Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of F-box proteins in cancer

Key Points

  • F-box proteins have pivotal roles in the development and progression of human malignancies through governing the turnover of key factors that are involved in multiple cellular processes, including cell proliferation, apoptosis, invasion, angiogenesis and metastasis.

  • In order to determine the possible role for each of the 69 identified mammalian F-box proteins in tumorigenesis, we focused on summarizing experimental evidence derived from physiological mouse models, pathological gene alterations in cancer patients and biochemical substrates identified for respective F-box proteins.

  • F-box/WD repeat-containing protein 7 (FBXW7) exerts its tumour-suppressor role mostly by promoting the degradation of various oncoproteins that regulate important cellular processes including cell cycle progression, cellular metabolism, differentiation and apoptosis. Moreover, FBXW7 somatic mutations have been observed in various human cancers, and genetic ablation of Fbxw7 in different tissue settings predisposes mice to cancer.

  • S-phase kinase-associated protein 2 (SKP2) promotes tumorigenesis mostly by promoting the ubiquitylation and subsequent degradation of a cohort of tumour-suppressor proteins, including p27, p21, p130 and forkhead box protein O1 (FOXO1). Skp2 transgenic mouse models, and overexpression of SKP2 in various types of human cancers further support a role for SKP2 as a proto-oncoprotein.

  • β-transducin repeat-containing protein 1 (β-TRCP1) and β-TRCP2 exert their oncogenic or tumour-suppressive function in a tissue-specific, or cellular context-dependent manner.

  • For a subset of F-box proteins with emerging oncogenic or tumour-suppressive roles, genetic mouse models have been established to shed light on the potential role of these proteins in tumorigenesis. However, further additional compound or tissue-specific mouse models, as well as identification of downstream substrates, are necessary to clearly define the roles of these proteins in cancer.

  • F-box proteins with undetermined roles in tumorigenesis are defined for those members without studies from cancerous mouse models, although pathological genetic alterations or characterized tumour-associated substrates might have provided minimal support for their possible involvement in tumorigenesis.

  • Targeting F-box proteins, or F-box protein signalling pathways, could be an effective strategy for prevention or treatment of human cancers.>

Abstract

F-box proteins, which are the substrate-recognition subunits of SKP1–cullin 1–F-box protein (SCF) E3 ligase complexes, have pivotal roles in multiple cellular processes through ubiquitylation and subsequent degradation of target proteins. Dysregulation of F-box protein-mediated proteolysis leads to human malignancies. Notably, inhibitors that target F-box proteins have shown promising therapeutic potential, urging us to review the current understanding of how F-box proteins contribute to tumorigenesis. As the physiological functions for many of the 69 putative F-box proteins remain elusive, additional genetic and mechanistic studies will help to define the role of each F-box protein in tumorigenesis, thereby paving the road for the rational design of F-box protein-targeted anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of functional domains in the highlighted F-Box proteins, grouped by their potential functions in cancer that have been shown by available mouse models.
Figure 2: Different strategies for targeted therapy that aims to inhibit F-box E3 ligases on the basis of their roles in tumorigenesis.

Similar content being viewed by others

References

  1. Li, W. et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE 3, e1487 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005). References 2 and 3 are two review articles that provide a comprehensive overview of the cullin ring type of E3 ligases.

    Article  CAS  Google Scholar 

  4. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Rev. Cancer 8, 438–449 (2008). This is an excellent review of the roles of SKP2, β-TRCP1 and β-TRCP2 in cancer.

    Article  CAS  Google Scholar 

  5. Bai, C. et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86, 263–274 (1996). This ground-breaking work identified the F-box motif in FBXO1 and was the pioneering study that opened the SCF research field.

    Article  CAS  PubMed  Google Scholar 

  6. Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. Cancer 6, 369–381 (2006). This is an excellent review about the role of ubiquitin ligases in controlling cell cycle progression and tumorigenesis.

    Article  CAS  Google Scholar 

  7. Watanabe, N. et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP. Proc. Natl Acad. Sci. USA 101, 4419–4424 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006). This article provided a comprehensive summary of APC/C E3 ligases.

    Article  CAS  Google Scholar 

  9. Harper, J. W., Burton, J. L. & Solomon, M. J. The anaphase-promoting complex: it's not just for mitosis any more. Genes Dev. 16, 2179–2206 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. D'Angiolella, V. et al. SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature 466, 138–142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duan, S. et al. FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481, 90–93 (2012). This paper identified BCL-6 as a novel substrate of FBXO11 and demonstrated that FBXO11-mediated BCL-6 degradation is crucial for diffuse large B cell lymphoma development and that FBXO11 is a haploinsufficient tumour suppressor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rye, M. S. et al. FBXO11, a regulator of the TGFβ pathway, is associated with severe otitis media in Western Australian children. Genes Immun. 12, 352–359 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Santra, M. K., Wajapeyee, N. & Green, M. R. F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage. Nature 459, 722–725 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Skaar, J. R., Pagan, J. K. & Pagano, M. Mechanisms and function of substrate recruitment by F-box proteins. Nature Rev. Mol. Cell Biol. 14, 369–381 (2013).

    Article  CAS  Google Scholar 

  15. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001). This is a pioneering study that identified the central phosphorylation domain within most of FBXW7 substrates.

    Article  CAS  PubMed  Google Scholar 

  16. Orlicky, S., Tang, X., Willems, A., Tyers, M. & Sicheri, F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Yoshida, Y. et al. Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J. Biol. Chem. 278, 43877–43884 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida, Y. et al. E3 ubiquitin ligase that recognizes sugar chains. Nature 418, 438–442 (2002). This is the first report of an F-box protein interacting with modifications other than phosphorylation.

    Article  CAS  PubMed  Google Scholar 

  19. D'Angiolella, V. et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 149, 1023–1034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuchay, S. et al. FBXL2- and PTPL1-mediated degradation of p110-free p85β regulatory subunit controls the PI(3)K signalling cascade. Nature Cell Biol. 15, 472–480 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Abbas, T. et al. CRL1-FBXO11 promotes Cdt2 ubiquitylation and degradation and regulates Pr-Set7/Set8-mediated cellular migration. Mol. Cell 49, 1147–1158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rossi, M. et al. Regulation of the CRL4Cdt2 ubiquitin ligase and cell-cycle exit by the SCFFbxo11 ubiquitin ligase. Mol. Cell 49, 1159–1166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, J. M. et al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol. Cell 48, 572–586 (2012). This paper showed for the first time that lysine-methylation could be a recognization signal for CRL.

    Article  CAS  PubMed  Google Scholar 

  24. Nakayama, K. I. & Nakayama, K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin. Cell Dev. Biol. 16, 323–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Crusio, K. M., King, B., Reavie, L. B. & Aifantis, I. The ubiquitous nature of cancer: the role of the SCFFbw7 complex in development and transformation. Oncogene 29, 4865–4873 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev. Cancer 8, 83–93 (2008). This is an excellent review, which updates the tumour-suppressor role of FBXW7.

    Article  CAS  Google Scholar 

  27. Tsunematsu, R. et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J. Biol. Chem. 279, 9417–9423 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Tetzlaff, M. T. et al. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl Acad. Sci. USA 101, 3338–3345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akhoondi, S. et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67, 9006–9012 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Onoyama, I. et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J. Exp. Med. 204, 2875–2888 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsuoka, S. et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 22, 986–991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Thompson, B. J. et al. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J. Exp. Med. 205, 1395–1408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maser, R. S. et al. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966–971 (2007). This paper identified FBXW7 as being frequently inactivated or deleted in T-ALL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. King, B. et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153, 1552–1566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sancho, R. et al. F-box and WD repeat domain-containing 7 regulates intestinal cell lineage commitment and is a haploinsufficient tumor suppressor. Gastroenterology 139, 929–941 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Davis, H., Lewis, A., Behrens, A. & Tomlinson, I. Investigation of the atypical FBXW7 mutation spectrum in human tumours by conditional expression of a heterozygous propellor tip missense allele in the mouse intestines. Gut http://dx.doi.org/10.1136/gutjnl-2013-304719 (2013). References 34 and 36 established mouse models that recapitulated the loss of tumour-suppressor function of human FBXW7 via ß-propeller point mutations.

  37. Welcker, M. & Clurman, B. E. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2, 7 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tang, X. et al. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129, 1165–1176 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Onoyama, I. et al. Fbxw7 regulates lipid metabolism and cell fate decisions in the mouse liver. J. Clin. Invest. 121, 342–354 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Mao, J. H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Akhoondi, S. et al. Inactivation of FBXW7/hCDC4-β expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer. Breast Cancer Res. 12, R105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsumoto, A. et al. Fbxw7β resides in the endoplasmic reticulum membrane and protects cells from oxidative stress. Cancer Sci. 102, 749–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Yokobori, T. et al. p53-Altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res. 69, 3788–3794 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Koh, M. S., Ittmann, M., Kadmon, D., Thompson, T. C. & Leach, F. S. CDC4 gene expression as potential biomarker for targeted therapy in prostate cancer. Cancer Biol. Ther. 5, 78–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Mann, K. M. et al. Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma. Proc. Natl Acad. Sci. USA 109, 5934–5941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hardisty-Hughes, R. E. et al. A mutation in the F-box gene, Fbxo11, causes otitis media in the Jeff mouse. Hum. Mol. Genet. 15, 3273–3279 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Tsunematsu, R. et al. Fbxw8 is essential for Cul1-Cul7 complex formation and for placental development. Mol. Cell. Biol. 26, 6157–6169 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsutsumi, T., Kuwabara, H., Arai, T., Xiao, Y. & Decaprio, J. A. Disruption of the Fbxw8 gene results in pre- and postnatal growth retardation in mice. Mol. Cell. Biol. 28, 743–751 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, S. J. et al. mTOR complex 2 regulates proper turnover of insulin receptor substrate-1 via the ubiquitin ligase subunit Fbw8. Mol. Cell 48, 875–887 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Okabe, H. et al. A critical role for FBXW8 and MAPK in cyclin D1 degradation and cancer cell proliferation. PLoS ONE 1, e128 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin, P. et al. Fbxw8 is involved in the proliferation of human choriocarcinoma JEG-3 cells. Mol. Biol. Rep. 38, 1741–1747 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Siepka, S. M. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell 129, 1011–1023 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Godinho, S. I. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Yoo, S. H. et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152, 1091–1105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xing, W. et al. SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature 496, 64–68 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kelleher, F. C., Rao, A. & Maguire, A. Circadian molecular clocks and cancer. Cancer Lett. 342, 9–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Lahti, T., Merikanto, I. & Partonen, T. Circadian clock disruptions and the risk of cancer. Ann. Med. 44, 847–853 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Tetzlaff, M. T. et al. Cyclin F disruption compromises placental development and affects normal cell cycle execution. Mol. Cell. Biol. 24, 2487–2498 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fu, J. et al. Low cyclin F expression in hepatocellular carcinoma associates with poor differentiation and unfavorable prognosis. Cancer Sci. 104, 508–515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vaites, L. P. et al. The Fbx4 tumor suppressor regulates cyclin D1 accumulation and prevents neoplastic transformation. Mol. Cell. Biol. 31, 4513–4523 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kanie, T. et al. Genetic reevaluation of the role of F-box proteins in cyclin D1 degradation. Mol. Cell. Biol. 32, 590–605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin, D. I. et al. Phosphorylation-dependent ubiquitination of cyclin D1 by the SCFFBX4-αB crystallin complex. Mol. Cell 24, 355–366 (2006). This paper identified αβ-crystallin as a cofactor in promoting FBXO4-mediated degradation of cyclin D1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Barbash, O. et al. Mutations in Fbx4 inhibit dimerization of the SCFFbx4 ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell 14, 68–78 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chiorazzi, M. et al. Related F-box proteins control cell death in Caenorhabditis elegans and human lymphoma. Proc. Natl Acad. Sci. USA 110, 3943–3948 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Samuelson, D. J. et al. Rat Mcs5a is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk. Proc. Natl Acad. Sci. USA 104, 6299–6304 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smits, B. M. et al. An insulator loop resides between the synthetically interacting elements of the human/rat conserved breast cancer susceptibility locus MCS5A/Mcs5a. Nucleic Acids Res. 40, 132–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Xu, X. et al. Human MCS5A1 candidate breast cancer susceptibility gene FBXO10 is induced by cellular stress and correlated with lens epithelium-derived growth factor (LEDGF). Mol. Carcinog. http://dx.doi.org/10.1002/mc.21977 (2012).

  69. Jeong, Y. T., Cermak, L., Guijarro, M. V., Hernando, E. & Pagano, M. FBH1 protects melanocytes from transformation and is deregulated in melanomas. Cell Cycle 12, 1128–1132 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumar, R. et al. FBXO31 is the chromosome 16q24.3 senescence gene, a candidate breast tumor suppressor, and a component of an SCF complex. Cancer Res. 65, 11304–11313 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Huang, H. L., Zheng, W. L., Zhao, R., Zhang, B. & Ma, W. L. FBXO31 is down-regulated and may function as a tumor suppressor in hepatocellular carcinoma. Oncol. Rep. 24, 715–720 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Sutterluty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999). References 72 and 73 established p27 as a bona fide substrate for SKP2.

    Article  CAS  PubMed  Google Scholar 

  74. Tsvetkov, L. M., Yeh, K. H., Lee, S. J., Sun, H. & Zhang, H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Yu, Z. K., Gervais, J. L. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc. Natl Acad. Sci. USA 95, 11324–11329 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shim, E. H. et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res. 63, 1583–1588 (2003).

    CAS  PubMed  Google Scholar 

  77. Latres, E. et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc. Natl Acad. Sci. USA 98, 2515–2520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Umanskaya, K. et al. Skp2B stimulates mammary gland development by inhibiting REA, the repressor of the estrogen receptor. Mol. Cell. Biol. 27, 7615–7622 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin, H. K. et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464, 374–379 (2010). This paper showed that inactivation of SKP2 inhibited tumorigenesis through ARF-p53-independent cellular senescence, which suggests that SKP2 might function as an oncoprotein.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chan, C. H. et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149, 1098–1111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao, H. et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell 24, 645–659 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, H. et al. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/− mice. Nature Genet. 42, 83–88 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. Sistrunk, C. et al. Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27Kip1 accumulation. Am. J. Pathol. 182, 1854–1864 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Seki, R. et al. Prognostic significance of S-phase kinase-associated protein 2 and p27kip1 in patients with diffuse large B-cell lymphoma: effects of rituximab. Ann. Oncol. 21, 833–841 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, Z. et al. Skp2: a novel potential therapeutic target for prostate cancer. Biochim. Biophys. Acta 1825, 11–17 (2012).

    CAS  PubMed  Google Scholar 

  86. Li, J. Q. et al. Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors. Int. J. Oncol. 25, 87–95 (2004).

    PubMed  Google Scholar 

  87. Rose, A. E. et al. Clinical relevance of SKP2 alterations in metastatic melanoma. Pigment Cell. Melanoma Res. 24, 197–206 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Fang, F. M. et al. Effect of S-phase kinase-associated protein 2 expression on distant metastasis and survival in nasopharyngeal carcinoma patients. Int. J. Radiat. Oncol. Biol. Phys. 73, 202–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Schuler, S. et al. SKP2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int. J. Oncol. 38, 219–225 (2011).

    PubMed  Google Scholar 

  90. Radke, S., Pirkmaier, A. & Germain, D. Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene 24, 3448–3458 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Zheng, W. Q., Zheng, J. M., Ma, R., Meng, F. F. & Ni, C. R. Relationship between levels of Skp2 and P27 in breast carcinomas and possible role of Skp2 as targeted therapy. Steroids 70, 770–774 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Lu, M. et al. The expression and prognosis of FOXO3a and Skp2 in human hepatocellular carcinoma. Pathol. Oncol. Res. 15, 679–687 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Ma, X. M., Liu, Y., Guo, J. W., Liu, J. H. & Zuo, L. F. Relation of overexpression of S phase kinase-associated protein 2 with reduced expression of p27 and PTEN in human gastric carcinoma. World J. Gastroenterol. 11, 6716–6721 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lee, H. et al. Mouse emi1 has an essential function in mitotic progression during early embryogenesis. Mol. Cell. Biol. 26, 5373–5381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lehman, N. L., Verschuren, E. W., Hsu, J. Y., Cherry, A. M. & Jackson, P. K. Overexpression of the anaphase promoting complex/cyclosome inhibitor Emi1 leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle 5, 1569–1573 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Lehman, N. L. et al. Oncogenic regulators and substrates of the anaphase promoting complex/cyclosome are frequently overexpressed in malignant tumors. Am. J. Pathol. 170, 1793–1805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gutgemann, I., Lehman, N. L., Jackson, P. K. & Longacre, T. A. Emi1 protein accumulation implicates misregulation of the anaphase promoting complex/cyclosome pathway in ovarian clear cell carcinoma. Mod. Pathol. 21, 445–454 (2008).

    Article  CAS  PubMed  Google Scholar 

  98. Min, K. W. et al. Clear cell carcinomas of the ovary: a multi-institutional study of 129 cases in Korea with prognostic significance of Emi1 and Galectin-3. Int. J. Gynecol. Pathol. 32, 3–14 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Zhao, Y. et al. Early mitotic inhibitor-1, an anaphase-promoting complex/cyclosome inhibitor, can control tumor cell proliferation in hepatocellular carcinoma: correlation with Skp2 stability and degradation of p27Kip1. Hum. Pathol. 44, 365–373 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J. & Jackson, P. K. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APCCdh1. Nature Cell Biol. 4, 358–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, J. Y., Wang, M. C. & Hung, W. C. Bcr-Abl-induced tyrosine phosphorylation of Emi1 to stabilize Skp2 protein via inhibition of ubiquitination in chronic myeloid leukemia cells. J. Cell. Physiol. 226, 407–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Fernandez-Saiz, V. et al. SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nature Cell Biol. 15, 72–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Suzuki, T. et al. Mutation analyses of genes on 6p12-p11 in patients with juvenile myoclonic epilepsy. Neurosci. Lett. 405, 126–131 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Fuchs, S. Y., Spiegelman, V. S. & Kumar, K. G. The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 23, 2028–2036 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Nakayama, K. et al. Impaired degradation of inhibitory subunit of NF-κ B (I κ B) and β-catenin as a result of targeted disruption of the β-TrCP1 gene. Proc. Natl Acad. Sci. USA 100, 8752–8757 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guardavaccaro, D. et al. Control of meiotic and mitotic progression by the F box protein β-Trcp1 in vivo. Dev. Cell 4, 799–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Kudo, Y. et al. Role of F-box protein βTrcp1 in mammary gland development and tumorigenesis. Mol. Cell. Biol. 24, 8184–8194 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bhatia, N., Demmer, T. A., Sharma, A. K., Elcheva, I. & Spiegelman, V. S. Role of β-TrCP ubiquitin ligase receptor in UVB mediated responses in skin. Arch. Biochem. Biophys. 508, 178–184 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Ougolkov, A. et al. Associations among β-TrCP, an E3 ubiquitin ligase receptor, β-catenin, and NF-κB in colorectal cancer. J. Natl Cancer Institute 96, 1161–1170 (2004).

    Article  CAS  Google Scholar 

  110. Muerkoster, S. et al. Increased expression of the E3-ubiquitin ligase receptor subunit βTRCP1 relates to constitutive nuclear factor-κB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res. 65, 1316–1324 (2005).

    Article  PubMed  Google Scholar 

  111. Koch, A. et al. Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin. Cancer Res. 11, 4295–4304 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, C. J. et al. Somatic mutations of the β-TrCP gene in gastric cancer. APMIS 115, 127–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Saitoh, T. & Katoh, M. Expression profiles of βTRCP1 and βTRCP2, and mutation analysis of βTRCP2 in gastric cancer. Int. J. Oncol. 18, 959–964 (2001).

    CAS  PubMed  Google Scholar 

  114. Wu, X., Johansen, J. V. & Helin, K. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol. Cell 49, 1134–1146 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Tzatsos, A. et al. KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs. J. Clin. Invest. 123, 727–739 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Fukuda, T., Tokunaga, A., Sakamoto, R. & Yoshida, N. Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly. Mol. Cell. Neurosci. 46, 614–624 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. He, J., Kallin, E. M., Tsukada, Y. & Zhang, Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nature Struct. Mol. Biol. 15, 1169–1175 (2008).

    Article  CAS  Google Scholar 

  118. Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R. & Pagano, M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450, 309–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Lockwood, W. W., Chandel, S. K., Stewart, G. L., Erdjument-Bromage, H. & Beverly, L. J. The novel ubiquitin ligase complex, SCFFbxw4, interacts with the COP9 signalosome in an F-box dependent manner, is mutated, lost and under-expressed in human cancers. PLoS ONE 8, e63610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Minoda, Y., Sakurai, H., Kobayashi, T., Yoshimura, A. & Takaesu, G. An F-box protein, FBXW5, negatively regulates TAK1 MAP3K in the IL-1β signaling pathway. Biochem. Biophys. Res. Commun. 381, 412–417 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Kanei-Ishii, C., Nomura, T., Egoh, A. & Ishii, S. Fbxw5 suppresses nuclear c-Myb activity via DDB1-Cul4-Rbx1 ligase-mediated sumoylation. Biochem. Biophys. Res. Commun. 426, 59–64 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, T. Y. et al. CRL4A-FBXW5-mediated degradation of DLC1 Rho GTPase-activating protein tumor suppressor promotes non-small cell lung cancer cell growth. Proc. Natl Acad. Sci. USA 110, 16868–16873 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hu, J. et al. WD40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase. Genes Dev. 22, 866–871 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. De La Chesnaye, E. et al. Fbxw15/Fbxo12J is an F-box protein-encoding gene selectively expressed in oocytes of the mouse ovary. Biol. Reprod. 78, 714–725 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Zou, C. et al. SCFFbxw15 mediates histone acetyltransferase binding to origin recognition complex (HBO1) ubiquitin-proteasomal degradation to regulate cell proliferation. J. Biol. Chem. 288, 6306–6316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen, B. B. et al. F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood 119, 3132–3141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chen, B. B., Glasser, J. R., Coon, T. A. & Mallampalli, R. K. F-box protein FBXL2 exerts human lung tumor suppressor-like activity by ubiquitin-mediated degradation of cyclin D3 resulting in cell cycle arrest. Oncogene 31, 2566–2579 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Chen, B. B., Glasser, J. R., Coon, T. A. & Mallampalli, R. K. Skp-cullin-F box E3 ligase component FBXL2 ubiquitinates Aurora B to inhibit tumorigenesis. Cell Death Dis. 4, e759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhang, N. et al. FBXL5 interacts with p150Glued and regulates its ubiquitination. Biochem. Biophys. Res. Commun. 359, 34–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Ruiz, J. C., Walker, S. D., Anderson, S. A., Eisenstein, R. S. & Bruick, R. K. F-box and leucine-rich repeat protein 5 (FBXL5) is required for maintenance of cellular and systemic iron homeostasis. J. Biol. Chem. 288, 552–560 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Moroishi, T., Nishiyama, M., Takeda, Y., Iwai, K. & Nakayama, K. I. The FBXL5-IRP2 axis is integral to control of iron metabolism in vivo. Cell. Metab. 14, 339–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Zhu, J., Li, K., Dong, L. & Chen, Y. Role of FBXL20 in human colorectal adenocarcinoma. Oncol. Rep. 28, 2290–2298 (2012).

    Article  CAS  PubMed  Google Scholar 

  133. Eisfeld, A. K. et al. miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia. Blood 120, 249–258 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hirano, A. et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152, 1106–1118 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Meziane el, K., Randle, S. J., Nelson, D. E., Lomonosov, M. & Laman, H. Knockdown of Fbxo7 reveals its regulatory role in proliferation and differentiation of haematopoietic precursor cells. J. Cell Sci. 124, 2175–2186 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Hsu, J. M., Lee, Y. C., Yu, C. T. & Huang, C. Y. Fbx7 functions in the SCF complex regulating Cdk1-cyclin B-phosphorylated hepatoma up-regulated protein (HURP) proteolysis by a proline-rich region. J. Biol. Chem. 279, 32592–32602 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Chang, Y. F., Cheng, C. M., Chang, L. K., Jong, Y. J. & Yuo, C. Y. The F-box protein Fbxo7 interacts with human inhibitor of apoptosis protein cIAP1 and promotes cIAP1 ubiquitination. Biochem. Biophys. Res. Commun. 342, 1022–1026 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Laman, H. et al. Transforming activity of Fbxo7 is mediated specifically through regulation of cyclin D/cdk6. EMBO J. 24, 3104–3116 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lomonosov, M. et al. Expression of Fbxo7 in haematopoietic progenitor cells cooperates with p53 loss to promote lymphomagenesis. PLoS ONE 6, e21165 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Valent, P. et al. Cancer stem cell definitions and terminology: the devil is in the details. Nature Rev. Cancer 12, 767–775 (2012).

    Article  CAS  Google Scholar 

  142. Tokuzawa, Y. et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol. Cell. Biol. 23, 2699–2708 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cepeda, D. et al. CDK-mediated activation of the SCFFBXO28 ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol. Med. 5, 999–1018 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  144. Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Li, H. H. et al. Atrogin-1 inhibits Akt-dependent cardiac hypertrophy in mice via ubiquitin-dependent coactivation of Forkhead proteins. J. Clin. Invest. 117, 3211–3223 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tan, J. et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21, 1050–1063 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chou, J. L. et al. Promoter hypermethylation of FBXO32, a novel TGF-β/SMAD4 target gene and tumor suppressor, is associated with poor prognosis in human ovarian cancer. Lab. Invest. 90, 414–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Song, M. H., Ha, J. C., Lee, S. M., Park, Y. M. & Lee, S. Y. Identification of BCP-20 (FBXO39) as a cancer/testis antigen from colon cancer patients by SEREX. Biochem. Biophys. Res. Commun. 408, 195–201 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Lu, Y. et al. The F-box protein FBXO44 mediates BRCA1 ubiquitination and degradation. J. Biol. Chem. 287, 41014–41022 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Peschiaroli, A., Scialpi, F., Bernassola, F., Pagano, M. & Melino, G. The F-box protein FBXO45 promotes the proteasome-dependent degradation of p73. Oncogene 28, 3157–3166 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Saiga, T. et al. Fbxo45 forms a novel ubiquitin ligase complex and is required for neuronal development. Mol. Cell. Biol. 29, 3529–3543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Chan, C. H. et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell 154, 556–568 (2013). This paper showed that Compound #25 selectively inhibited SKP2 activity and retarded tumour growth through restricting cancer stem cell traits.

    Article  CAS  PubMed  Google Scholar 

  153. Chen, Q. et al. Targeting the p27 E3 ligase SCFSkp2 results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood 111, 4690–4699 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu, L. et al. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem. Biol. 19, 1515–1524 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pavlides, S. C. et al. Inhibitors of SCF-Skp2/Cks1 E3 ligase block estrogen-induced growth stimulation and degradation of nuclear p27kip1: therapeutic potential for endometrial cancer. Endocrinology 154, 4030–4045 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Inuzuka, H. et al. SCFFBW7 regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature 471, 104–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wertz, I. E. et al. Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 471, 110–114 (2011). References 156 and 157 showed that MCL1 is a novel substrate of FBXW7 and is involved in conferring chemoresistance.

    Article  CAS  PubMed  Google Scholar 

  158. Min, S. H. et al. Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol. Cell 46, 771–783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wu, J. et al. Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. Mol. Cell 46, 351–361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Miller, J. J. et al. Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev. 20, 2410–2420 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nelson, D. E., Randle, S. J. & Laman, H. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol. 3, 130131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Reavie, L. et al. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell 23, 362–375 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Takeishi, S. et al. Ablation of Fbxw7 eliminates leukemia-initiating cells by preventing quiescence. Cancer Cell 23, 347–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Le Gallo, M. et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nature Genet. 44, 1310–1315 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Huber, C. et al. Identification of mutations in CUL7 in 3-M syndrome. Nature Genet. 37, 1119–1124 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Chiaur, D. S. et al. Five human genes encoding F-box proteins: chromosome mapping and analysis in human tumors. Cytogenet. Cell Genet. 88, 255–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Laulier, C., Cheng, A., Huang, N. & Stark, J. M. Mammalian Fbh1 is important to restore normal mitotic progression following decatenation stress. DNA Repair (Amst.) 9, 708–717 (2010).

    Article  CAS  Google Scholar 

  169. Signoretti, S. et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J. Clin. Invest. 110, 633–641 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gstaiger, M. et al. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl Acad. Sci. USA 98, 5043–5048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yokoi, S. et al. Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am. J. Pathol. 165, 175–180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kanarek, N. et al. Spermatogenesis rescue in a mouse deficient for the ubiquitin ligase SCFβ-TrCP by single substrate depletion. Genes Dev. 24, 470–477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chen, S. et al. An insertion/deletion polymorphism in the 3′ untranslated region of beta-transducin repeat-containing protein (βTrCP) is associated with susceptibility for hepatocellular carcinoma in Chinese. Biochem. Biophys. Res. Commun. 391, 552–556 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Scott, D. K. et al. Identification and analysis of tumor suppressor loci at chromosome 10q23.3-10q25.3 in medulloblastoma. Cell Cycle 5, 2381–2389 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Watanabe, T., Hikichi, Y., Willuweit, A., Shintani, Y. & Horiguchi, T. FBL2 regulates amyloid precursor protein (APP) metabolism by promoting ubiquitination-dependent APP degradation and inhibition of APP endocytosis. J. Neurosci. 32, 3352–3365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Malard, V. et al. Global gene expression profiling in human lung cells exposed to cobalt. BMC Genomics 8, 147 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Takagi, H., Setou, M., Ito, S. & Yao, I. SCRAPPER regulates the thresholds of long-term potentiation/depression, the bidirectional synaptic plasticity in hippocampal CA3-CA1 synapses. Neural Plast. 2012, 352829 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nelson, R. F. et al. Selective cochlear degeneration in mice lacking the F-box protein, Fbx2, a glycoprotein-specific ubiquitin ligase subunit. J. Neurosci. 27, 5163–5171 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Babaei-Jadidi, R. et al. FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation. J. Exp. Med. 208, 295–312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Davis, H. et al. FBXW7 mutations typically found in human cancers are distinct from null alleles and disrupt lung development. J. Pathol. 224, 180–189 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Jandke, A. et al. The F-box protein Fbw7 is required for cerebellar development. Dev. Biol. 358, 201–212 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Grim, J. E. et al. Fbw7 and p53 cooperatively suppress advanced and chromosomally unstable intestinal cancer. Mol. Cell. Biol. 32, 2160–2167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Matsumoto, A. et al. Fbxw7-dependent degradation of Notch is required for control of “stemness” and neuronal-glial differentiation in neural stem cells. J. Biol. Chem. 286, 13754–13764 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hoeck, J. D. et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nature Neurosci. 13, 1365–1372 (2010).

    Article  CAS  PubMed  Google Scholar 

  185. Sancho, R. et al. Fbw7 repression by hes5 creates a feedback loop that modulates notch-mediated intestinal and neural stem cell fate decisions. PLoS Biol. 11, e1001586 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kwon, Y. W. et al. Pten regulates Aurora-A and cooperates with Fbxw7 in modulating radiation-induced tumor development. Mol. Cancer Res. 10, 834–844 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Zhong, L., Georgia, S., Tschen, S. I., Nakayama, K. & Bhushan, A. Essential role of Skp2-mediated p27 degradation in growth and adaptive expansion of pancreatic β cells. J. Clin. Invest. 117, 2869–2876 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Sakai, T. et al. Skp2 controls adipocyte proliferation during the development of obesity. J. Biol. Chem. 282, 2038–2046 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Fotovati, A., Nakayama, K. & Nakayama, K. I. Impaired germ cell development due to compromised cell cycle progression in Skp2-deficient mice. Cell Div. 1, 4 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Minamishima, Y. A. & Nakayama, K. Recovery of liver mass without proliferation of hepatocytes after partial hepatectomy in Skp2-deficient mice. Cancer Res. 62, 995–999 (2002).

    CAS  PubMed  Google Scholar 

  192. Agarwal, A. et al. Absence of SKP2 expression attenuates BCR-ABL-induced myeloproliferative disease. Blood 112, 1960–1970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kratzat, S. et al. Cks1 is required for tumor cell proliferation but not sufficient to induce hematopoietic malignancies. PLoS ONE 7, e37433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kossatz, U. et al. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev. 18, 2602–2607 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sistrunk, C., Macias, E., Nakayama, K., Kim, Y. & Rodriguez-Puebla, M. L. Skp2 is necessary for Myc-induced keratinocyte proliferation but dispensable for Myc oncogenic activity in the oral epithelium. Am. J. Pathol. 178, 2470–2477 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Suzuki, S. et al. The amelioration of renal damage in Skp2-deficient mice canceled by p27 Kip1 deficiency in Skp2−/− p27−/− mice. PLoS ONE 7, e36249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Wang, J. et al. The role of Skp2 in hematopoietic stem cell quiescence, pool size, and self-renewal. Blood 118, 5429–5438 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Baguma-Nibasheka, M. & Kablar, B. Abnormal retinal development in the Btrc null mouse. Dev. Dyn. 238, 2680–2687 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely apologize to all those colleagues whose important work was not cited in this paper owing to space limitations. They thank B. North, A. W. Lau, S. Shaik and other members of the Wei laboratory for critical reading and discussion of the manuscript. W.W. is an American Cancer Society (ACS) research scholar and a Leukemia & Lymphoma Society (LLS) research scholar. P.L. is supported by grant 5T32HL007893. H.I. is supported by grant AG041218. This work was supported by a grant from the National Natural Science Foundation of China (NSFC) (81172087) and the Priority Academic Program Development of Jiangsu Higher Education Institutions. This work was supported in part by US National Institutes of Health (NIH) grants to W.W. (GM089763, GM094777 and CA177910).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Wei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Summary of identified ubiquitin substrates for the FBW7 tumor suppressor. (PDF 149 kb)

Supplementary information S2 (table)

Summary of identified ubiquitin substrates for the FBXW class of F-box proteins other than FBW7 and β-TRCP1/2. (PDF 113 kb)

Supplementary information S3 (table)

Summary of identified ubiquitin substrates for the FBXO class of F-box proteins. (PDF 182 kb)

Supplementary information S4 (table)

Summary of identified ubiquitin substrates for the Skp2 oncoprotein. (PDF 141 kb)

Supplementary information S5 (table)

Summary of identified ubiquitin substrates for β-TRCP1/2. (PDF 200 kb)

Supplementary information S6 (table)

Summary of identified ubiquitin substrates for the FBXL class of F-box proteins other than Skp2 (FBXL1). (PDF 140 kb)

PowerPoint slides

Glossary

Pancytopenia

A disease that is characterized by a reduction in the number of all formed elements in the blood, such as red cells, white cells and platelets.

ApcMin/+ mice

Mice with the multiple intestinal neoplasia (Min) mutation are predisposed to intestinal adenoma formation, which is a widely used mouse model for exploring the role of adenomatous polyposis coli (APC) in intestinal tumorigenesis.

Hamartomas

Benign tumour-like malformations composed of tissue elements that are normally found at a given site but that grow in a disorganized mass.

αβ-crystallin

A water-soluble structural protein that is found in the lens and the cornea of the eye, accounting for the transparency of the structure. It has also been identified in other tissues, such as the heart, and in aggressive breast tumours. Recent studies showed that it is a cofactor for SKP1–cullin 1–F-box protein (SCF)-F-box only 4 (FBXO4)-mediated ubiquitylation of cyclin D1.

Mouse mammary tumour virus promoter

(MMTV promoter). The MMTV promoter is hormonally regulated and its expression is found primarily in the mammary gland and other tissues, such as the lung, kidney, salivary gland, testes and the prostate. The MMTV promoter is often used in model systems of breast cancer to elucidate the genetics and biology of breast cancer.

DMBA–TPA model

A two-stage chemical skin carcinogenesis model using a single dose of the genotoxic carcinogen DMBA, followed by multiple doses of a non-genotoxic tumour-promoter, TPA.

Split hand/foot malformation disease

(SHFM disease). A congenital limb defect that predominantly affects the central rays of the autopod.

Cancer testis antigen

A member of a group of tumour antigens with higher expression in normal testis but not in adult somatic tissues. Overexpression of cancer testis antigens has been observed in several types of human cancers, suggesting that they could be used as biomarkers and are attractive drug targets for cancer treatment.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Liu, P., Inuzuka, H. et al. Roles of F-box proteins in cancer. Nat Rev Cancer 14, 233–247 (2014). https://doi.org/10.1038/nrc3700

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3700

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer