1045–1057 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Pierce, A. J., Hu, P., Han, M., Ellis, N. & Jasin, M. Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev. 15, 3237–3242 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Bennardo, N., Gunn, A., Cheng, A., Hasty, P. & Stark, J. M. Limiting the persistence of a chromosome break diminishes its mutagenic potential. PLoS. Genet. 5, e1000683 (2009).

    PubMed  PubMed Central  Google Scholar 

  117. DiTullio, R. A. Jr et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nature Cell Biol. 4, 998–1002 (2002).

    CAS  PubMed  Google Scholar 

  118. Fernandez-Capetillo, O. et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nature Cell Biol. 4, 993–997 (2002).

    CAS  PubMed  Google Scholar 

  119. Wang, B., Matsuoka, S., Carpenter, P. B. & Elledge, S. J. 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435–1438 (2002).

    CAS  PubMed  Google Scholar 

  120. Oliver, T. G. et al. Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes Dev. 24, 837–852 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010). This article shows that cancer cell subpopulations may undergo epigenetic alterations to withstand DNA-damaging chemotherapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Turner, N., Tutt, A. & Ashworth, A. Hallmarks of 'BRCAness' in sporadic cancers. Nature Rev. Cancer 4, 814–819 (2004).

    CAS  Google Scholar 

  123. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).

    CAS  PubMed  Google Scholar 

  125. Farmer, P. et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nature Med. 15, 68–74 (2009).

    CAS  PubMed  Google Scholar 

  126. Borst, P. & Wessels, L. Do predictive signatures really predict response to cancer chemotherapy? Cell Cycle 9, 4836–4840 (2010).

    CAS  PubMed  Google Scholar 

  127. Wessels, L. F. et al. Molecular classification of breast carcinomas by comparative genomic hybridization: a specific somatic genetic profile for BRCA1 tumors. Cancer Res. 62, 7110–7117 (2002).

    CAS  PubMed  Google Scholar 

  128. Vollebergh, M. A. et al. An aCGH classifier derived from BRCA1-mutated breast cancer and benefit of high-dose platinum-based chemotherapy in HER2-negative breast cancer patients. Ann. Oncol. 22, 1561–1570 (2011).

    CAS  PubMed  Google Scholar 

  129. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    CAS  PubMed  Google Scholar 

  130. Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000).

    CAS  PubMed  Google Scholar 

  131. Hegi, M. E. et al. Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin. Cancer Res. 10, 1871–1874 (2004).

    CAS  PubMed  Google Scholar 

  132. Graeser, M. K. et al. A marker of homologous recombination predicts pathological complete response to neoadjuvant chemotherapy in primary breast cancer. Clin. Cancer Res. 16, 6159–6168 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Bric, A. et al. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 16, 324–335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Meacham, C. E., Ho, E. E., Dubrovsky, E., Gertler, F. B. & Hemann, M. T. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nature Genet. 41, 1133–1137 (2009).

    CAS  PubMed  Google Scholar 

  135. Burgess, D. J. et al. Topoisomerase levels determine chemotherapy response in vitro and in vivo. Proc. Natl Acad. Sci. USA 105, 9053–9058 (2008).

    PubMed  PubMed Central  Google Scholar 

  136. Bryant, H. E. & Helleday, T. Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res. 34, 1685–1691 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Issaeva, N. et al. 6-thioguanine selectively kills BRCA2-defective tumors and overcomes PARP inhibitor resistance. Cancer Res. 70, 6268–6276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Evers, B. et al. A high-throughput pharmaceutical screen identifies compounds with specific toxicity against BRCA2-deficient tumors. Clin. Cancer Res. 16, 99–108 (2010). In this article the authors combine a high-throughput pharmaceutical screen with genetically engineered mouse models to show that the bifunctional alkylators melphalan and nimustine may be more effective than platinum compounds or PARP inhibitors for the treatment of BRCA2-associated tumours, and thus may prevent the outgrowth of therapy-resistant tumours.

    CAS  PubMed  Google Scholar 

  139. Osher, D. J., Kushner, Y. B., Arseneau, J. & Foulkes, W. D. Melphalan as a treatment for BRCA-related ovarian carcinoma: can you teach an old drug new tricks? J. Clin. Pathol. 64, 924–926 (2011).

    CAS  PubMed  Google Scholar 

  140. Nieto, Y. & Shpall, E. J. High-dose chemotherapy for high-risk primary and metastatic breast cancer: is another look warranted? Curr. Opin. Oncol. 21, 150–157 (2009).

    CAS  PubMed  Google Scholar 

  141. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nature Rev. Cancer 7, 573–584 (2007).

    CAS  Google Scholar 

  142. Ledford, H. Drug candidates derailed in case of mistaken identity. Nature 483, 519 (2012).

    CAS  PubMed  Google Scholar 

  143. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    PubMed  PubMed Central  Google Scholar 

  144. Sakai, W. et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 69, 6381–6386 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Chang, S., Biswas, K., Martin, B. K., Stauffer, S. & Sharan, S. K. Expression of human BRCA1 variants in mouse ES cells allows functional analysis of BRCA1 mutations. J. Clin. Invest. 119, 3160–3171 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kuznetsov, S. G., Liu, P. & Sharan, S. K. Mouse embryonic stem cell-based functional assay to evaluate mutations in BRCA2. Nature Med. 14, 875–881 (2008).

    CAS  PubMed  Google Scholar 

  147. Lee, M. S. et al. Comprehensive analysis of missense variations in the BRCT domain of BRCA1 by structural and functional assays. Cancer Res. 70, 4880–4890 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu, B. et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nature Genet. 9, 48–55 (1995).

    CAS  PubMed  Google Scholar 

  149. Drost, M. et al. A rapid and cell-free assay to test the activity of lynch syndrome-associated MSH2 and MSH6 missense variants. Hum. Mutat. 33, 488–494 (2012).

    CAS  PubMed  Google Scholar 

  150. Drost, M. et al. A cell-free assay for the functional analysis of variants of the mismatch repair protein MLH1. Hum. Mutat. 31, 247–253 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Dutch Cancer Society, the Netherlands Organization of Scientific Research (NWO), the 7th framework programme of the European Union, and the Cancer Systems Biology Center (CSBC) funded by the NWO. We thank H. te Riele and S. Rottenberg for critically reading the Review, and M. van Vugt for helpful suggestions on figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jos Jonkers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

Overview of DDR proteins shown in Box 1 and their association with cancer (PDF 146 kb)

Related links

Related links

DATABASES

Cancer Gene Census

National Cancer Institute Drug Dictionary

5-azacytidine

APR-246

doxorubicin

melphalan

mitomycin C

nimustine

olaparib

temozolomide

UCN-01

vorinostat

FURTHER INFORMATION

Jos Jonkers' homepage

Glossary

Homologous recombination

(HR). A recombination reaction between two homologous DNA duplexes.

Synthetic lethal

A lethal combination of individually non-lethal mutations in two or more genes.

Mitotic catastrophe

An event in which a cell is destroyed during mitosis because of aberrant chromosome segregation or DNA damage.

Focus

DNA damage response foci are transiently formed sites in the nucleus where DNA damage response proteins are concentrated and recruited to DNA lesions.

Intrinsic resistance

Primary (pre-existing) resistance to cytotoxic treatment.

Acquired resistance

Secondary resistance, which results from natural selection of tumour cell clones carrying (epi)genetic alterations that confer resistance to cytotoxic treatment.

Caretaker genes

Tumour suppressor genes that are required for the maintenance of genome stability.

Missense mutations

Gene mutations that lead to the alteration of a single amino acid in the encoded protein.

Hotspot mutations

Frequently occurring, nonrandom mutations.

DNA end resection

The processing of DNA ends by nucleases to generate 3′ single-stranded DNA tails.

Microsatellite instability

Variation in the length of microsatellites (repeating DNA sequences of up to 6 nucleotides).

Hypomorphic mutations

Mutations that leave a gene partially functional.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouwman, P., Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12, 587–598 (2012). https://doi.org/10.1038/nrc3342

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3342

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing