Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fetal cardiac arrhythmia detection and in utero therapy

Abstract

The human fetal heart develops arrhythmias and conduction disturbances in response to ischemia, inflammation, electrolyte disturbances, altered load states, structural defects, inherited genetic conditions, and many other causes. Yet sinus rhythm is present without altered rate or rhythm in some of the most serious electrophysiological diseases, which makes detection of diseases of the fetal conduction system challenging in the absence of magnetocardiographic or electrocardiographic recording techniques. Life-threatening changes in QRS or QT intervals can be completely unrecognized if heart rate is the only feature to be altered. For many fetal arrhythmias, echocardiography alone can assess important clinical parameters for diagnosis. Appropriate treatment of the fetus requires awareness of arrhythmia characteristics, mechanisms, and potential associations. Criteria to define fetal bradycardia specific to gestational age are now available and may allow detection of ion channelopathies, which are associated with fetal and neonatal bradycardia. Ectopic beats, once thought to be entirely benign, are now recognized to have important pathologic associations. Fetal tachyarrhythmias can now be defined precisely for mechanism-specific therapy and for subsequent monitoring of response. This article reviews the current and future diagnostic techniques and pharmacologic treatments for fetal arrhythmia.

Key Points

  • Fetal demise related to cardiac depolarization or repolarization abnormalities may be preventable

  • Genetic ion channel diseases often present with fetal bradycardia

  • The prognosis of patients with complete atrioventricular block depends on the etiology of this condition

  • Fetal magnetocardiography enhances diagnosis and treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two fetal magnetocardiography recordings from a 30-week fetus with long QT syndrome 3.1
Figure 2: Signal-averaged electrograms of fetal magnetocardiography recordings from a fetus with maternal SSA/Ro autoantibody isoimmunization.
Figure 3: Simultaneous fetal magnetocardiography and Doppler echocardiography recordings from a fetus with isoimmune third-degree atrioventricular block at 23 weeks and 4 days of gestation.
Figure 4: Combined fetal magnetocardiography and Doppler echocardiography tracing from a fetus with atrial ectopic tachycardia and intermittent atrioventricular block (during tachycardia) at 25 weeks and 5 days of gestation.
Figure 5: Fetal magnetocardiography and Doppler echocardiography tracings from a fetus with a rhythm pattern that simulated Mobitz type I second-degree atrioventricular block at 18 weeks and 1 day of gestation.

Similar content being viewed by others

References

  1. Cuneo, B. F. et al. Prenatal diagnosis and in utero treatment of torsades de pointes associated with congenital long QT syndrome. Am. J. Cardiol. 91, 1395–1398 (2003).

    Article  PubMed  Google Scholar 

  2. Hamada, H. et al. Prenatal diagnosis of long QT syndrome using fetal magnetocardiography. Prenat. Diagn. 19, 677–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Horigome, H., Iwashita, H., Yoshinaga, M. & Shimizu, W. Magnetocardiographic demonstration of torsade de pointes in a fetus with congenital long QT syndrome. J. Cardiovasc. Electrophysiol. 19, 334–335 (2008).

    Article  PubMed  Google Scholar 

  4. Hosono, T., Shinto, M., Chiba, Y., Kandori, A. & Tsukada, K. Prenatal diagnosis of fetal complete atrioventricular block with QT prolongation and alternating ventricular pacemakers using multi-channel magnetocardiography and current-arrow maps. Fetal Diagn. Ther. 17, 173–176 (2002).

    Article  PubMed  Google Scholar 

  5. Miller, T. E. et al. Recurrent third-trimester fetal loss and maternal mosaicism for long-QT syndrome. Circulation 109, 3029–3034 (2004).

    Article  PubMed  Google Scholar 

  6. Beery, T. A., Shooner, K. A. & Benson, D. W. Neonatal long QT syndrome due to a de novo dominant negative hERG mutation. Am. J. Crit. Care 16, 412–416 (2007).

    Article  Google Scholar 

  7. Baruteau, A.-E. & Study, A. F. M. Non-immune isolated atrioventricular block in childhood: a French multicentric study [Abstract]. Heart Rhythm 39 (Suppl.), AB19–AB31 (2009).

    Google Scholar 

  8. Tester, D. J., McCormack, J. & Ackerman, M. J. Prenatal molecular genetic diagnosis of congenital long QT syndrome by strategic genotyping. Am. J. Cardiol. 93, 788–791 (2004).

    Article  PubMed  Google Scholar 

  9. Zhao, H., Strasburger, J. F., Cuneo, B. F. & Wakai, R. T. Fetal cardiac repolarization abnormalities. Am. J. Cardiol. 98, 491–496 (2006).

    Article  PubMed  Google Scholar 

  10. Dubin, A. M. et al. Congenital junctional ectopic tachycardia and congenital complete atrioventricular block: a shared etiology? Heart Rhythm 2, 313–315 (2005).

    Article  PubMed  Google Scholar 

  11. Rein, A. J. et al. Early diagnosis and treatment of atrioventricular block in the fetus exposed to maternal anti-SSA/Ro–SSB/La antibodies: a prospective, observational, fetal kinetocardiogram-based study. Circulation 119, 1867–1872 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Rein, A. J. et al. Use of tissue velocity imaging in the diagnosis of fetal cardiac arrhythmias. Circulation 106, 1827–1833 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Wakai, R. T., Lengle, J. M. & Leuthold, A. C. Transmission of electric and magnetic fetal cardiac signals in a case of ectopia cordis: the dominant role of the vernix caseosa. Phys. Med. Biol. 45, 1989–1995 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Acherman, R. J. et al. Fetal bradycardia. A practical approach. Fetal Matern. Med. Rev. 18, 225–255 (2007).

    Article  Google Scholar 

  15. [No authors listed]. ACOG Practice Bulletin No. 106: Intrapartum fetal heart rate monitoring: nomenclature, interpretation, and general management guidelines. Obstet. Gynecol. 114, 192–202 (2009).

  16. Serra, V., Bellver, J., Moulden, M. & Redman, C. W. Computerized analysis of normal fetal heart rate pattern throughout gestation. Ultrasound Obstet. Gynecol. 34, 74–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Robinson, S. M., Wheeler, T., Hayes, M. C., Barker, D. J. & Osmond, C. Fetal heart rate and intrauterine growth. Br. J. Obstet. Gynaecol. 98, 1223–1227 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Beinder, E., Grancay, T., Menéndez, T., Singer, H. & Hofbeck, M. Fetal sinus bradycardia and the long QT syndrome. Am. J. Obstet. Gynecol. 185, 743–747 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Cuneo, B. F., Strasburger, J. F., Niksch, A., Ovadia, M. & Wakai, R. T. An expanded phenotype of maternal SSA/SSB antibody-associated fetal cardiac disease. J. Matern. Fetal Neonatal Med. 22, 233–238 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ozkutlu, S., Onderoglu, L., Karagoz, T., Celiker, A. & Sahiner, U. M. Isolated noncompaction of left ventricular myocardium with fetal sustained bradycardia due to sick sinus syndrome. Turk J. Pediatr. 48, 383–386 (2006).

    PubMed  Google Scholar 

  21. Maeno, Y. et al. Prenatal diagnosis of sustained bradycardia with 1:1 atrioventricular conduction. Ultrasound Obstet. Gynecol. 21, 234–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Cuneo, B. F., Strasburger, J. F. & Wakai, R. T. Magnetocardiography in the evaluation of fetuses at risk for sudden cardiac death before birth. J. Electrocardiol. 41, 116.e1–116.e6 (2008).

    Article  Google Scholar 

  23. Baruteau, A. E. & Schleich, J. M. Antenatal presentation of congenital long QT syndrome: a prenatal diagnosis not to be missed. Pediatr. Cardiol. 29, 1131–1132 (2008).

    Article  PubMed  Google Scholar 

  24. Beinder, E., Buheitel, G. & Hofbeck, M. Are some cases of sudden intrauterine unexplained death due to the long QT syndrome? Prenat. Diagn. 23, 1097–1098 (2003).

    Article  PubMed  Google Scholar 

  25. Schwartz, P. J. Stillbirths, sudden infant deaths, and long-QT syndrome: puzzle or mosaic, the pieces of the jigsaw are being fitted together. Circulation 109, 2930–2932 (2004).

    Article  PubMed  Google Scholar 

  26. Schwartz, P. J. et al. Prolongation of the QT interval and the sudden infant death syndrome. N. Engl. J. Med. 338, 1709–1714 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Berg, C. et al. Atrioventricular block detected in fetal life: associated anomalies and potential prognostic markers. Ultrasound Obstet. Gynecol. 26, 4–15 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Glatz, A. C. et al. Outcome of high-risk neonates with congenital complete heart block paced in the first 24 hours after birth. J. Thorac. Cardiovasc. Surg. 136, 767–773 (2008).

    Article  PubMed  Google Scholar 

  29. Cuneo, B. F. Outcome of fetal cardiac defects. Curr. Opin. Pediatr. 18, 490–496 (2006).

    Article  PubMed  Google Scholar 

  30. Villain, E., Marijon, E. & Georgin, S. Is isolated congenital heart block with maternal antibodies a distinct and more severe form of the disease in childhood? Heart Rhythm 2 (Suppl. 1), S45 (2005).

    Article  Google Scholar 

  31. Lopes, L. M. et al. Perinatal outcome of fetal atrioventricular block: one-hundred-sixteen cases from a single institution. Circulation 118, 1268–1275 (2008).

    Article  PubMed  Google Scholar 

  32. Buyon, J. P. & Winchester, R. Congenital complete heart block. A human model of passively acquired autoimmune injury. Arthritis Rheum. 33, 609–614 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Boutjdir, M. Molecular and ionic basis of congenital complete heart block. Trends Cardiovasc. Med. 10, 114–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Buyon, J. P. & Clancy, R. M. Dying right to live longer: positing apoptosis as a link between maternal autoantibodies and congenital heart block. Lupus 17, 86–90 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Buyon, J. P. Neonatal lupus syndrome. In Systemic Lupus Erythematosus, 4th edn (ed. Lahita, R. G.) 473 (Elsevier Academic, 1998).

    Google Scholar 

  36. Friedman, D. M. et al. Prospective evaluation of fetuses with autoimmune-associated congenital heart block followed in the PR Interval and Dexamethasone Evaluation (PRIDE) study. Am. J. Cardiol. 103, 1102–1106 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Buyon, J. P., Clancy, R. M. & Friedman, D. M. Cardiac manifestations of neonatal lupus erythematosus: guidelines to management, integrating clues from the bench and bedside. Nat. Clin. Pract. Rheumatol. 5, 139–148 (2009).

    PubMed  Google Scholar 

  38. Buyon, J. P., Clancy, R. M. & Friedman, D. M. Autoimmune associated congenital heart block: integration of clinical and research clues in the management of the maternal/fetal dyad at risk. J. Intern. Med. 265, 653–662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Motta, M., Rodriguez-Perez, C., Tincani, A., Lojacono, A. & Chirico, G. Outcome of infants from mothers with anti-SSA/Ro antibodies. J. Perinatol. 27, 278–283 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Friedman, D. M. et al. Utility of cardiac monitoring in fetuses at risk for congenital heart block: the PR Interval and Dexamethasone Evaluation (PRIDE) prospective study. Circulation 117, 485–493 (2008).

    Article  PubMed  Google Scholar 

  41. Sonesson, S. E., Salomonsson, S., Jacobsson, L. A., Bremme, K. & Wahren-Herlenius, M. Signs of first-degree heart block occur in one-third of fetuses of pregnant women with anti-SSA/Ro 52 kD antibodies. Arthritis Rheum. 50, 1253–1261 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, H. et al. Electrophysiological characteristics of fetal atrioventricular block. J. Am. Coll. Cardiol. 51, 77–84 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gardiner, H. M. et al. Fetal ECG: a novel predictor of atrioventricular block in anti-Ro positive pregnancies. Heart 93, 1454–1460 (2007).

    Article  PubMed  Google Scholar 

  44. Li, Z., Strasburger, J. F., Cuneo, B. F., Gotteiner, N. L. & Wakai, R. T. Giant fetal magnetocardiogram P waves in congenital atrioventricular block: a marker of cardiovascular compensation? Circulation 110, 2097–2101 (2004).

    Article  PubMed  Google Scholar 

  45. Costedoat-Chalumeau, N., Amoura, Z., Villain, E., Cohen, L. & Piette, J. C. Anti-SSA/Ro antibodies and the heart: more than complete congenital heart block? A review of electrocardiographic and myocardial abnormalities and of treatment options. Arthritis Res. Ther. 7, 69–73 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nield, L. E. et al. Endocardial fibroelastosis associated with maternal anti-Ro and anti-La antibodies in the absence of atrioventricular block. J. Am. Coll. Cardiol. 40, 796–802 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Pises, N. et al. Positive maternal anti-SSA/SSB antibody-related fetal right ventricular endocardial fibroelastosis without atrioventricular block, reversal of endocardial fibroelastosis. Prenat. Diagn. 29, 177–178 (2009).

    Article  PubMed  Google Scholar 

  48. Nield, L. E. et al. Maternal anti-Ro and anti-La antibody-associated endocardial fibroelastosis. Circulation 105, 843–848 (2002).

    Article  PubMed  Google Scholar 

  49. Bazett, H. C. An analysis of the time-relations of electrocardiograms. Heart 7, 353–370 (1920).

    Google Scholar 

  50. Kussman, B. D., Madril, D. R., Thiagarajan, R. R., Walsh, E. P. & Laussen, P. C. Anesthetic management of the neonate with congenital complete heart block: a 16-year review. Paediatr. Anaesth. 15, 1059–1066 (2005).

    PubMed  Google Scholar 

  51. Buyon, J. P. Dispelling the preconceived notion that lupus pregnancies result in poor outcomes. J. Rheumatol. 32, 1641–1642 (2005).

    PubMed  Google Scholar 

  52. Stinstra, J. et al. Multicenter study of fetal cardiac time intervals using magnetocardiography. BJOG 109, 1235–1243 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Nakai, K. et al. Development of 64-channel magnetocardiography and clinical application [Japanese]. Rinsho Byori 54, 844–849 (2006).

    PubMed  Google Scholar 

  54. Horigome, H. et al. Standardization of the PQRST waveform and analysis of arrhythmias in the fetus using vector magnetocardiography. Pediatr. Res. 59, 121–125 (2006).

    Article  PubMed  Google Scholar 

  55. Cuneo, B. F. et al. Atrial and ventricular rate response and patterns of heart rate acceleration during maternal-fetal terbutaline treatment of fetal complete heart block. Am. J. Cardiol. 100, 661–665 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cuneo, B. F., Strasburger, J. F., Wakai, R. T. & Ovadia, M. Conduction system disease in fetuses evaluated for irregular cardiac rhythm. Fetal Diagn. Ther. 21, 307–313 (2006).

    Article  PubMed  Google Scholar 

  57. Comani, S., Van Leeuwen, P., Lange, S., Geue, D. & Gronemeyer, D. Influence of gestational age on the effectiveness of spatial and temporal methods for the reconstruction of the fetal magnetocardiogram. Biomed. Tech. (Berl.) 54, 29–37 (2009).

    Article  Google Scholar 

  58. Menéndez, T. et al. Usefulness of magnetocardiography for the investigation of fetal arrhythmias. Am. J. Cardiol. 88, 334–336 (2001).

    Article  PubMed  Google Scholar 

  59. Strasburger, J. F. Prenatal diagnosis of fetal arrhythmias. Clin. Perinatol. 32, 891–912 (2005).

    Article  PubMed  Google Scholar 

  60. Skog, A., Wahren-Herlenius, M., Sundstrom, B., Bremme, K. & Sonesson, S. E. Outcome and growth of infants fetally exposed to heart block-associated maternal anti-Ro52/SSA autoantibodies. Pediatrics 121, e803–e809 (2008).

    Article  PubMed  Google Scholar 

  61. Eronen, M. et al. Short- and long-term outcome of children with congenital complete heart block diagnosed in utero or as a newborn. Pediatrics 106 (Pt 1), 86–91 (2000).

    Article  Google Scholar 

  62. Moak, J. P. et al. Congenital heart block: development of late-onset cardiomyopathy, a previously underappreciated sequela. J. Am. Coll. Cardiol. 37, 238–242 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Fesslova, V. et al. The impact of treatment of the fetus by maternal therapy on the fetal and postnatal outcomes for fetuses diagnosed with isolated complete atrioventricular block. Cardiol. Young 19, 282–290 (2009).

    Article  PubMed  Google Scholar 

  64. Gregoratos, G. et al. ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/NASPE Committee to Update the 1998 Pacemaker Guidelines). J. Am. Coll. Cardiol. 40, 1703–1719 (2002).

    Article  PubMed  Google Scholar 

  65. Srinivasan, S. & Strasburger, J. Overview of fetal arrhythmias. Curr. Opin. Pediatr. 20, 522–531 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Carpenter, R. J. Jr et al. Fetal ventricular pacing for hydrops secondary to complete atrioventricular block. J. Am. Coll. Cardiol. 8, 1434–1436 (1986).

    Article  PubMed  Google Scholar 

  67. Walkinshaw, S. A., Welch, C. R., McCormack, J. & Walsh, K. In utero pacing for fetal congenital heart block. Fetal Diagn. Ther. 9, 183–185 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Kohl, T. et al. Fetoscopic direct fetal cardiac access in sheep: an important experimental milestone along the route to human fetal cardiac intervention. Circulation 102, 1602–1604 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Kikuchi, Y., Shiraishi, H., Igarashi, H., Chunfeng, L. & Yanagisawa, M. Cardiac pacing in fetal lambs: intrauterine transvenous cardiac pacing for fetal complete heart block. Pacing Clin. Electrophysiol. 18 (Pt 1), 417–423 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Dell'Orfano, J. et al. The monolithic fetal pacemaker: prototype lead design for closed thorax deployment. Pacing Clin. Electrophysiol. 26 (Pt 1), 805–811 (2003).

    Article  PubMed  Google Scholar 

  71. Assad, R. S. et al. New lead for in utero pacing for fetal congenital heart block. J. Thorac. Cardiovasc. Surg. 126, 300–302 (2003).

    Article  PubMed  Google Scholar 

  72. Wakai, R. T., Strasburger, J. F., Li, Z., Deal, B. J. & Gotteiner, N. L. Magnetocardiographic rhythm patterns at initiation and termination of fetal supraventricular tachycardia. Circulation 107, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Naheed, Z. J., Strasburger, J. F., Deal, B. J., Benson, D. W. Jr & Gidding, S. S. Fetal tachycardia: mechanisms and predictors of hydrops fetalis. J. Am. Coll. Cardiol. 27, 1736–1740 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Ko, J. K., Deal, B. J., Strasburger, J. F. & Benson, D. W. Jr. Supraventricular tachycardia mechanisms and their age distribution in pediatric patients. Am. J. Cardiol. 69, 1028–1032 (1992).

    Article  CAS  PubMed  Google Scholar 

  75. Kannankeril, P. J., Gotteiner, N. L., Deal, B. J., Johnsrude, C. L. & Strasburger, J. F. Location of accessory connection in infants presenting with supraventricular tachycardia in utero: clinical correlations. Am. J. Perinatol. 20, 115–119 (2003).

    Article  PubMed  Google Scholar 

  76. Hahurij, N. D. et al. Accessory atrioventricular myocardial connections in the developing human heart: relevance for perinatal supraventricular tachycardias. Circulation 117, 2850–2858 (2008).

    Article  PubMed  Google Scholar 

  77. Johnson, W. H. Jr, Dunnigan, A., Fehr, P. & Benson, D. W. Jr. Association of atrial flutter with orthodromic reciprocating fetal tachycardia. Am. J. Cardiol. 59, 374–375 (1987).

    Article  PubMed  Google Scholar 

  78. Strasburger, J. F., Cheulkar, B. & Wichman, H. J. Perinatal arrhythmias: diagnosis and management. Clin. Perinatol. 34, 627–652 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Strasburger, J. F. et al. Amiodarone therapy for drug-refractory fetal tachycardia. Circulation 109, 375–379 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Simpson, J. M. Fetal arrhythmias. Ultrasound Obstet. Gynecol. 27, 599–606 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Simpson, J. M., Maxwell, D., Rosenthal, E. & Gill, H. Fetal ventricular tachycardia secondary to long QT syndrome treated with maternal intravenous magnesium: case report and review of the literature. Ultrasound Obstet. Gynecol. 34, 475–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Maeno, Y., Hirose, A., Kanbe, T. & Hori, D. Fetal arrhythmia: prenatal diagnosis and perinatal management. J. Obstet. Gynaecol. Res. 35, 623–629 (2009).

    Article  PubMed  Google Scholar 

  83. Cuneo, B. F. & Strasburger, J. F. Management strategy for fetal tachycardia. Obstet. Gynecol. 96, 575–581 (2000).

    CAS  PubMed  Google Scholar 

  84. Cuneo, B. F. Treatment of fetal tachycardia. Heart Rhythm 5, 1216–1218 (2008).

    Article  PubMed  Google Scholar 

  85. Oudijk, M. A. et al. Sotalol in the treatment of fetal dysrhythmias. Circulation 101, 2721–2726 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. D'Alto, M. et al. The challenge of fetal dysrhythmias: echocardiographic diagnosis and clinical management. J. Cardiovasc. Med. (Hagerstown) 9, 153–160 (2008).

    Article  Google Scholar 

  87. Jouannic, J. M. et al. Fetal supraventricular tachycardia: a role for amiodarone as second-line therapy? Prenat. Diagn. 23, 152–156 (2003).

    Article  PubMed  Google Scholar 

  88. Van Leeuwen, P. et al. Effect of prenatal antiarrhythmic treatment on cardiac function in a twin pregnancy. Pacing Clin. Electrophysiol. 31, 1213–1217 (2008).

    Article  PubMed  Google Scholar 

  89. Fish., F. A., Gillette, P. C. & Benson, D. W. Jr. Proarrhythmia, cardiac arrest and death in young patients receiving encainide and flecainide. The Pediatric Electrophysiology Group. J. Am. Coll. Cardiol. 18, 356–365 (1991).

    Article  CAS  PubMed  Google Scholar 

  90. Fenrich, A. L. Jr, Perry, J. C. & Friedman, R. A. Flecainide and amiodarone: combined therapy for refractory tachyarrhythmias in infancy. J. Am. Coll. Cardiol. 25, 1195–1198 (1995).

    Article  PubMed  Google Scholar 

  91. Parilla, B. V., Strasburger, J. F. & Socol, M. L. Fetal supraventricular tachycardia complicated by hydrops fetalis: a role for direct fetal intramuscular therapy. Am. J. Perinatol. 13, 483–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Weiner, C. P. & Thompson, M. I. Direct treatment of fetal supraventricular tachycardia after failed transplacental therapy. Am. J. Obstet. Gynecol. 158 (Pt 1), 570–573 (1988).

    Article  CAS  PubMed  Google Scholar 

  93. Hallak, M., Neerhof, M. G., Perry, R., Nazir, M. & Huhta, J. C. Fetal supraventricular tachycardia and hydrops fetalis: combined intensive, direct, and transplacental therapy. Obstet. Gynecol. 78 (Pt 2), 523–525 (1991).

    CAS  PubMed  Google Scholar 

  94. Lomenick, J. P., Jackson, W. A. & Backeljauw, P. F. Amiodarone-induced neonatal hypothyroidism: a unique form of transient early-onset hypothyroidism. J. Perinatol. 24, 397–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Trotter, A., Kaestner, M., Pohlandt, F. & Lang, D. Unusual electrocardiogram findings in a preterm infant after fetal tachycardia with hydrops fetalis treated with flecainide. Pediatr. Cardiol. 21, 259–262 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Rasheed, A., Simpson, J. & Rosenthal, E. Neonatal ECG changes caused by supratherapeutic flecainide following treatment for fetal supraventricular tachycardia. Heart 89, 470 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hall, C. M. & Ward Platt, M. P. Neonatal flecainide toxicity following supraventricular tachycardia treatment. Ann. Pharmacother. 37, 1343–1344 (2003).

    Article  PubMed  Google Scholar 

  98. Jaeggi, E. T. & Nii, M. Fetal brady- and tachyarrhythmias: new and accepted diagnostic and treatment methods. Semin. Fetal Neonatal Med. 10, 504–514 (2005).

    Article  PubMed  Google Scholar 

  99. Casey, F. A., McCrindle, B. W., Hamilton, R. M. & Gow, R. M. Neonatal atrial flutter: significant early morbidity and excellent long-term prognosis. Am. Heart J. 133, 302–306 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Copel, J. A., Liang, R. I., Demasio, K., Ozeren, S. & Kleinman, C. S. The clinical significance of the irregular fetal heart rhythm. Am. J. Obstet. Gynecol. 182, 813–819 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Fyfe, D. A., Meyer, K. B. & Case, C. L. Sonographic assessment of fetal cardiac arrhythmias. Semin. Ultrasound CT MR 14, 286–297 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Tan, B.-H. et al. Sudden infant death syndrome-associated mutations in the sodium channel beta subunits. Heart Rhythm doi:10.1016/j.hrthm.2010.01.032.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rashba, E. J. et al. Influence of pregnancy on the risk for cardiac events in patients with hereditary long QT syndrome. LQTS Investigators. Circulation 97, 451–456 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Tester, D. J. & Ackerman, M. J. Sudden infant death syndrome: how significant are the cardiac channelopathies? Cardiovasc. Res. 67, 388–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Shim, S. H., Ito, M., Maher, T. & Milunsky, A. Gene sequencing in neonates and infants with the long QT syndrome. Genet. Test. 9, 281–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Hofbeck, M., Ulmer, H., Beinder, E., Sieber, E. & Singer, H. Prenatal findings in patients with prolonged QT interval in the neonatal period. Heart 77, 198–204 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ackerman, M. J. et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 286, 2264–2269 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Kominis, I. K., Kornack, T. W., Allred, J. C. & Romalis, M. V. A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Chan, J., Kumar, S. & Fisk, N. M. First trimester embryo-fetoscopic and ultrasound-guided fetal blood sampling for ex vivo viral transduction of cultured human fetal mesenchymal stem cells. Hum. Reprod. 23, 2427–2437 (2008).

    Article  PubMed  Google Scholar 

  110. Zhao, H., Chen, M., Van Veen, B. D., Strasburger, J. F. & Wakai, R. T. Simultaneous fetal magnetocardiography and ultrasound/Doppler imaging. IEEE Trans. Biomed. Eng. 54 (Pt 2), 1167–1171 (2007).

    Article  PubMed  Google Scholar 

  111. Schmidt, K. G., Ulmer, H. E., Silverman, N. H., Kleinman, C. S. & Copel, J. A. Perinatal outcome of fetal complete atrioventricular block: a multicenter experience. J. Am. Coll. Cardiol. 17, 1360–1366 (1991).

    Article  CAS  PubMed  Google Scholar 

  112. Jaeggi, E. T., Hornberger, L. K., Smallhorn, J. F. & Fouron, J. C. Prenatal diagnosis of complete atrioventricular block associated with structural heart disease: combined experience of two tertiary care centers and review of the literature. Ultrasound Obstet. Gynecol. 26, 16–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Eronen, M. Outcome of fetuses with heart disease diagnosed in utero. Arch. Dis. Child. Fetal Neonatal Ed. 77, F41–F46 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Machado, M. V., Tynan, M. J., Curry, P. V. & Allan, L. D. Fetal complete heart block. Br. Heart J. 60, 512–515 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gembruch, U., Hansmann, M., Redel, D. A., Bald, R. & Knöpfle, G. Fetal complete heart block: antenatal diagnosis, significance and management. Eur. J. Obstet. Gynecol. Reprod. Biol. 31, 9–22 (1989).

    Article  CAS  PubMed  Google Scholar 

  116. Maeno, Y. et al. Clinical course of fetal congenital atrioventricular block in the Japanese population: a multicenter experience. Heart 91, 1075–1079 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Ours is team science. We acknowledge Nana Aba Mensah Brown, Suhong Yu, Hui Zhao, Zhimin Li, Zhen Ji, Medical Physics graduate students U. W. Madison who processed the data, William Lutter, Medical Physicist who supported the technology infrastructure, Gretchen Eckstein, research obstetrics nurse, Bageshree Cheulkar, research assistant to Dr Strasburger, Bettina Cuneo, interpretation and patient management, and the pediatric cardiologists and maternal fetal medicine specialists who supported this research through their referrals. Grant support includes NIH R01HL63174, R21HD049022, R42HL092755, R44HL082017, R43HD055091, and the Advancing a Healthier Wisconsin Fund. Désirée Lie, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janette F. Strasburger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Fetal magnetocardiography recordings from a 26-week fetus (PDF 102 kb)

Supplementary Figure 2

Fetal magnetocardiography and Doppler echocardiography tracings from a 29-week fetus with re-entrant supraventricular tachycardia (PDF 195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strasburger, J., Wakai, R. Fetal cardiac arrhythmia detection and in utero therapy. Nat Rev Cardiol 7, 277–290 (2010). https://doi.org/10.1038/nrcardio.2010.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.32

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing