Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging the right ventricle—current state of the art

Abstract

The right ventricle has long been the 'forgotten ventricle', as it is difficult to image owing to its complex morphology, its thin wall with coarse trabeculations, and its anterior position within the chest. Developments in cardiac magnetic resonance imaging (CMR) and echocardiography have provided new insights into right ventricular (RV) structure and function. RV performance seems to be an important determinant of clinical status and long-term outcome in patients with pulmonary hypertension, cardiomyopathies, and, especially, in patients with congenital heart disease. A variety of different parameters can be measured to assess RV function, but a lot of uncertainty remains on how to assess RV performance in daily clinical practice and which measurements to use in clinical decision-making. CMR is currently considered the reference technique for RV volumetry and calculation of ejection fraction. Various echocardiographic techniques can provide reliable information on RV dimensions and RV systolic and diastolic function that can be used in clinical follow-up. The introduction of newer echocardiographic techniques, such as three-dimensional echocardiography, tissue Doppler ultrasonography, and ultrasound strain imaging, challenge the leading role of CMR in RV functional assessment, but further validation and accumulation of data are required before these techniques can play a key part in clinical decision-making.

Key Points

  • The determination of right ventricular (RV) function is important in the assessment of the clinical status and outcome of patients with pulmonary hypertension, cardiomyopathies, or congenital heart disease

  • Cardiac magnetic resonance imaging (CMR) is the reference technique for RV volumetric measurements and calculation of ejection fraction, but good standardization of the technique is required

  • Three-dimensional echocardiography is a promising alternative to CMR, but requires further optimization and validation to be useful in clinical practice

  • RV tissue characterization by CMR can be used to identify fibrofatty tissue infiltration and fibrosis in the RV wall, but its role in clinical practice is still uncertain

  • Echocardiographic measurement of tricuspid annular motion, tricuspid annular tissue Doppler velocities, or longitudinal systolic strain in the RV free wall can be performed to monitor RV systolic function in routine clinical practice

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue characterization by cardiac magnetic resonance imaging in the diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C).
Figure 2: Assessment of dimensions and volume of the right ventricle (RV).
Figure 3: Assessment of right ventricular (RV) function by echocardiography.
Figure 4: Restrictive right ventricular physiology.

References

  1. Haddad, F., Doyle, R., Murphy, D. J. & Hunt, S. A. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117, 1717–1731 (2008).

    PubMed  Google Scholar 

  2. Haddad, F., Hunt, S. A., Rosenthal, D. N. & Murphy, D. J. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117, 1436–1448 (2008).

    PubMed  Google Scholar 

  3. Warnes, C. A. Adult congenital heart disease importance of the right ventricle. J. Am. Coll. Cardiol. 54, 1903–1910 (2009).

    PubMed  Google Scholar 

  4. Rochais, F., Mesbah, K. & Kelly, R. G. Signaling pathways controlling second heart field development. Circ. Res. 104, 933–942 (2009).

    CAS  PubMed  Google Scholar 

  5. Zaffran, S., Kelly, R. G., Meilhac, S. M., Buckingham, M. E. & Brown, N. A. Right ventricular myocardium derives from the anterior heart field. Circ. Res. 95, 261–268 (2004).

    CAS  PubMed  Google Scholar 

  6. Bogaard, H. J., Abe, K., Vonk Noordegraaf, A. & Voelkel, N. F. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 135, 794–804 (2009).

    CAS  PubMed  Google Scholar 

  7. Urashima, T. et al. Molecular and physiological characterization of RV remodeling in a murine model of pulmonary stenosis. Am. J. Physiol. Heart Circ. Physiol. 295, H1351–H1368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rudolph, A. M. Congenital cardiovascular malformations and the fetal circulation. Arch. Dis. Child. Fetal Neonatal Ed. 95, F132–F136 (2010).

    CAS  PubMed  Google Scholar 

  9. Kaufman, B. D. et al. Genomic profiling of left and right ventricular hypertrophy in congenital heart disease. J. Card. Fail. 14, 760–767 (2008).

    CAS  PubMed  Google Scholar 

  10. Mital, S. Right ventricle in congenital heart disease: is it just a “weaker” left ventricle? Arch. Mal Coeur Vaiss. 99, 1244–1251 (2006).

    CAS  PubMed  Google Scholar 

  11. Redington, A. N. Right ventricular function. Cardiology Clin. 20, 341–349 (2002).

    Google Scholar 

  12. Redington, A. N. Physiopathology of right ventricular failure. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2006, 3–10 (2006).

    Google Scholar 

  13. Sheehan, F. & Redington, A. The right ventricle: anatomy, physiology and clinical imaging. Heart 94, 1510–1515 (2008).

    PubMed  Google Scholar 

  14. Sanchez-Quintana, D., Anderson, R. H. & Ho, S. Y. Ventricular myoarchitecture in tetralogy of Fallot. Heart 76, 280–286 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sengupta, P. P. et al. Left ventricular structure and function: basic science for cardiac imaging. J. Am. Coll. Cardiol. 48, 1988–2001 (2006).

    PubMed  Google Scholar 

  16. Haber, I., Metaxas, D. N., Geva, T. & Axel, L. Three-dimensional systolic kinematics of the right ventricle. Am. J. Physiol. Heart Circ. Physiol. 289, H1826–H1833 (2005).

    CAS  PubMed  Google Scholar 

  17. Sengupta, P. P. et al. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J. Am. Soc. Echocardiogr. 20, 539–551 (2007).

    PubMed  PubMed Central  Google Scholar 

  18. Basso, C., Corrado, D., Marcus, F. I., Nava, A. & Thiene, G. Arrhythmogenic right ventricular cardiomyopathy. Lancet 373, 1289–1300 (2009).

    PubMed  Google Scholar 

  19. Marcus, F. I. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121, 1533–1541 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Pfluger, H. B., Phrommintikul, A., Mariani, J. A., Cherayath, J. G. & Taylor, A. J. Utility of myocardial fibrosis and fatty infiltration detected by cardiac magnetic resonance imaging in the diagnosis of arrhythmogenic right ventricular dysplasia—a single center experience. Heart Lung Circ. 17, 478–483 (2008).

    PubMed  Google Scholar 

  21. Jain, A., Tandri, H., Calkins, H. & Bluemke, D. A. Role of cardiovascular magnetic resonance imaging in arrhythmogenic right ventricular dysplasia. J. Cardiovasc. Magn. Reson. 10, 32 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Tandri, H. et al. Role of magnetic resonance imaging in arrhythmogenic right ventricular dysplasia: insights from the North American arrhythmogenic right ventricular dysplasia (ARVD/C) study. Am. Heart J. 155, 147–153 (2008).

    PubMed  Google Scholar 

  23. Babu-Narayan, S. V. et al. Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of Fallot and its relationship to adverse markers of clinical outcome. Circulation 113, 405–413 (2006).

    CAS  PubMed  Google Scholar 

  24. Wald, R. M. et al. Effects of regional dysfunction and late gadolinium enhancement on global right ventricular function and exercise capacity in patients with repaired tetralogy of Fallot. Circulation 119, 1370–1377 (2009).

    PubMed  PubMed Central  Google Scholar 

  25. Fratz, S. et al. Myocardial scars determined by delayed-enhancement magnetic resonance imaging and positron emission tomography are not common in right ventricles with systemic function in long-term follow up. Heart 92, 1673–1677 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Iles, L. et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J. Am. Coll. Cardiol. 52, 1574–1580 (2008).

    PubMed  Google Scholar 

  27. Sarikouch, S. et al. Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ. Cardiovasc. Imaging 3, 65–76 (2010).

    PubMed  Google Scholar 

  28. Buechel, E. R. et al. Remodelling of the right ventricle after early pulmonary valve replacement in children with repaired tetralogy of Fallot: assessment by cardiovascular magnetic resonance. Eur. Heart J. 26, 2721–2727 (2005).

    PubMed  Google Scholar 

  29. Therrien, J. et al. Impact of pulmonary valve replacement on arrhythmia propensity late after repair of tetralogy of Fallot. Circulation 103, 2489–2494 (2001).

    CAS  PubMed  Google Scholar 

  30. Oosterhof, T. et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 116, 545–551 (2007).

    PubMed  Google Scholar 

  31. Henkens, I. R. et al. Predicting outcome of pulmonary valve replacement in adult tetralogy of Fallot patients. Ann. Thorac. Surg. 83, 907–911 (2007).

    PubMed  Google Scholar 

  32. Luijnenburg, S. E. et al. Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int. J. Cardiovasc. Imaging 26, 57–64 (2010).

    PubMed  Google Scholar 

  33. Beerbaum, P. et al. Cardiac function by MRI in congenital heart disease: impact of consensus training on interinstitutional variance. J. Magn. Reson. Imaging 30, 956–966 (2009).

    PubMed  Google Scholar 

  34. Winter, M. M. et al. Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. J. Cardiovasc. Magn. Reson. 10, 40 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Helbing, W. A. et al. Comparison of echocardiographic methods with magnetic resonance imaging for assessment of right ventricular function in children. Am. J. Cardiol. 76, 589–594 (1995).

    CAS  PubMed  Google Scholar 

  36. Lai, W. W. et al. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int. J. Cardiovasc. Imaging 24, 691–698 (2008).

    PubMed  Google Scholar 

  37. Lang, R. et al. Recommendations for chamber quantification. Eur. J. Echocardiogr. 7, 79–108 (2006).

    PubMed  Google Scholar 

  38. Lopez, L. et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J. Am. Soc. Echocardiogr. 23, 465–495 (2010).

    PubMed  Google Scholar 

  39. Khoo, N. S. et al. Assessments of right ventricular volume and function using three-dimensional echocardiography in older children and adults with congenital heart disease: comparison with cardiac magnetic resonance imaging. J. Am. Soc. Echocardiogr. 22, 1279–1288 (2009).

    PubMed  Google Scholar 

  40. Leibundgut, G. et al. Dynamic assessment of right ventricular volumes and function by real-time three-dimensional echocardiography: a comparison study with magnetic resonance imaging in 100 adult patients. J. Am. Soc. Echocardiogr. 23, 116–126 (2010).

    PubMed  Google Scholar 

  41. Niemann, P. S. et al. Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J. Am. Coll. Cardiol. 50, 1668–1676 (2007).

    PubMed  Google Scholar 

  42. van der Zwaan, H. B. et al. Clinical value of real-time three-dimensional echocardiography for right ventricular quantification in congenital heart disease: validation with cardiac magnetic resonance imaging. J. Am. Soc. Echocardiogr. 23, 134–140 (2010).

    PubMed  Google Scholar 

  43. Grewal, J., Majdalany, D., Syed, I., Pellikka, P. & Warnes, C. A. Three-dimensional echocardiographic assessment of right ventricular volume and function in adult patients with congenital heart disease: comparison with magnetic resonance imaging. J. Am. Soc. Echocardiogr. 23, 127–133 (2010).

    PubMed  Google Scholar 

  44. Grapsa, J. et al. Right ventricular remodelling in pulmonary arterial hypertension with three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. Eur. J. Echocardiogr. 11, 64–73 (2010).

    PubMed  Google Scholar 

  45. Mor-Avi, V., Sugeng, L. & Lindner, J. R. Imaging the forgotten chamber: is the devil in the boundary? J. Am. Soc. Echocardiogr. 23, 141–143 (2010).

    PubMed  Google Scholar 

  46. López-Candales, A. et al. Defining normal variables of right ventricular size and function in pulmonary hypertension: an echocardiographic study. Postgrad. Med. J. 84, 40–45 (2008).

    PubMed  Google Scholar 

  47. Anavekar, N. S. et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO Study). Am. J. Cardiol. 101, 607–612 (2008).

    PubMed  Google Scholar 

  48. Ghio, S. et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J. Am. Coll. Cardiol. 37, 183–188 (2001).

    CAS  PubMed  Google Scholar 

  49. Zornoff, L. A. et al. for the SAVE Investigators. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J. Am. Coll. Cardiol. 39, 1450–1455 (2002).

    PubMed  Google Scholar 

  50. Antoni, M. L. et al. Prognostic value of right ventricular function in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Circ. Cardiovasc. Imaging 3, 264–271 (2010).

    PubMed  Google Scholar 

  51. Golde, D. & Burstin, L. Systolic phases of the cardiac cycle in children. Circulation 42, 1029–1036 (1970).

    CAS  PubMed  Google Scholar 

  52. Tei, C. et al. Doppler index combining systolic and diastolic myocardial performance: clinical value in cardiac amyloidosis. J. Am. Coll. Cardiol. 28, 658–664 (1996).

    CAS  PubMed  Google Scholar 

  53. Tei, C. et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function—a study in normals and dilated cardiomyopathy. J. Cardiol. 26, 357–366 (1995).

    CAS  PubMed  Google Scholar 

  54. Cheung, M. M., Smallhorn, J. F., Redington, A. N. & Vogel, M. The effects of changes in loading conditions and modulation of inotropic state on the myocardial performance index: comparison with conductance catheter measurements. Eur. Heart J. 25, 2238–2242 (2004).

    PubMed  Google Scholar 

  55. Blanchard, D. G. et al. Utility of right ventricular Tei index in the noninvasive evaluation of chronic thromboembolic pulmonary hypertension before and after pulmonary thromboendarterectomy. JACC Cardiovasc. Imaging 2, 143–149 (2009).

    PubMed  Google Scholar 

  56. Tei, C. et al. Doppler echocardiographic index for assessment of global right ventricular function. J. Am. Soc. Echocardiogr. 9, 838–847 (1996).

    CAS  PubMed  Google Scholar 

  57. Schwerzmann, M. et al. Comparison of echocardiographic and cardiac magnetic resonance imaging for assessing right ventricular function in adults with repaired tetralogy of Fallot. Am. J. Cardiol. 99, 1593–1597 (2007).

    PubMed  Google Scholar 

  58. Wang, J. et al. Comparison of novel echocardiographic parameters of right ventricular function with ejection fraction by cardiac magnetic resonance. J. Am. Soc. Echocardiogr. 20, 1058–1064 (2007).

    PubMed  Google Scholar 

  59. Koestenberger, M. et al. Right ventricular function in infants, children and adolescents: reference values of the tricuspid annular plane systolic excursion (TAPSE) in 640 healthy patients and calculation of z score values. J. Am. Soc. Echocardiogr. 22, 715–719 (2009).

    PubMed  Google Scholar 

  60. López-Candales, A. et al. Right ventricular systolic function is not the sole determinant of tricuspid annular motion. Am. J. Cardiol. 98, 973–977 (2006).

    PubMed  Google Scholar 

  61. Saxena, N., Rajagopalan, N., Edelman, K. & López-Candales, A. Tricuspid annular systolic velocity: a useful measurement in determining right ventricular systolic function regardless of pulmonary artery pressures. Echocardiography 23, 750–755 (2006).

    PubMed  Google Scholar 

  62. Forfia, P. R. et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 174, 1034–1041 (2006).

    PubMed  Google Scholar 

  63. Morcos, P. et al. Correlation of right ventricular ejection fraction and tricuspid annular plane systolic excursion in tetralogy of Fallot by magnetic resonance imaging. Int. J. Cardiovasc. Imaging 25, 263–270 (2009).

    PubMed  Google Scholar 

  64. Bijnens, B. H., Cikes, M., Claus, P. & Sutherland, G. R. Velocity and deformation imaging for the assessment of myocardial dysfunction. Eur. J. Echocardiogr. 10, 216–226 (2009).

    PubMed  Google Scholar 

  65. Dambrauskaite, V. et al. Regional right ventricular dysfunction in chronic pulmonary hypertension. J. Am. Soc. Echocardiogr. 20, 1172–1180 (2007).

    PubMed  Google Scholar 

  66. Giusca, S. et al. Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. Heart 96, 281–288 (2010).

    CAS  PubMed  Google Scholar 

  67. López-Candales, A., Rajagopalan, N., Gulyasy, B., Edelman, K. & Bazaz, R. Differential strain and velocity generation along the right ventricular free wall in pulmonary hypertension. Can. J. Cardiol. 25, e73–e77 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Puwanant, S. et al. Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation 121, 259–266 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. Kittipovanonth, M. et al. Doppler myocardial imaging for early detection of right ventricular dysfunction in patients with pulmonary hypertension. J. Am. Soc. Echocardiogr. 21, 1035–1041 (2008).

    PubMed  Google Scholar 

  70. Pirat, B., McCulloch, M. L. & Zoghbi, W. A. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am. J. Cardiol. 98, 699–704 (2006).

    PubMed  Google Scholar 

  71. Eyskens, B. et al. Regional right and left ventricular function after the Senning operation: an ultrasonic study of strain rate and strain. Cardiol. Young 14, 255–264 (2004).

    PubMed  Google Scholar 

  72. Vogel, M. et al. Systemic ventricular function in patients with transposition of the great arteries after atrial repair: a tissue Doppler and conductance catheter study. J. Am. Coll. Cardiol. 43, 100–106 (2004).

    PubMed  Google Scholar 

  73. Bos, J. M. et al. Right ventricular function in asymptomatic individuals with a systemic right ventricle. J. Am. Soc. Echocardiogr. 19, 1033–1037 (2006).

    PubMed  Google Scholar 

  74. Pettersen, E. et al. Contraction pattern of the systemic right ventricle shift from longitudinal to circumferential shortening and absent global ventricular torsion. J. Am. Coll. Cardiol. 49, 2450–2456 (2007).

    PubMed  Google Scholar 

  75. Vogel, M. et al. Validation of myocardial acceleration during isovolumic contraction as a novel noninvasive index of right ventricular contractility: comparison with ventricular pressure-volume relations in an animal model. Circulation 105, 1693–1699 (2002).

    PubMed  Google Scholar 

  76. Cheung, M. M., Smallhorn, J. F., Vogel, M., Van Arsdell, G. & Redington, A. N. Disruption of the ventricular myocardial force-frequency relationship after cardiac surgery in children: noninvasive assessment by means of tissue Doppler imaging. J. Thorac. Cardiovasc. Surg. 131, 625–631 (2006).

    PubMed  Google Scholar 

  77. Geva, T., Powell, A. J., Crawford, E. C., Chung, T. & Colan, S. D. Evaluation of regional differences in right ventricular systolic function by acoustic quantification echocardiography and cine magnetic resonance imaging. Circulation 98, 339–345 (1998).

    CAS  PubMed  Google Scholar 

  78. López-Candales, A., Dohi, K., Bazaz, R. & Edelman, K. Relation of right ventricular free wall mechanical delay to right ventricular dysfunction as determined by tissue Doppler imaging. Am. J. Cardiol. 96, 602–606 (2005).

    PubMed  Google Scholar 

  79. López-Candales, A. et al. Right ventricular dyssynchrony in patients with pulmonary hypertension is associated with disease severity and functional class. Cardiovasc. Ultrasound 3, 23 (2005).

    PubMed  PubMed Central  Google Scholar 

  80. Chow, P. C. et al. Mechanical right ventricular dyssynchrony in patients after atrial switch operation for transposition of the great arteries. Am. J. Cardiol. 101, 874–881 (2008).

    PubMed  Google Scholar 

  81. Janousek, J. Cardiac resynchronisation in congenital heart disease. Heart 95, 940–947 (2009).

    PubMed  Google Scholar 

  82. Sarnari, R., Kamal, R. Y., Friedberg, M. K. & Silverman, N. H. Doppler assessment of the ratio of the systolic to diastolic duration in normal children: relation to heart rate, age and body surface area. J. Am. Soc. Echocardiogr. 22, 928–932 (2009).

    PubMed  Google Scholar 

  83. Alkon, J. et al. Usefulness of the right ventricular systolic to diastolic duration ratio to predict functional capacity and survival in children with pulmonary arterial hypertension. Am. J. Cardiol. 106, 430–436 (2010).

    PubMed  Google Scholar 

  84. Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22, 107–133 (2009).

    PubMed  Google Scholar 

  85. Gewillig, M., Mertens, L., Moerman, P. & Dumoulin, M. Idiopathic restrictive cardiomyopathy in childhood. A diastolic disorder characterized by delayed relaxation. Eur. Heart J. 17, 1413–1420 (1996).

    CAS  PubMed  Google Scholar 

  86. Simonson, J. S. & Schiller, N. B. Sonospirometry: a new method for noninvasive estimation of mean right atrial pressure based on two-dimensional echographic measurements of the inferior vena cava during measured inspiration. J. Am. Coll. Cardiol. 11, 557–564 (1988).

    CAS  PubMed  Google Scholar 

  87. Zoghbi, W. A., Habib, G. B. & Quiñones, M. A. Doppler assessment of right ventricular filling in a normal population. Comparison with left ventricular filling dynamics. Circulation 82, 1316–1324 (1990).

    CAS  PubMed  Google Scholar 

  88. Nageh, M. F., Kopelen, H. A., Zoghbi, W. A., Quiñones, M. A. & Nagueh, S. F. Estimation of mean right atrial pressure using tissue Doppler imaging. Am. J. Cardiol. 84, 1448–1451 (1999).

    CAS  PubMed  Google Scholar 

  89. Poerner, T. C. et al. Diastolic biventricular impairment at long-term follow-up after atrial switch operation for complete transposition of the great arteries: an exercise tissue Doppler echocardiography study. J. Am. Soc. Echocardiogr. 20, 1285–1293 (2007).

    PubMed  Google Scholar 

  90. Cullen, S., Shore, D. & Redington, A. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation 91, 1782–1789 (1995).

    CAS  PubMed  Google Scholar 

  91. Gatzoulis, M. A., Clark, A. L., Cullen, S., Newman, C. G. & Redington, A. N. Right ventricular diastolic function 15 to 35 years after repair of tetralogy of Fallot. Restrictive physiology predicts superior exercise performance. Circulation 91, 1775–1781 (1995).

    CAS  PubMed  Google Scholar 

  92. Daubeney, P. E. et al. Relationship of the dimension of cardiac structures to body size: an echocardiographic study in normal infants and children. Cardiol. Young 9, 402–410 (1999).

    CAS  PubMed  Google Scholar 

  93. Pettersen, M. D., Du, W., Skeens, M. E. & Humes, R. A. Regression equations for calculation of z scores of cardiac structures in a large cohort of healthy infants, children, and adolescents: an echocardiographic study. J. Am. Soc. Echocardiogr. 21, 922–934 (2008).

    PubMed  Google Scholar 

  94. Lai, W W., Mertens, L., Cohen, M. & Geva, T (Eds) Echocardiography in Pediatric and Congenital Heart Disease: From Fetus to Adult (Wiley–Blackwell, Oxford, 2009).

    Google Scholar 

  95. Foale, R. et al. Echocardiographic measurement of the normal adult right ventricle. Br. Heart J. 56, 33–44 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kukulski, T. et al. Normal regional right ventricular function and its change with age: a Doppler myocardial imaging study. J. Am. Soc. Echocardiogr. 13, 194–204 (2000).

    CAS  PubMed  Google Scholar 

  97. Kapusta, L., Thijssen, J. M., Cuypers, M. H., Peer, P. G. & Daniëls, O. Assessment of myocardial velocities in healthy children using tissue Doppler imaging. Ultrasound Med. Biol. 26, 229–237 (2000).

    CAS  PubMed  Google Scholar 

  98. Lindqvist, P., Waldenstrom, A., Henein, M., Morner, S. & Kazzam, E. Regional and global right ventricular function in healthy individuals aged 20–90 years: a pulsed Doppler tissue imaging study: Umeå General Population Heart Study. Echocardiography 22, 305–314 (2005).

    PubMed  Google Scholar 

  99. Eidem, B. W. et al. Impact of cardiac growth on Doppler tissue imaging velocities: a study in healthy children. J. Am. Soc. Echocardiogr. 17, 212–221 (2004).

    PubMed  Google Scholar 

  100. Pena, J. L. et al. Quantification of regional left and right ventricular deformation indices in healthy neonates by using strain rate and strain imaging. J. Am. Soc. Echocardiogr. 22, 369–375 (2009).

    PubMed  Google Scholar 

  101. Weidemann, F. et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J. Am. Soc. Echocardiogr. 15, 20–28 (2002).

    PubMed  Google Scholar 

  102. Kowalski, M. et al. Can. natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. Ultrasound Med. Biol. 27, 1087–1097 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L. L. Mertens and M. K. Friedberg contributed equally to discussion of content for the article, researched data to include in the manuscript, reviewed and edited the manuscript before submission, and revised the manuscript in response to the peer-reviewers' comments.

Corresponding author

Correspondence to Luc L. Mertens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mertens, L., Friedberg, M. Imaging the right ventricle—current state of the art. Nat Rev Cardiol 7, 551–563 (2010). https://doi.org/10.1038/nrcardio.2010.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.118

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing