Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

History of myeloid-derived suppressor cells

Abstract

Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: The role of MDSCs in the process of cancer progression and metastasis.

References

  1. Sonnenfeld, A. Leukamische reaktiones bei carcinoma. Zeitschrift f Klin Med 111, 108 (in German) (1929).

    Google Scholar 

  2. Robinson, W. A. Granulocytosis in Neoplasia. Ann. NY Acad. Sci. 230, 212–218 (1965).

    Article  Google Scholar 

  3. Bennett, J. A., Rao, V. S. & Mitchell, M. S. Systemic bacillus Calmette-Guerin (BCG) activates natural suppressor cells. Proc. Natl Acad. Sci. USA 75, 5142–5144 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slavin, S. & Strober, S. Induction of allograft tolerance after total lymphoid irradiation (TLI): development of suppressor cells of the mixed leukocyte reaction (MLR) J. Immunol. 123, 942–946 (1979).

    CAS  PubMed  Google Scholar 

  5. Duwe, A. K. & Singhal, S. K. The immunoregulatory role of bone marrow. I. Suppression of the induction of antibody responses to T-dependent and T-independent antigens by cells in the bone marrow Cell. Immunol. 43, 362–371 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Brooks-Kaiser, J. C., Bourque, L. A. & Hoskin, D. W. Heterogeneity of splenic natural suppressor cells induced in mice by treatment with cyclophosphamide. Immunopharm. 25, 117–129 (1993).

    Article  CAS  Google Scholar 

  7. Fidler, I. J. Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Res. 38, 2651–2660 (1978).

    CAS  PubMed  Google Scholar 

  8. Porembka, M. R. et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol. Immunother. 61, 1373–1385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, L. et al. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J. Immunol. 190, 794–804 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Diaz-Montero, C. M. et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol. Immunother. 58, 49–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Younos, I. H., Dafferner, A. J., Gulen, D., Britton, H. C. & Talmadge, J. E. Tumor regulation of myeloid-derived suppressor cell proliferation and trafficking. Int. Immunopharmacol. 13, 245–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Donkor, M. K. et al. Mammary tumor heterogeneity in the expansion of myeloid-derived suppressor cells. Int. Immunopharmacol. 9, 937–948 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Rashid, O. M. et al. Resection of the primary tumor improves survival in metastatic breast cancer by reducing overall tumor burden. Surg. 153, 771–778 (2013).

    Article  Google Scholar 

  14. Salvadori, S., Martinelli, G. & Zier, K. Resection of solid tumors reverses T cell defects and restores protective immunity. J. Immunol. 164, 2214–2220 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Bayne, L. J. et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822–835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Younos, I. et al. Tumor- and organ-dependent infiltration by myeloid-derived suppressor cells. Int. Immunopharmacol. 11, 814–826 (2011).

    Article  CAS  Google Scholar 

  17. Dolcetti, L. et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 40, 22–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Waight, J. D., Hu, Q., Miller, A., Liu, S. & Abrams, S. I. Tumor-Derived, G.-C. S. F. Facilitates neoplastic growth through a granulocytic myeloid-derived suppressor cell-dependent mechanism. PLoS ONE 6, e27690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kowanetz, M. et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc. Natl Acad. Sci. USA 107, 21248–21255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pekarek, L. A., Starr, B. A., Toledano, A. Y. & Schreiber, H. Inhibition of tumor growth by elimination of granulocytes. J. Exp. Med. 181, 435–440 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Li, H., Han, Y., Guo, Q., Zhang, M. & Cao, X. Cancer-Expanded Myeloid-Derived Suppressor Cells Induce Anergy of NK Cells through Membrane-Bound TGF-{beta}1. J. Immunol. 182, 240–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Abe, F. et al. Myeloid-derived suppressor cells in mammary tumor progression in FVB Neu transgenic mice. Cancer Immunol. Immunother. 59, 47–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Lappat, E. J. & Cawein, M. A. Study of the Leukemoid Response to Transplantable a-280 Tumor in Mice. Cancer Res. 24, 302–311 (1964).

    CAS  PubMed  Google Scholar 

  24. Lee, M. Y. & Rosse, C. Depletion of lymphocyte subpopulations in primary and secondary lymphoid organs of mice by a transplanted granulocytosis-inducing mammary carcinoma. Cancer Res. 42, 1255–1260 (1982).

    CAS  PubMed  Google Scholar 

  25. Tsuchiya, Y., Igarashi, M., Suzuki, R. & Kumagai, K. Production of colony-stimulating factor by tumor cells and the factor-mediated induction of suppressor cells. J. Immunol. 141, 699–708 (1988).

    CAS  PubMed  Google Scholar 

  26. Bennett, J. A. & Mitchell, M. S. Induction of suppressor cells by intravenous administration of Bacillus Calmette-Guerin and its modulation by cyclophosphamide. Biochem. Pharmacol. 28, 1947–1952 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Wren, S. M., Wepsic, H. T., Larson, C. H., De Silva, M. A. & Mizushima, Y. Inhibition of the graft-versus-host response by BCGcw-induced suppressor cells or prostaglandin E1. Cell. Immunol. 76, 361–371 (1983).

    Article  CAS  PubMed  Google Scholar 

  28. Predina, J. D. et al. Cytoreduction surgery reduces systemic myeloid suppressor cell populations and restores intratumoral immunotherapy effectiveness. J. Hematol. Oncol. 5, 34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Delano, M. J. et al. MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J. Exp. Med. 204, 1463–1474 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oseroff, A., Okada, S. & Strober, S. Natural suppressor (NS) cells found in the spleen of neonatal mice and adult mice given total lymphoid irradiation (TLI) express the null surface phenotype J. Immunol. 132, 101–110 (1984).

    CAS  PubMed  Google Scholar 

  31. Young, M. R. & Wright, M. A. Myelopoiesis-associated immune suppressor cells in mice bearing metastatic Lewis lung carcinoma tumors: Gamma-interferon plus tumor necrosis factor-alpha synergistically reduces immune suppressor and tumor growth-promoting activities of bone marrow cells and diminishes tumor recurrence and metastasis. Cancer Res. 52, 6335–6340 (1992).

    CAS  PubMed  Google Scholar 

  32. Kusmartsev, S. A., Li, Y. & Chen, S. H. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J. Immunol. 165, 779–785 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Watson, G. A., Fu, Y. X. & Lopez, D. M. Splenic macrophages from tumor-bearing mice co-expressing MAC-1 and MAC-2 antigens exert immunoregulatory functions via two distinct mechanisms. J. Leukoc. Biol. 49, 126–138 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Craddock, C. F. et al. Circulating stem cells in mice treated with cyclophosphamide. Blood 80, 264–269 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Sy, M. S., Miller, S. D. & Claman, H. N. Immune suppression with supraoptimal doses of antigen in contact sensitivity. I. Demonstration of suppressor cells and their sensitivity to cyclophosphamide. J. Immunol. 119, 240–244 (1977).

    CAS  PubMed  Google Scholar 

  37. Hooper, D. C., Hoskin, D. W., Gronvik, K. O. & Murgita, R. A. Murine neonatal spleen contains natural T and non-T suppressor cells capable of inhibiting adult alloreactive and newborn autoreactive T-cell proliferation. Cell. Immunol. 99, 461–475 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Pak, A. S. et al. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin. Cancer Res. 1, 95–103 (1995).

    CAS  PubMed  Google Scholar 

  39. Young, M. R. I., Young, M. E. & Wright, M. A. Stimulation of immune-suppressive bone marrow cells by colony-stimulating factors. Exp. Hematol. 18, 806–811 (1990).

    CAS  PubMed  Google Scholar 

  40. Bronte, V. et al. Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J. Immunol. 162, 5728–5737 (1999).

    CAS  PubMed  Google Scholar 

  41. Serafini, P. et al. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 64, 6337–6343 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Shojaei, F. et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc. Natl Acad. Sci. USA 106, 6742–6747 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Talmadge, J. E. Pathways Mediating the Expansion and Immunosuppressive Activity of Myeloid-Derived Suppressor Cells and Their Relevance to Cancer Therapy. Clin. Cancer Res. 13, 5243–5248 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Boutte, A. M., McDonald, W. H., Shyr, Y., Yang, L. & Lin, P. C. Characterization of the MDSC proteome associated with metastatic murine mammary tumors using label-free mass spectrometry and shotgun proteomics. PLoS ONE 6, e22446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chornoguz, O. et al. Proteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosis. Mol. Cell Proteomics 10, M110 002980 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Bronte, V., Serafini, P., Apolloni, E. & Zanovello, P. Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J. Immunother. 24, 431–446 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Gabrilovich, D. I., Velders, M. P., Sotomayor, E. M. & Kast, W. M. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166, 5398–5406 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Bronte, V. et al. Apoptotic death of CD8+ T lymphocytes after immunization: induction of a suppressive population of Mac-1+/Gr-1+ cells. J. Immunol. 161, 5313–5320 (1998).

    CAS  PubMed  Google Scholar 

  49. Young, M. R., Wright, M. A., Matthews, J. P., Malik, I. & Prechel, M. Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-beta and nitric oxide. J. Immunol. 156, 1916–1922 (1996).

    CAS  PubMed  Google Scholar 

  50. Gabrilovich, D. I. et al. The Terminology Issue for Myeloid-Derived Suppressor Cells. Cancer Res. 67, 425–425 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, R. & Roden, R. B. S. The Terminology Issue for Myeloid-Derived Suppressor Cells. Cancer Res. 67, 426–426 (2007).

    Article  CAS  Google Scholar 

  52. Ribechini, E., Greifenberg, V., Sandwick, S. & Lutz, M. B. Subsets, expansion and activation of myeloid-derived suppressor cells. Med. Microbiol. Immunol. 199, 273–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Youn, J. I., Nagaraj, S., Collazo, M. & Gabrilovich, D. I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791–5802 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Karsunky, H., Merad, M., Cozzio, A., Weissman, I. L. & Manz, M. G. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J. Exp. Med. 198, 305–313 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70, 5728–5739 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  Google Scholar 

  57. Sawanobori, Y. et al. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111, 5457–5466 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Virtuoso, L. P. et al. Characterization of iNOS+ Neutrophil-like ring cell in tumor-bearing mice. J. Transl. Med. 10, 152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sasmono, R. T. et al. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J. Leukoc. Biol. 82, 111–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Movahedi, K. et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111, 4233–4244 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Haile, L. A., Gamrekelashvili, J., Manns, M. P., Korangy, F. & Greten, T. F. CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J. Immunol. 185, 203–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Brandau, S., Moses, K. & Lang, S. The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: Cousins, siblings or twins? Semin. Cancer Biol. 23, 171–182 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Mielcarek, M., Martin, P. J. & Torok-Storb, B. Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells. Blood 89, 1 629–1634 (1997).

    Article  Google Scholar 

  64. Talmadge, J. et al. Immunologic attributes of cytokine mobilized peripheral blood stem cells and recovery following transplantation. Bone Marrow Transplant. 17, 101–109 (1996).

    CAS  PubMed  Google Scholar 

  65. Singh, R. K. et al. Fas-FasL-mediated CD4+ T-cell apoptosis following stem cell transplantation. Cancer Res. 59, 3107–3111 (1999).

    CAS  PubMed  Google Scholar 

  66. Wanebo, H. J. et al. Indomethacin sensitive suppressor-cell activity in head and neck cancer patients. The role of the adherent mononuclear cell. Cancer 61, 462–474 (1988).

    Article  CAS  PubMed  Google Scholar 

  67. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Laoui, D. et al. Mononuclear phagocyte heterogeneity in cancer: different subsets and activation states reaching out at the tumor site. Immunobiology 216, 1192–1202 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Youn, J. I. & Gabrilovich, D. I. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur. J. Immunol. 40, 2969–2975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lathers, D. M., Clark, J. I., Achille, N. J. & Young, M. R. Phase IB study of 25-hydroxyvitamin D(3) treatment to diminish suppressor cells in head and neck cancer patients. Hum. Immunol. 62, 1282–1293 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Zea, A. H. et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65, 3044–3048 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V. & Kiessling, R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 70, 4335–4345 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Filipazzi, P. et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol. 25, 2546–2553 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Rodriguez, P. C. et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69, 1553–1560 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dumitru, C. A., Moses, K., Trellakis, S., Lang, S. & Brandau, S. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol. Immunother. 61, 1155–1167 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Zhao, F. et al. S100A9 a new marker for monocytic human myeloid-derived suppressor cells. Immunology 136, 176–183 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mantovani, A. & Sica, A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Glasser, L. & Fiederlein, R. L. Functional differentiation of normal human neutrophils. Blood 69, 937–944 (1987).

    Article  CAS  PubMed  Google Scholar 

  80. DuPre, S. A. & Hunter, K. W. Jr. Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp. Mol. Pathol. 82, 12–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Sica, A. & Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117, 1155–1166 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sade-Feldman, M. et al. Tumor Necrosis Factor-alpha Blocks Differentiation and Enhances Suppressive Activity of Immature Myeloid Cells during Chronic Inflammation. Immunity 38, 541–554 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Cheng, P. et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J. Exp. Med. 205, 2235–2249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nagaraj, S. & Gabrilovich, D. I. Myeloid-derived suppressor cells in human cancer. Cancer J. 16, 348–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Ostrand-Rosenberg, S. & Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499–4506 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Gibb, D. R., Saleem, S. J., Kang, D. J., Subler, M. A. & Conrad, D. H. ADAM10 overexpression shifts lympho- and myelopoiesis by dysregulating site 2/site 3 cleavage products of Notch. J. Immunol. 186, 4244–4252 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Song, X. et al. CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J. Immunol. 175, 8200–8208 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Young, M. R., Wright, M. A. & Young, M. E. Antibodies to colony-stimulating factors block Lewis lung carcinoma cell stimulation of immune-suppressive bone marrow cells. Cancer Immunol. Immunother. 33, 146–152 (1991).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Y. et al. MicroRNA-494 is required for the accumulation and functions of tumor-expanded myeloid-derived suppressor cells via targeting of PTEN. J. Immunol. 188, 5500–5510 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Almand, B. et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin. Cancer Res. 6, 1755–1766 (2000).

    CAS  PubMed  Google Scholar 

  91. Melani, C. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102, 2138–2145 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Pan, P. Y. et al. Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood 111, 219–228 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Solheim, J. et al. Spleen but not tumor infiltration by dendritic and T cells is increased by intravenous adenovirus-Flt3 ligand injection. Cancer Gene Ther. 14, 364–371 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Morales, J. K., Kmieciak, M., Knutson, K. L., Bear, H. D. & Manjili, M. H. GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1− bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res. Treat. 123, 39–49 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Ko, J. S. et al. Direct and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrained. Cancer Res. 70, 3526–3536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Priceman, S. J. et al. Targeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapy. Blood 115, 1461–1471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. DeNardo, D. G. et al. Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy. Cancer Discov. 1, 54–67 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fricke, I. et al. Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but does not improve antigen-specific immune responses. Clin. Cancer Res. 13, 4840–4848 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Panopoulos, A. D. & Watowich, S. S. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 42, 277–288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rutella, S., Zavala, F., Danese, S., Kared, H. & Leone, G. Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J. Immunol. 175, 7085–7091 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Kyo, S., Kanaya, T., Takakura, M. & Inoue, M. A case of cervical cancer with aggressive tumor growth: possible autocrine growth stimulation by G-CSF and Il-6. Gynecol. Oncol. 78, 383–387 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Okazaki, T. et al. Granulocyte colony-stimulating factor promotes tumor angiogenesis via increasing circulating endothelial progenitor cells and Gr1+CD11b+ cells in cancer animal models. Int. Immunol. 18, 1–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  Google Scholar 

  104. Peranzoni, E. et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol. 22, 238–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Young, M. R., Young, M. E. & Wright, M. A. Myelopoiesis-associated suppressor-cell activity in mice with Lewis lung carcinoma tumors: interferon-gamma plus tumor necrosis factor-alpha synergistically reduce suppressor cell activity. Int. J. Cancer 46, 245–250 (1990).

    Article  CAS  PubMed  Google Scholar 

  106. Choi, K. L., Maier, T., Holda, J. H. & Claman, H. N. Suppression of cytotoxic T-cell generation by natural suppressor cells from mice with GVHD is partially reversed by indomethacin. Cell. Immunol. 112, 271–278 (1988).

    Article  CAS  PubMed  Google Scholar 

  107. Schlecker, E. et al. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J. Immunol. 189, 5602–5611 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Youn, J. I., Collazo, M., Shalova, I. N., Biswas, S. K. & Gabrilovich, D. I. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J. Leukoc. Biol. 91, 167–181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mirza, N. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 66, 9299–9307 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kusmartsev, S. et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res. 63, 4441–4449 (2003).

    CAS  PubMed  Google Scholar 

  111. Young, M. R. I. et al. 1-alpha, 25-dihydroxyvitamin D3 plus gamma-interferon blocks lung tumor production of granulocyte-macrophage colony-stimulating factor and induction of immunosuppressor cells. Cancer Res. 53, 6006–6006 (1993).

    CAS  PubMed  Google Scholar 

  112. Sinha, P. et al. Proinflammatory s100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666–4675 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Zon, L. I. Intrinsic and extrinsic control of haematopoietic stem-cell self-renewal. Nature 453, 306–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  115. Si, Y., Tsou, C. L., Croft, K. & Charo, I. F. CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J. Clin. Invest. 120, 1192–1203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Johns, J. L. & Christopher, M. M. Extramedullary hematopoiesis: a new look at the underlying stem cell niche, theories of development, and occurrence in animals. Vet. Pathol. 49, 508–523 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Pruijt, J. F., Willemze, R. & Fibbe, W. E. Mechanisms underlying hematopoietic stem cell mobilization induced by the CXC chemokine interleukin-8. Curr. Opin. Hematol. 6, 152–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Demetri, G. D. & Griffin, J. D. Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791–2808 (1991).

    Article  CAS  PubMed  Google Scholar 

  119. Price, T. H., Chatta, G. S. & Dale, D. C. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood 88, 335–340 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Nefedova, Y. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathway. Cancer Res. 65, 9525–9535 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Levesque, J. P., Hendy, J., Takamatsu, Y., Simmons, P. J. & Bendall, L. J. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J. Clin. Invest. 111, 187–196 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lévesque, J.-P. et al. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp. Hematol. 30, 440–449 (2002).

    Article  PubMed  Google Scholar 

  123. Link, D. C. Neutrophil homeostasis: a new role for stromal cell-derived factor-1. Immunol. Res. 32, 169–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  125. McQuibban, G. A. Matrix metalloproteinase activity Inactivates the CXC chemokine stromal cell-derived factor-1. J. Biol. Chem. 276, 43503–43508 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nature Immunol. 6, 1182–1190 (2005).

    Article  CAS  Google Scholar 

  127. Ueno, T. et al. Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin. Cancer Res. 6, 3282–3289 (2000).

    CAS  PubMed  Google Scholar 

  128. Watanabe, T. et al. GM-CSF-mobilized peripheral blood CD34+ cells differ from steady- state bone marrow CD34+ cells in adhesion molecule expression. Bone Marrow Transplant. 19, 1175–1181 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Pruijt, J. F. et al. Anti-LFA-1 blocking antibodies prevent mobilization of hematopoietic progenitor cells induced by interleukin-8. Blood 91, 4099–4105 (1998).

    Article  CAS  PubMed  Google Scholar 

  130. Jin, H., Su, J., Garmy-Susini, B., Kleeman, J. & Varner, J. Integrin α4β1 promotes monocyte trafficking and angiogenesis in tumors. Cancer Res. 66, 2146–2152 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Jin, H. et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. J. Clin. Invest. 116, 652–662 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jin, F. et al. Degradation of BM SDF-1 by MMP-9: the role in G-CSF-induced hematopoietic stem/progenitor cell mobilization. Bone Marrow Transplant 42, 581–588 (2008).

    Article  CAS  PubMed  Google Scholar 

  133. Chavakis, E. et al. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J. Exp. Med. 201, 63–72 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Youn, J. I. et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunol. 14, 211–220 (2013).

    Article  CAS  Google Scholar 

  135. Connolly, M. K. et al. Distinct populations of metastases-enabling myeloid cells expand in the liver of mice harboring invasive and preinvasive intra-abdominal tumor. J. Leukoc. Biol. 87, 713–725 (2010).

    Article  CAS  PubMed  Google Scholar 

  136. De Santo, C. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc. Natl Acad. Sci. 102, 4185–4190 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ellies, L. G. et al. Mammary tumor latency is increased in mice lacking the inducible nitric oxide synthase. Int. J. Cancer 106, 1–7 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Sun, H. L. et al. Increased frequency and clinical significance of myeloid-derived suppressor cells in human colorectal carcinoma. World J. Gastroenterol. 18, 3303–3309 (2012).

    PubMed  PubMed Central  Google Scholar 

  139. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98–101 (1989).

    CAS  PubMed  Google Scholar 

  140. Balwit, J. M., Hwu, P., Urba, W. J. & Marincola, F. M. The iSBTc/SITC primer on tumor immunology and biological therapy of cancer: a summary of the 2010 program. J. Transl. Med. 9, 18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sumida, K. et al. Anti-IL-6 receptor mAb eliminates myeloid-derived suppressor cells and inhibits tumor growth by enhancing T-cell responses. Eur. J. Immunol. 42, 2060–2072 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Vincent, J. et al. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 70, 3052–3061 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Kodumudi, K. N. et al. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin. Cancer Res. 16, 4583–4594 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Serafini, P. et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med. 203, 2691–2702 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Suzuki, E. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor Immune activity. Clin. Cancer Res. 11, 6713–6721 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Antonia, S. J. et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin. Cancer Res. 12, 878–887 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Mukherjee, P. et al. Progression of pancreatic adenocarcinoma Is significantly impeded with a combination of vaccine and COX-2 inhibition. J. Immunol. 182, 216–224 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Stenvold, H. et al. Overexpression of matrix metalloproteinase-7 and -9 in NSCLC tumor and stromal cells: correlation with a favorable clinical outcome. Lung Cancer 75, 235–241 (2012).

    Article  PubMed  Google Scholar 

  149. Corzo, C. A. et al. HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J. Exp. Med. 207, 2439–2453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Du, R. et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13, 206–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang, L. et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Forrester, E. et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 65, 2296–2302 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Fidler, I. J. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled wth 1251-5-lodo-2′-deoxyuridine1,2,3. J. Natl Cancer Inst. 45, 773–782 (1970).

    CAS  PubMed  Google Scholar 

  154. Fidler, I. J., Gersten, D. M. & Hart, I. R. The biology of cancer invasion and metastasis. Adv. Cancer Res. 28, 149–250 (1978).

    Article  CAS  PubMed  Google Scholar 

  155. Hart, I. R. & Fidler, I. J. Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40, 2281–2287 (1980).

    CAS  PubMed  Google Scholar 

  156. Psaila, B. & Lyden, D. The metastatic niche: adapting the foreign soil. Nature Rev. Cancer 9, 285–293 (2009).

    Article  CAS  Google Scholar 

  157. Kaplan, R. N., Rafii, S. & Lyden, D. Preparing the “Soil”: the premetastatic niche. Cancer Res. 66, 11089–11093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Talmadge, J. E. & Fidler, I. J. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 70, 5649–5669 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Nishie, A. et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin. Cancer Res. 5, 1107–1113 (1999).

    CAS  PubMed  Google Scholar 

  160. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  161. Mauro, E. et al. Mobilization of endothelial progenitor cells in patients with hematological malignancies after treatment with filgrastim and chemotherapy for autologous transplantation. Eur. J. Haematol. 78, 374–380 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Nolan, D. J. et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 21, 1546–1558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Davidoff, A. M. et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin. Cancer Res. 7, 2870–2879 (2001).

    CAS  PubMed  Google Scholar 

  164. Dome, B. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res. 66, 7341–7347 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Young, M. R., Kolesiak, K., Wright, M. A. & Gabrilovich, D. I. Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clin. Exp. Metastasis 17, 881–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Mulligan, J. K., Rosenzweig, S. A. & Young, M. R. Tumor secretion of VEGF induces endothelial cells to suppress T cell functions through the production of PGE2. J. Immunother. 33, 126–135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Madlambayan, G. J. et al. Bone marrow stem and progenitor cell contribution to neovasculogenesis is dependent on model system with SDF-1 as a permissive trigger. Blood 114, 4310–4319 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Li, B. et al. Low levels of tumor necrosis factor alpha increase tumor growth by inducing an endothelial phenotype of monocytes recruited to the tumor site. Cancer Res. 69, 338–348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Asahara, T. et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 18, 3964–3972 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lyden, D. et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature Med. 7, 1194–1201 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Whiteside, T. L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904–5912 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Whiteside, T. L. Tricks tumors use to escape from immune control. Oral Oncol. 45, e119–e123 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Montero, A. J., Diaz-Montero, C. M., Kyriakopoulos, C. E., Bronte, V. & Mandruzzato, S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J. Immunother. 35, 107–115 (2012).

    Article  PubMed  Google Scholar 

  174. Poschke, I. & Kiessling, R. On the armament and appearances of human myeloid-derived suppressor cells. Clin. Immunol. 144, 250–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  175. Joyce, J. A. & Pollard, J. W. Microenvironmental regulation of metastasis. Nature Rev. Cancer 9, 239–252 (2009).

    Article  CAS  Google Scholar 

  176. Mazzoni, A. et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168, 689–695 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Rodriguez, P. C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Nagaraj, S., Schrum, A. G., Cho, H. I., Celis, E. & Gabrilovich, D. I. Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J. Immunol. 184, 3106–3116 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Wu, L. et al. Inhibition of PPARgamma in myeloid-lineage cells induces systemic inflammation, immunosuppression, and tumorigenesis. Blood 119, 115–126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wolf, A. M. et al. The effect of zoledronic acid on the function and differentiation of myeloid cells. Haematologica 91, 1165–1171 (2006).

    CAS  PubMed  Google Scholar 

  181. Talmadge, J. E. et al. Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int. Immunopharmacol. 7, 140–151 (2007).

    Article  CAS  PubMed  Google Scholar 

  182. van Cruijsen, H. et al. Sunitinib-Induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clin. Cancer Res. 14, 5884–5892 (2008).

    Article  CAS  PubMed  Google Scholar 

  183. Shojaei, F. et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450, 825–831 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Huang, D. et al. Interleukin-8 mediates resistance to antiangiogenic agent sunitinib in renal cell carcinoma. Cancer Res. 70, 1063–1071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Shojaei, F. et al. Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnol. 25, 911–920 (2007).

    Article  CAS  Google Scholar 

  186. Finke, J. et al. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int. Immunopharmacol. 11, 856–861 (2011).

    Article  CAS  PubMed  Google Scholar 

  187. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Fischer, C., Mazzone, M., Jonckx, B. & Carmeliet, P. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nature Rev. Cancer 8, 942–956 (2008).

    Article  CAS  Google Scholar 

  189. Xu, L. et al. Direct Evidence that Bevacizumab, an Anti-VEGF Antibody, Up-regulates SDF1α, CXCR4, CXCL6, and Neuropilin 1 in Tumors from Patients with Rectal Cancer. Cancer Res. 69, 7905–7910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Filipazzi, P., Huber, V. & Rivoltini, L. Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol. Immunother. 61, 255–263 (2012).

    Article  CAS  PubMed  Google Scholar 

  191. Greten, T. F., Manns, M. P. & Korangy, F. Myeloid derived suppressor cells in human diseases. Int. Immunopharmacol. 11, 802–807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhang, J., Patel, L. & Pienta, K. J. CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev. 21, 41–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Melani, C., Sangaletti, S., Barazzetta, F. M., Werb, Z. & Colombo, M. P. Amino-biphosphonate mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res. 67, 11438–11446 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Talmadge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Extramedullary haematopoiesis

(EMH). The proliferation of haematopoietic cells outside of the bone marrow in response to pathological processes, such as tumour growth, and can occur at different locations, such as the liver and spleen.

Host macroenvironment

Includes the systemic factors (growth factors, cells, tissues and organs) that can regulate tumour growth, progression and metastasis, including factors, such as age, menopausal status, body mass index and overall immune status.

Leukaemoid reaction

A peripheral blood phenotype resembling that of leukaemia, or indistinguishable from it, based on cellular morphological appearance; observed in some infectious diseases, inflammatory conditions and neoplasia.

Margination

A process that occurs during the early phases of inflammation; as a result of capillary dilation and slowing of the bloodstream, leukocytes occupy the periphery of the cross-sectional lumen and adhere to the endothelial cells that line the vessels.

Mobilization

The release of haematopoietic progenitor cells from the bone marrow into the peripheral blood.

Neutrophilia

An absolute or relative increase in the normal number of neutrophils and their precursors in the circulating blood that may be associated with acute infections, malignancy or following severe haemorrhage or neutropenia (compensatory neutrophilia).

Plasticity

The capacity of cells with the same genotype to vary in differentiation, in phenotype or in function in response to varying environmental conditions.

Tumour angiogenesis

The growth of blood vessels and capillary beds from existing vessels into a solid tumour.

Tumour microenvironment

The milieu surrounding tumours, including normal cells, blood vessels, soluble factors and molecules, that can influence and be influenced by tumour growth.

Tumour vasculogenesis

The formation of new capillaries and blood vessels by endothelial progenitor cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talmadge, J., Gabrilovich, D. History of myeloid-derived suppressor cells. Nat Rev Cancer 13, 739–752 (2013). https://doi.org/10.1038/nrc3581

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3581

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer