Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

'Toxgnostics': an unmet need in cancer medicine

Abstract

If we were to summarize the rationale that underpins medical oncology in a Latin aphorism, it might be 'veneno ergo sum'; that is, I poison, therefore I am. The burden of chemotherapy-associated toxicity is well recognized, but we have relatively few tools that increase the precision of anticancer drug prescribing. We propose a shift in emphasis from the focussed study of polymorphisms in drug metabolic pathways in small sets of patients to broader agnostic analyses to systematically correlate germline genetic variants with adverse events in large, well-defined cancer populations. Thus, we propose the new science of 'toxgnostics' (that is, the systematic, agnostic study of genetic predictors of toxicity from anticancer therapy).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed clinical trial paradigm for the discovery of 'toxgnostics' markers though genome-wide association studies (GWAS).

Similar content being viewed by others

References

  1. Gray, R. et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet 370, 2020–2029 (2007).

    Article  PubMed  Google Scholar 

  2. Widakowich, C. et al. Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12, 1443–1455 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Bertagnolli, M. M. et al. Microsatellite instability and loss of heterozygosity at chromosomal location 18q: prospective evaluation of biomarkers for stages II and III colon cancer—a study of CALGB 9581 and 89803. J. Clin. Oncol. 29, 3153–3162 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Roth, A. D. et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J. Clin. Oncol. 28, 466–474 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Hutchins, G. et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J. Clin. Oncol. 29, 1261–1270 (2011).

    Article  PubMed  Google Scholar 

  6. Romond, E. H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Sosman, J. A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Van Cutsem, E. et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 360, 1408–1417 (2009).

    CAS  PubMed  Google Scholar 

  11. Parkinson, D. R., Johnson, B. E. & Sledge, G. W. Making personalized cancer medicine a reality: challenges and opportunities in the development of biomarkers and companion diagnostics. Clin. Cancer Res. 18, 619–624 (2012).

    Article  PubMed  Google Scholar 

  12. Walther, A. et al. Genetic prognostic and predictive markers in colorectal cancer. Nature Rev. Cancer 9, 489–499 (2009).

    Article  CAS  Google Scholar 

  13. Church, D., Midgley, R. & Kerr, D. Biomarkers in early-stage colorectal cancer: ready for prime time? Digestive Diseases 30 (Suppl. 2), 27–33 (2012).

    Article  PubMed  Google Scholar 

  14. Buyse, M., Sargent, D. J., Grothey, A., Matheson, A. & de Gramont, A. Biomarkers and surrogate end points—the challenge of statistical validation. Nature Rev. Clin. Oncol. 7, 309–317 (2010).

    Article  Google Scholar 

  15. Simon, R. M., Paik, S. & Hayes, D. F. Use of Archived specimens in evaluation of prognostic and predictive biomarkers. J. Natl Cancer Institute 101, 1446–1452 (2009).

    Article  Google Scholar 

  16. Ciccolini, J., Gross, E., Dahan, L., Lacarelle, B. & Mercier, C. Routine dihydropyrimidine dehydrogenase testing for anticipating 5-fluorouracil-related severe toxicities: hype or hope? Clin. Colorectal Cancer 9, 224–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Locker, G. Y. et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 24, 5313–5327 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Gold, H. T., Hall, M. J., Blinder, V. & Schackman, B. R. Cost effectiveness of pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 before irinotecan administration for metastatic colorectal cancer. Cancer 115, 3858–3867 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Schmoll, H. J. et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making. Ann. Oncol. 23, 2479–2516 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Delea, T. E. et al. The incidence and cost of hospitalization for 5-FU toxicity among Medicare beneficiaries with metastatic colorectal cancer. Value Health 5, 35–43 (2002).

    Article  PubMed  Google Scholar 

  21. Calhoun, E. A. et al. Evaluating the total costs of chemotherapy-induced toxicity: results from a pilot study with ovarian cancer patients. Oncologist 6, 441–445 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Wishart, D. S. Improving early drug discovery through ADME modelling: an overview. Drugs R. D. 8, 349–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Gamelin, E. et al. Long-term weekly treatment of colorectal metastatic cancer with fluorouracil and leucovorin: results of a multicentric prospective trial of fluorouracil dosage optimization by pharmacokinetic monitoring in 152 patients. J. Clin. Oncol. 16, 1470–1478 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Gamelin, E. C. et al. Relationship between 5-fluorouracil (5-FU) dose intensity and therapeutic response in patients with advanced colorectal cancer receiving infusional therapy containing 5-FU. Cancer 77, 441–451 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Hillcoat, B. L., McCulloch, P. B., Figueredo, A. T., Ehsan, M. H. & Rosenfeld, J. M. Clinical response and plasma levels of 5-fluorouracil in patients with colonic cancer treated by drug infusion. Br. J. Cancer 38, 719–724 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Paolo, A. et al. Relationship between 5-fluorouracil disposition, toxicity and dihydropyrimidine dehydrogenase activity in cancer patients. Ann. Oncol. 12, 1301–1306 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Newell, D. R. Clinical pharmacokinetics of antitumor antifolates. Semin. Oncol. 26, 74–81 (1999).

    CAS  PubMed  Google Scholar 

  28. Jolivet, J., Cowan, K. H., Curt, G. A., Clendeninn, N. J. & Chabner, B. A. The pharmacology and clinical use of methotrexate. N. Engl. J. Med. 309, 1094–1104 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Calvert, A. H. et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. J. Clin. Oncol. 7, 1748–1756 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Lehmann, H. & Ryan, E. The familial incidence of low pseudocholinesterase level. Lancet 271, 124 (1956).

    Article  CAS  PubMed  Google Scholar 

  31. Alving, A. S., Carson, P. E., Flanagan, C. L. & Ickes, C. E. Enzymatic deficiency in primaquine-sensitive erythrocytes. Science 124, 484–485 (1956).

    CAS  PubMed  Google Scholar 

  32. Vogel, F. Moderne Probleme der Humangenetik. Ergebn. Inn. Med. Kinderheilkd. 12, 52–125 (1959).

    Google Scholar 

  33. Lennard, L., Lilleyman, J. S., Van Loon, J. & Weinshilboum, R. M. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 336, 225–229 (1990).

    Article  CAS  PubMed  Google Scholar 

  34. Relling, M. V. et al. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing. Clin. Pharmacol. Ther. 89, 387–391 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ford, L. T. & Berg, J. D. Thiopurine S-methyltransferase (TPMT) assessment prior to starting thiopurine drug treatment; a pharmacogenomic test whose time has come. J. Clin. Pathol. 63, 288–295 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Ross, C. J. et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nature Genet. 41, 1345–1349 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Pussegoda, K. et al. Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children. Clin. Pharmacol. Ther. 94, 243–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, J. J. et al. The role of inherited TPMT and COMT genetic variation in cisplatin-induced ototoxicity in children with cancer. Clin. Pharmacol. Ther. 94, 252–259 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Ratain, M. J., Cox, N. J. & Henderson, T. O. Challenges in interpreting the evidence for genetic predictors of ototoxicity. Clin. Pharmacol. Ther. 94, 631–635 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Zanger, U. M. & Schwab, M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 138, 103–141 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Mahgoub, A., Idle, J. R., Dring, L. G., Lancaster, R. & Smith, R. L. Polymorphic hydroxylation of Debrisoquine in man. Lancet 2, 584–586 (1977).

    Article  CAS  PubMed  Google Scholar 

  42. Heim, M. & Meyer, U. A. Genotyping of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 336, 529–532 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Kupfer, A. & Preisig, R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur. J. Clin. Pharmacol. 26, 753–759 (1984).

    Article  CAS  PubMed  Google Scholar 

  44. Sullivan-Klose, T. H. et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6, 341–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Jonas, D. E. & McLeod, H. L. Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol. Sci. 30, 375–386 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Schwab, M. & Schaeffeler, E. Warfarin pharmacogenetics meets clinical use. Blood 118, 2938–2939 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Klein, T. E. et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360, 753–764 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Schroth, W. et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J. Clin. Oncol. 25, 5187–5193 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Hertz, D. L. et al. CYP2C8*3 predicts benefit/risk profile in breast cancer patients receiving neoadjuvant paclitaxel. Breast Cancer Res. Treat. 134, 401–410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hertz, D. L. et al. CYP2C8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann. Oncol. 24, 1472–1478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iyer, L. et al. Genetic predisposition to the metabolism of irinotecan (CPT-11). Role of uridine diphosphate glucuronosyltransferase isoform 1A1 in the glucuronidation of its active metabolite (SN-38) in human liver microsomes. J. Clin. Invest. 101, 847–854 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ando, Y. et al. UGT1A1 genotypes and glucuronidation of SN-38, the active metabolite of irinotecan. Ann. Oncol. 9, 845–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Hoskins, J. M., Goldberg, R. M., Qu, P., Ibrahim, J. G. & McLeod, H. L. UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J. Natl Cancer Inst. 99, 1290–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Schwab, M. et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J. Clin. Oncol. 26, 2131–2138 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Loganayagam, A. et al. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br. J. Cancer 108, 2505–2515 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McLeod, H. L. et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal Intergroup Trial N9741. J. Clin. Oncol. 28, 3227–3233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Burmeister, H., Aebi, S., Studer, C., Fey, M. F. & Gautschi, O. Adherence to ESMO clinical recommendations for prophylaxis of chemotherapy-induced nausea and vomiting. Supportive Care Cancer 20, 141–147 (2012).

    Article  Google Scholar 

  58. Watanabe, R. M. Statistical issues in gene association studies. Methods Mol. Biol. 700, 17–36 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Dunlop, M. G. et al. Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nature Genet. 44, 770–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Houlston, R. S. et al. Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nature Genet. 42, 973–977 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Daly, A. K. et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nature Genet. 41, 816–819 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134–1143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Link, E. et al. SLCO1B1 variants and statin-induced myopathy—a genomewide study. N. Engl. J. Med. 359, 789–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Trevino, L. R. et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J. Clin. Oncol. 27, 5972–5978 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ramsey, L. B. et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 22, 1–8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kiyotani, K. et al. A genome-wide association study identifies four genetic markers for hematological toxicities in cancer patients receiving gemcitabine therapy. Pharmacogenet. Genomics 22, 229–235 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Srinivasan, Y. et al. Genome-wide association study of epirubicin-induced leukopenia in Japanese patients. Pharmacogenet. Genomics 21, 552–558 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Meyerson, M. et al. Advances in understanding cancer genomes through second-generation sequencing. Nat. Rev. Genet. 11, 685–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. McDermott, U., Downing, J. R. & Stratton, M. R. Genomics and the continuum of cancer care. N. Engl. J. Med. 364, 340–350 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Liu, J. et al. Predictive Power Estimation Algorithm (PPEA)—a new algorithm to reduce overfitting for genomic biomarker discovery. PLoS ONE 6, e24233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McShane, L. M. et al. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK). J. Natl Cancer Institute 97, 1180–1184 (2005).

    Article  CAS  Google Scholar 

  72. Riley, R. D. et al. Prognosis Research Strategy (PROGRESS) 2: prognostic factor research. PLoS Med. 10, e1001380 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Martinez-Balibrea, E. et al. UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy. Br. J. Cancer 103, 581–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Glimelius, B. et al. Prediction of irinotecan and 5-fluorouracil toxicity and response in patients with advanced colorectal cancer. Pharmacogenomics J. 11, 61–71 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Cecchin, E. et al. Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. J. Clin. Oncol. 27, 2457–2465 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Pharoah, P. D., Abraham, J. & Caldas, C. Re: CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the Breast International Group 1–98 trial and Re: CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J. Natl. Cancer Inst. 104, 1263–1264; author reply 1266–1268 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Regan, M. M. et al. CYP2D6 genotype and tamoxifen response in postmenopausal women with endocrine-responsive breast cancer: the breast international group 1–98 trial. J. Natl Cancer Inst. 104, 441–451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Salazar, R. et al. Gene expression signature to improve prognosis prediction of stage II and III colorectal cancer. J. Clin. Oncol. 29, 17–24 (2011).

    Article  PubMed  Google Scholar 

  79. Gray, R. G. et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J. Clin. Oncol. 29, 4611–4619 (2011).

    Article  PubMed  Google Scholar 

  80. Rosmarin, D. et al. Genetic markers of toxicity from capecitabine and other fluorouracil-based regimens: investigation in the QUASAR2 study, systematic review, and meta-Analysis. J. Clin. Oncol. 32, 1031–1039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nature Rev. Cancer 3, 330–338 (2003).

    Article  CAS  Google Scholar 

  82. Diasio, R. B., Beavers, T. L. & Carpenter, J. T. Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J. Clin. Invest. 81, 47–51 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Harris, B. E., Carpenter, J. T. & Diasio, R. B. Severe 5-fluorouracil toxicity secondary to dihydropyrimidine dehydrogenase deficiency. A potentially more common pharmacogenetic syndrome. Cancer 68, 499–501 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Etienne, M. C. et al. Population study of dihydropyrimidine dehydrogenase in cancer patients. J. Clin. Oncol. 12, 2248–2253 (1994).

    Article  CAS  PubMed  Google Scholar 

  85. van Staveren, M. C., Jan Guchelaar, H., van Kuilenburg, A. B., Gelderblom, H. & Maring, J. G. Evaluation of predictive tests for screening for dihydropyrimidine dehydrogenase deficiency. Pharmacogenomics J. 13, 389–395 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Pullarkat, S. T. et al. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J. 1, 65–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Fernandez-Rozadilla, C. et al. Pharmacogenomics in colorectal cancer: a genome-wide association study to predict toxicity after 5-fluorouracil or FOLFOX administration. Pharmacogenomics J. 13, 209–217 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Baldwin, R. M. et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin. Cancer Res. 18, 5099–5109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Twelves, C. et al. Capecitabine as adjuvant treatment for stage III colon cancer. New Engl. J. Med. 352, 2696–2704 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Kuderer, N. M., Dale, D. C., Crawford, J., Cosler, L. E. & Lyman, G. H. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 106, 2258–2266 (2006).

    Article  PubMed  Google Scholar 

  91. Ahmed, G. et al. Cost implications of reactive versus prospective testing for dihydropyrimidine dehydrogenase (DPD) deficiency in patients with colorectal cancer. J. Clin. Oncol. 31, (Suppl.; Abstr 3627) (2013).

  92. Blay, J. Y. et al. Early lymphopenia after cytotoxic chemotherapy as a risk factor for febrile neutropenia. J. Clin. Oncol. 14, 636–643 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Crawford, J., Dale, D. C. & Lyman, G. H. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer 100, 228–237 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Core funding to the Wellcome Trust Centre for Human Genetics was provided by the Wellcome Trust (090532/Z/09/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kerr.

Ethics declarations

Competing interests

D.K. is a co-founder of and owns stock in Oxford Cancer Biomarkers, Oxford, UK. R.K. owns stock in Oxford Cancer Biomarkers. K.M. is an employee at Oxford Cancer Biomarkers. I.T. is a consultant for Oxford Cancer Biomarkers. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Church, D., Kerr, R., Domingo, E. et al. 'Toxgnostics': an unmet need in cancer medicine. Nat Rev Cancer 14, 440–445 (2014). https://doi.org/10.1038/nrc3729

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3729

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer