Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of echocardiographic deformation imaging in hypertrophic myopathies

Abstract

Echocardiography has a leading role in the routine assessment and diagnosis of hypertrophic ventricles. However, the use of M-mode echocardiography and measurement of global left ventricular function may be misleading. Traditionally, systolic function was thought to be preserved in patients with hypertrophic myopathies until the late stages of the disease, and hypertrophic myopathies were thought to affect the myocardium more diffusely than ischemic heart disease. Ultrasound deformation imaging, either by Doppler myocardial imaging or speckle tracking, provides more-sensitive detection of regional myocardial motion and deformation than standard echocardiography. Basic and clinical studies that apply these techniques have revealed early, often subclinical impairment in systolic function. This information allows the detection and treatment of myocardial dysfunction at an early stage, which is of high clinical importance. Physiological hypertrophic remodeling seen in athletes differs from pathological myocardial hypertrophy, which can be caused by compensatory reactive hypertrophy owing to pressure overload in patients with aortic stenosis or hypertension, as well as amyloidosis, Fabry disease or Friedreich ataxia. Each of the etiologies associated with hypertrophy demonstrate distinct regional changes in myocardial deformation, which allows identification of the underlying processes, and will improve the assessment and follow-up of patients with hypertrophic myopathies.

Key Points

  • Hypertrophic myopathies represent a heterogeneous group of diseases with specific myocardial regions that are affected

  • Characteristic changes in regional deformation can be used to determine the underlying hypertrophic processes, and improve the assessment and follow-up of treatment

  • Pressure overload mainly affects the basal septum, whereas systemic cardiomyopathies that induce hypertrophy affect the left ventricular free wall, hypertrophic cardiomyopathy shows patient-specific abnormal segments, and amyloidosis affects the myocardium diffusely

  • Conventional echocardiography routinely assesses radial function of the myocardium, which might mask the early onset of myocardial disease as functional (systolic) impairment primarily affects the longitudinal myocardial fibers

  • Doppler myocardial imaging and speckle tracking are more-sensitive imaging modalities than conventional echocardiography, thus enabling the detection of hypertrophic myopathies at an earlier stage

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Balance of cardiac contractility and loading.
Figure 2: Normal myocardial motion and deformation, and typical profiles of strain rate and strain traces.9
Figure 3: Schematic overview of typical longitudinal strain curves observed in different types of hypertrophic remodeling.

Similar content being viewed by others

References

  1. Sutherland, G. R., Hatle, L., Claus, P., D'hooge, J. & Bijnens, B. (Eds) Doppler Myocardial Imaging, A Textbook (BSWK bvba, Hasselt, Belgium, 2006).

    Google Scholar 

  2. Sengupta, P. P. et al. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J. Am. Soc. Echocardiogr. 20, 539–551 (2007).

    PubMed  PubMed Central  Google Scholar 

  3. Grossman, W., Jones, D. & McLaurin, L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56, 56–64 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Opie, L. H., Commerford, P. J., Gersh, B. J. & Pfeffer, M. A. Controversies in ventricular remodelling. Lancet 367, 356–367 (2006).

    Article  PubMed  Google Scholar 

  5. Baltabaeva, A. et al. Regional left ventricular deformation and geometry analysis provides insights in myocardial remodelling in mild to moderate hypertension. Eur. J. Echocardiogr. 9, 501–508 (2008).

    PubMed  Google Scholar 

  6. Lang, R. M. et al. Recommendations for chamber quantification. Eur. J. Echocardiogr. 7, 79–108 (2006).

    PubMed  Google Scholar 

  7. Bijnens, B., Claus, P., Weidemann, F., Strotmann, J. & Sutherland, G. R. Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation 116, 2453–2464 (2007).

    PubMed  Google Scholar 

  8. Aurigemma, G. P., Silver, K. H., Priest, M. A. & Gaasch, W. H. Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J. Am. Coll. Cardiol. 26, 195–202 (1995).

    CAS  PubMed  Google Scholar 

  9. Bijnens, B. H., Cikes, M., Claus, P. & Sutherland, G. R. Velocity and deformation imaging for the assessment of myocardial dysfunction. Eur. J. Echocardiogr. 10, 216–226 (2009).

    PubMed  Google Scholar 

  10. Claus, P. et al. Mechanisms of postsystolic thickening in ischemic myocardium: mathematical modelling and comparison with experimental ischemic substrates. Ultrasound Med. Biol. 33, 1963–1970 (2007).

    PubMed  Google Scholar 

  11. Greenbaum, R. A., Ho, S. Y., Gibson, D. G., Becker, A. E. & Anderson, R. H. Left ventricular fibre architecture in man. Br. Heart J. 45, 248–263 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Beyar, R., Yin, F. C., Hausknecht, M., Weisfeldt, M. L. & Kass, D. A. Dependence of left ventricular twist-radial shortening relations on cardiac cycle phase. Am. J. Physiol. 257, H1119–H1126 (1989).

    CAS  PubMed  Google Scholar 

  13. Saito, K. et al. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J. Am. Soc. Echocardiogr. 22, 1025–1030 (2009).

    PubMed  Google Scholar 

  14. Kowalski, M. et al. Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. Ultrasound Med. Biol. 27, 1087–1097 (2001).

    CAS  PubMed  Google Scholar 

  15. Serri, K. et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 47, 1175–1181 (2006).

    PubMed  Google Scholar 

  16. Langeland, S. et al. Experimental assessment of a new research tool for the estimation of two-dimensional myocardial strain. Ultrasound Med. Biol. 32, 1509–1513 (2006).

    PubMed  Google Scholar 

  17. Korinek, J. et al. Two-dimensional strain—a Doppler-independent ultrasound method for quantitation of regional deformation: validation in vitro and in vivo. J. Am. Soc. Echocardiogr. 18, 1247–1253 (2005).

    PubMed  Google Scholar 

  18. Ng, A. C. et al. Comparison of myocardial tissue velocities measured by two-dimensional speckle tracking and tissue Doppler imaging. Am. J. Cardiol. 102, 784–789 (2008).

    PubMed  Google Scholar 

  19. Chan, J. et al. Differentiation of subendocardial and transmural infarction using two-dimensional strain rate imaging to assess short-axis and long-axis myocardial function. J. Am. Coll. Cardiol. 48, 2026–2033 (2006).

    PubMed  Google Scholar 

  20. Jamal, F. et al. Noninvasive quantification of the contractile reserve of stunned myocardium by ultrasonic strain rate and strain. Circulation 104, 1059–1065 (2001).

    CAS  PubMed  Google Scholar 

  21. Weidemann, F. et al. Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am. J. Physiol. Heart Circ. Physiol. 283, H792–H799 (2002).

    CAS  PubMed  Google Scholar 

  22. Thibault, H. & Derumeaux, G. Assessment of myocardial ischemia and viability using tissue Doppler and deformation imaging: the lessons from the experimental studies. Arch. Cardiovasc. Dis. 101, 61–68 (2008).

    CAS  PubMed  Google Scholar 

  23. Voigt, J. U. et al. Comparison of deformation imaging and velocity imaging for detecting regional inducible ischaemia during dobutamine stress echocardiography. Eur. Heart J. 25, 1517–1525 (2004).

    PubMed  Google Scholar 

  24. Marciniak, A. et al. Changes in systolic left ventricular function in isolated mitral regurgitation. A strain rate imaging study. Eur. Heart J. 28, 2627–2636 (2007).

    PubMed  Google Scholar 

  25. Marciniak, A. et al. Myocardial deformation abnormalities in patients with aortic regurgitation: a strain rate imaging study. Eur. J. Echocardiogr. 10, 112–119 (2009).

    PubMed  Google Scholar 

  26. Kato, T. S. et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue doppler ultrasonography. Circulation 110, 3808–3814 (2004).

    PubMed  Google Scholar 

  27. Eroglu, E. et al. Quantitative dobutamine stress echocardiography for the early detection of cardiac allograft vasculopathy in heart transplant recipients. Heart 94, e3 (2008).

    CAS  PubMed  Google Scholar 

  28. Breithardt, O. A. et al. Cardiac resynchronization therapy can reverse abnormal myocardial strain distribution in patients with heart failure and left bundle branch block. J. Am. Coll. Cardiol. 42, 486–494 (2003).

    PubMed  Google Scholar 

  29. Bellavia, D. et al. Evidence of impaired left ventricular systolic function by Doppler myocardial imaging in patients with systemic amyloidosis and no evidence of cardiac involvement by standard two-dimensional and Doppler echocardiography. Am. J. Cardiol. 101, 1039–1045 (2008).

    PubMed  Google Scholar 

  30. Weidemann, F. et al. The variation of morphological and functional cardiac manifestation in Fabry disease: potential implications for the time course of the disease. Eur. Heart J. 26, 1221–1227 (2005).

    PubMed  Google Scholar 

  31. Mertens, L. et al. Early regional myocardial dysfunction in young patients with Duchenne muscular dystrophy. J. Am. Soc. Echocardiogr. 21, 1049–1054 (2008).

    PubMed  Google Scholar 

  32. Perseghin, G. et al. Effect of the sporting discipline on the right and left ventricular morphology and function of elite male track runners: a magnetic resonance imaging and phosphorus 31 spectroscopy study. Am. Heart J. 154, 937–942 (2007).

    PubMed  Google Scholar 

  33. Pluim, B. M. et al. Functional and metabolic evaluation of the athlete's heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation 97, 666–672 (1998).

    CAS  PubMed  Google Scholar 

  34. Abergel, E. et al. Serial left ventricular adaptations in world-class professional cyclists: implications for disease screening and follow-up. J. Am. Coll. Cardiol. 44, 144–149 (2004).

    PubMed  Google Scholar 

  35. Morganroth, J., Maron, B. J., Henry, W. L. & Epstein, S. E. Comparative left ventricular dimensions in trained athletes. Ann. Intern. Med. 82, 521–524 (1975).

    CAS  PubMed  Google Scholar 

  36. D'Andrea, A. et al. Association between left ventricular structure and cardiac performance during effort in two morphological forms of athlete's heart. Int. J. Cardiol. 86, 177–184 (2002).

    PubMed  Google Scholar 

  37. Blomqvist, C. G. & Saltin, B. Cardiovascular adaptations to physical training. Annu. Rev. Physiol. 45, 169–189 (1983).

    CAS  PubMed  Google Scholar 

  38. Derumeaux, G. et al. Tissue Doppler imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats. Circulation 105, 1602–1608 (2002).

    PubMed  Google Scholar 

  39. Medugorac, I. Myocardial collagen in different forms of heart hypertrophy in the rat. Res. Exp. Med. 177, 201–211 (1980).

    CAS  Google Scholar 

  40. Moore, R. L. & Korzick, D. H. Cellular adaptations of the myocardium to chronic exercise. Prog. Cardiovasc. Dis. 37, 371–396 (1995).

    CAS  PubMed  Google Scholar 

  41. Vinereanu, D. et al. Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am. J. Cardiol. 88, 53–58 (2001).

    CAS  PubMed  Google Scholar 

  42. Caso, P. et al. Pulsed Doppler tissue imaging in endurance athletes: relation between left ventricular preload and myocardial regional diastolic function. Am. J. Cardiol. 85, 1131–1136 (2000).

    CAS  PubMed  Google Scholar 

  43. Herbots, L. Assessment of contractile function in endurance trained athletes using strain rate and strain. Thesis, University Hospital Gasthuisberg, Leuven, Belgium (2006).

    Google Scholar 

  44. Teske, A. J. et al. Echocardiographic deformation imaging reveals preserved regional systolic function in endurance athletes with left ventricular hypertrophy. Br. J. Sports Med. doi:10.1136/bjsm.2008.054346.

    PubMed  Google Scholar 

  45. Palka, P., Lange, A. & Nihoyannopoulos, P. The effect of long-term training on age-related left ventricular changes by Doppler myocardial velocity gradient. Am. J. Cardiol. 84, 1061–1067 (1999).

    CAS  PubMed  Google Scholar 

  46. D'Andrea, A. et al. The usefulness of Doppler myocardial imaging in the study of the athlete's heart and in the differential diagnosis between physiological and pathological ventricular hypertrophy. Echocardiography 23, 149–157 (2006).

    PubMed  Google Scholar 

  47. Poulsen, S. H. et al. Strain rate and tissue tracking imaging in quantitation of left ventricular systolic function in endurance and strength athletes. Scand. J. Med. Sci. Sports 17, 148–155 (2007).

    CAS  PubMed  Google Scholar 

  48. Richand, V. et al. An ultrasound speckle tracking (two-dimensional strain) analysis of myocardial deformation in professional soccer players compared with healthy subjects and hypertrophic cardiomyopathy. Am. J. Cardiol. 100, 128–132 (2007).

    PubMed  Google Scholar 

  49. Ganau, A. et al. Patterns of left ventricular hypertrophy and geometrical remodeling in essential hypertension. J. Am. Coll. Cardiol. 19, 1550–1558 (1992).

    CAS  PubMed  Google Scholar 

  50. Hatford, M., Wikstrand, J. C., Wallentin, I., Ljungman, S. M. & Berglund, G. L. Left ventricular wall stress and systolic function in untreated primary hypertension. Hypertension 7, 97–104 (1985).

    Google Scholar 

  51. Przewlocka-Kosmala, M., Kosmala, W. & Mazurek, W. Left ventricular circumferential function in patients with essential hypertension. J. Hum. Hypertens. 20, 666–671 (2006).

    CAS  PubMed  Google Scholar 

  52. Park, S. J. et al. Left ventricular torsion by two-dimensional speckle tracking echocardiography in patients with diastolic dysfunction and normal ejection fraction. J. Am. Soc. Echocardiogr. 21, 1129–1137 (2008).

    PubMed  Google Scholar 

  53. Kosmala, W. et al. Progression of left ventricular functional abnormalities in hypertensive patients with heart failure: an ultrasonic two-dimensional speckle tracking study. J. Am. Soc. Echocardiogr. 21, 1309–1317 (2008).

    PubMed  Google Scholar 

  54. Palmon, L. C. et al. Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function. Circulation 89, 122–131 (1994).

    CAS  PubMed  Google Scholar 

  55. Heng, M. K., Janz, R. F. & Jobin, J. Estimation of regional stress in the left ventricular septum and free wall: an echocardiographic study suggesting a mechanism for asymmetric septal hypertrophy. Am. Heart J. 110, 84–90 (1985).

    CAS  PubMed  Google Scholar 

  56. Orlando, S. et al. Hypertrophic cardiomyopathy can be effectively discriminated from other forms of hypertrophy by the presence of localised non-deforming segments—a deformation imaging study [abstract]. Eur. Heart J. 28 (Suppl. 1), 2190 (2007).

    Google Scholar 

  57. Strotmann, J. M. et al. Functional differences of left ventricular hypertrophy induced by either arterial hypertension or aortic valve stenosis. Am. J. Cardiol. 101, 1493–1497 (2008).

    PubMed  Google Scholar 

  58. Schwartzkopff, B. et al. Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur. Heart J. 13 (Suppl. D), 17–23 (1992).

    PubMed  Google Scholar 

  59. Kowalski, M. et al. One-dimensional ultrasonic strain and strain rate imaging: a new approach to the quantitation of regional myocardial function in patients with aortic stenosis. Ultrasound Med. Biol. 29, 1085–1092 (2003).

    PubMed  Google Scholar 

  60. Weidemann, F. et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 120, 577–584 (2009).

    CAS  PubMed  Google Scholar 

  61. Carasso, S. et al. Differential effects of afterload on left ventricular long- and short-axis function: insights from a clinical model of patients with aortic valve stenosis undergoing aortic valve replacement. Am. Heart J. 158, 540–545 (2009).

    PubMed  Google Scholar 

  62. Donal, E. et al. Influence of afterload on left ventricular radial and longitudinal systolic functions: a two-dimensional strain imaging study. Eur. J. Echocardiogr. 10, 914–921 (2009).

    PubMed  Google Scholar 

  63. Hein, S. et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107, 984–991 (2003).

    PubMed  Google Scholar 

  64. Cappelli, F. et al. Adaptative or maladaptative hypertrophy, different spatial distribution of myocardial contraction. Clin. Physiol. Funct. Imaging 30, 6–12 (2010).

    PubMed  Google Scholar 

  65. Stuber, M. et al. Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 100, 361–368 (1999).

    CAS  PubMed  Google Scholar 

  66. Sandstede, J. J. et al. Cardiac systolic rotation and contraction before and after valve replacement for aortic stenosis: a myocardial tagging study using MR imaging. AJR Am. J. Roentgenol. 178, 953–958 (2002).

    PubMed  Google Scholar 

  67. Van Der Toorn, A. et al. Transmural gradients of cardiac myofiber shortening in aortic valve stenosis patients using MRI tagging. Am. J. Physiol. Heart Circ. Physiol. 283, H1609–H1615 (2002).

    CAS  PubMed  Google Scholar 

  68. Lumens, J., Delhaas, T., Arts, T., Cowan, B. R. & Young, A. A. Impaired subendocardial contractile myofiber function in asymptomatic aged humans, as detected using MRI. Am. J. Physiol. Heart Circ. Physiol. 291, H1573–H1579 (2006).

    CAS  PubMed  Google Scholar 

  69. Rutz, A. K. et al. Altered myocardial motion pattern in Fabry patients assessed with CMR-tagging. J. Cardiovasc. Magn. Reson. 9, 891–898 (2007).

    PubMed  Google Scholar 

  70. Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 29, 270–276 (2008).

    PubMed  Google Scholar 

  71. Maron, B. J. et al. American College of Cardiology/European Society of Cardiology Clinical Expert Consensus Document on Hypertrophic Cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines. Eur. Heart J. 24, 1965–1991 (2003).

    PubMed  Google Scholar 

  72. Elliott, P. & McKenna, W. J. Hypertrophic cardiomyopathy. Lancet 363, 1881–1891 (2004).

    CAS  PubMed  Google Scholar 

  73. Niimura, H. et al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N. Engl. J. Med. 338, 1248–1257 (1998).

    CAS  PubMed  Google Scholar 

  74. Maron, B. J. et al. Development of left ventricular hypertrophy in adults in hypertrophic cardiomyopathy caused by cardiac myosin-binding protein C gene mutations. J. Am. Coll. Cardiol. 38, 315–321 (2001).

    CAS  PubMed  Google Scholar 

  75. Charron, P. et al. Diagnostic value of electrocardiography and echocardiography for familial hypertrophic cardiomyopathy in a genotyped adult population. Circulation 96, 214–219 (1997).

    CAS  PubMed  Google Scholar 

  76. Richardson, P. et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 93, 841–842 (1996).

    CAS  PubMed  Google Scholar 

  77. Shapiro, L. M. & McKenna, W. J. Distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy: a two-dimensional echocardiographic study. J. Am. Coll. Cardiol. 2, 437–444 (1983).

    CAS  PubMed  Google Scholar 

  78. Charron, P. et al. Accuracy of European diagnostic criteria for familial hypertrophic cardiomyopathy in a genotyped population. Int. J. Cardiol. 90, 33–38 (2003).

    CAS  PubMed  Google Scholar 

  79. Conrady, A. O. et al. Prevalence and determinants of left ventricular hypertrophy and remodelling patterns in hypertensive patients: the St. Petersburg study. Blood Press. 13, 101–109 (2004).

    CAS  PubMed  Google Scholar 

  80. Nagueh, S. F. et al. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation 99, 254–261 (1999).

    CAS  PubMed  Google Scholar 

  81. Severino, S. et al. Use of pulsed Doppler tissue imaging to assess regional left ventricular diastolic dysfunction in hypertrophic cardiomyopathy. Am. J. Cardiol. 82, 1394–1398 (1998).

    CAS  PubMed  Google Scholar 

  82. Maron, B. J. et al. Noninvasive assessment of left ventricular diastolic function by pulsed Doppler echocardiography in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 10, 733–742 (1987).

    CAS  PubMed  Google Scholar 

  83. Connelly, K. A. et al. Load sensitive measures may overestimate global systolic function in the presence of left ventricular hypertrophy: a comparison with load-insensitive measures. Am. J. Physiol. Heart Circ. Physiol. 290, H1699–H1705 (2006).

    CAS  PubMed  Google Scholar 

  84. Shimizu, G. et al. Left ventricular midwall mechanics in systemic arterial hypertension: myocardial function is depressed in pressure-overload hypertrophy. Circulation 83, 1676–1684 (1991).

    CAS  PubMed  Google Scholar 

  85. Sengupta, P. P., Mehta, V., Arora, R., Mohan, J. C. & Khandheria, B. K. Quantification of regional nonuniformity and paradoxical intramural mechanics in hypertrophic cardiomyopathy by high frame rate ultrasound myocardial strain mapping. J. Am. Soc. Echocardiogr. 18, 737–742 (2005).

    PubMed  Google Scholar 

  86. Maron, B. J., Anan, T. J. & Roberts, W. C. Quantitative analysis of the distribution of cardiac muscle cell disorganization in the left ventricular wall of patients with hypertrophic cardiomyopathy. Circulation 63, 882–894 (1981).

    CAS  PubMed  Google Scholar 

  87. Geisterfer-Lowrance, A. A. et al. A mouse model of familial hypertrophic cardiomyopathy. Science 272, 731–734 (1996).

    CAS  PubMed  Google Scholar 

  88. Karlon, W. J., McCulloch, A. D., Covell, J. W., Hunter, J. J. & Omens, J. H. Regional dysfunction correlates with myofiber disarray in transgenic mice with ventricular expression of ras. Am. J. Physiol. Heart Circ. Physiol. 278, H898–H906 (2000).

    CAS  PubMed  Google Scholar 

  89. Chang, S. A. et al. Left ventricular twist mechanics in patients with apical hypertrophic cardiomyopathy: assessment with 2D speckle tracking echocardiography. Heart 96, 49–55 (2010).

    PubMed  Google Scholar 

  90. van Dalen, B. M. et al. Influence of the pattern of hypertrophy on left ventricular twist in hypertrophic cardiomyopathy. Heart 95, 657–661 (2009).

    CAS  PubMed  Google Scholar 

  91. Rajiv, C., Vinereanu, D. & Fraser, A. G. Tissue Doppler imaging for the evaluation of patients with hypertrophic cardiomyopathy. Curr. Opin. Cardiol. 19, 430–436 (2004).

    PubMed  Google Scholar 

  92. Ito, T., Suwa, M., Tonari, S., Okuda, N. & Kitaura, Y. Regional postsystolic shortening in patients with hypertrophic cardiomyopathy: its incidence and characteristics assessed by strain imaging. J. Am. Soc. Echocardiogr. 19, 987–993 (2006).

    PubMed  Google Scholar 

  93. Yang, H. et al. Use of strain imaging in detecting segmental dysfunction in patients with hypertrophic cardiomyopathy. J. Am. Soc. Echocardiogr. 16, 233–239 (2003).

    PubMed  Google Scholar 

  94. Ganame, J. et al. Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations. Eur. Heart J. 28, 2886–2894 (2007).

    PubMed  Google Scholar 

  95. Weidemann, F. et al. A new echocardiographic approach for the detection of non-ischaemic fibrosis in hypertrophic myocardium. Eur. Heart J. 28, 3020–3026 (2007).

    PubMed  Google Scholar 

  96. Sun, J. P. et al. Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography. Am. J. Cardiol. 103, 411–415 (2009).

    PubMed  Google Scholar 

  97. Kato, T. S. et al. Heterogeneity of regional systolic function detected by tissue Doppler imaging is linked to impaired global left ventricular relaxation in hypertrophic cardiomyopathy. Heart 94, 1302–1306 (2008).

    CAS  PubMed  Google Scholar 

  98. Dong, S. J. et al. Left ventricular wall thickness and regional systolic function in patients with hypertrophic cardiomyopathy. A three-dimensional tagged magnetic resonance imaging study. Circulation 90, 1200–1209 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kim, Y. J. et al. Delayed enhancement in hypertrophic cardiomyopathy: comparison with myocardial tagging MRI. J. Magn. Reson. Imaging 27, 1054–1060 (2008).

    PubMed  Google Scholar 

  100. Piella, G. et al. Myocardial deformation from tagged MRI in hypertrophic cardiomyopathy using an efficient registration strategy. Proc. SPIE 7262, 726226 (2009).

    Google Scholar 

  101. Moon, J. C. et al. Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart 91, 1036–1040 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Falk, R. H. Diagnosis and management of the cardiac amyloidoses. Circulation 112, 2047–2060 (2005).

    PubMed  Google Scholar 

  103. Dubrey, S. W. et al. The clinical features of immunoglobulin light-chain (AL) amyloidosis with heart involvement. QJM 91, 141–157 (1998).

    CAS  PubMed  Google Scholar 

  104. Kyle, R. A. & Gertz, M. A. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin. Hematol. 32, 45–59 (1995).

    CAS  PubMed  Google Scholar 

  105. Robbins, M. A., Pizzarello, R. A., Stechel, R. P., Chiaramida, S. A. & Gulotta, S. J. Resting and exercise hemodynamics in constrictive pericarditis and a case of cardiac amyloidosis mimicking constriction. Cathet. Cardiovasc. Diagn. 9, 463–471 (1983).

    CAS  PubMed  Google Scholar 

  106. Westermark, P., Sletten, K., Johansson, B. & Cornwell, G. G. 3rd. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc. Natl Acad. Sci. USA 87, 2843–2845 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ng, B., Connors, L. H., Davidoff, R., Skinner, M. & Falk, R. H. Senile systemic amyloidosis presenting with heart failure: a comparison with light chain-associated (AL) amyloidosis. Arch. Intern. Med. 165, 1425–1429 (2005).

    PubMed  Google Scholar 

  108. Wright, J. R. & Calkins, E. Amyloid in the aged heart: frequency and clinical significance. J. Am. Geriatr. Soc. 23, 97–103 (1975).

    CAS  PubMed  Google Scholar 

  109. Ardehali, H. et al. Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy. Am. Heart J. 147, 919–923 (2004).

    PubMed  Google Scholar 

  110. Klein, A. L. et al. Serial Doppler echocardiographic follow-up of left ventricular diastolic function in cardiac amyloidosis. J. Am. Coll. Cardiol. 16, 1135–1141 (1990).

    CAS  PubMed  Google Scholar 

  111. Shah, K. B., Inoue, Y. & Mehra, M. R. Amyloidosis and the heart: a comprehensive review. Arch. Intern. Med. 166, 1805–1813 (2006).

    CAS  PubMed  Google Scholar 

  112. Brenner, D. A. et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ. Res. 94, 1008–1010 (2004).

    CAS  PubMed  Google Scholar 

  113. Koyama, J., Ray-Sequin, P. A., Davidoff, R. & Falk, R. H. Usefulness of pulsed tissue Doppler imaging for evaluating systolic and diastolic left ventricular function in patients with AL (primary) amyloidosis. Am. J. Cardiol. 89, 1067–1071 (2002).

    PubMed  Google Scholar 

  114. Koyama, J., Davidoff, R. & Falk, R. H. Longitudinal myocardial velocity gradient derived from pulsed Doppler tissue imaging in AL amyloidosis: a sensitive indicator of systolic and diastolic dysfunction. J. Am. Soc. Echocardiogr. 17, 36–44 (2004).

    PubMed  Google Scholar 

  115. Koyama, J., Ray-Sequin, P. A. & Falk, R. H. Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 107, 2446–2452 (2003).

    PubMed  Google Scholar 

  116. Maceira, A. M. et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111, 186–193 (2005).

    PubMed  Google Scholar 

  117. Weidemann, F. et al. Long-term effects of enzyme replacement therapy on fabry cardiomyopathy: evidence for a better outcome with early treatment. Circulation 119, 524–529 (2009).

    CAS  PubMed  Google Scholar 

  118. Buyse, G. et al. Idebenone treatment in Friedreich's ataxia: neurological, cardiac, and biochemical monitoring. Neurology 60, 1679–1681 (2003).

    CAS  PubMed  Google Scholar 

  119. Weidemann, F. et al. Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: a prospective strain rate imaging study. Circulation 108, 1299–1301 (2003).

    CAS  PubMed  Google Scholar 

  120. Dutka, D. P. et al. Echocardiographic characterization of cardiomyopathy in Friedreich's ataxia with tissue Doppler echocardiographically derived myocardial velocity gradients. Circulation 102, 1276–1282 (2000).

    CAS  PubMed  Google Scholar 

  121. Pieroni, M. et al. Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation 107, 1978–1984 (2003).

    PubMed  Google Scholar 

  122. Eng, C. M., Ioannou, Y. A. & Desnick, R. J. in The Metabolic and Molecular Bases of Inherited Disease 8th edn (eds Scriver, C. R. et al.) 3733–3774 (McGraw-Hill, New York, 2001).

    Google Scholar 

  123. Meikle, P. J., Hopwood, J. J., Clague, A. E. & Carey, W. F. Prevalence of lysosomal storage disorders. JAMA 281, 249–254 (1999).

    CAS  PubMed  Google Scholar 

  124. Mehta, A. et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey. Eur. J. Clin. Invest. 34, 236–242 (2004).

    CAS  PubMed  Google Scholar 

  125. Linhart, A. et al. New insights in cardiac structural changes in patients with Fabry's disease. Am. Heart J. 139, 1101–1108 (2000).

    CAS  PubMed  Google Scholar 

  126. Weidemann, F. & Strotmann, J. M. Use of tissue Doppler imaging to identify and manage systemic diseases. Clin. Res. Cardiol. 97, 65–73 (2008).

    PubMed  Google Scholar 

  127. Bogaert, J. & Rademakers, F. E. Regional nonuniformity of normal adult human left ventricle. Am. J. Physiol. Heart Circ. Physiol. 280, H610–H620 (2001).

    CAS  PubMed  Google Scholar 

  128. Moon, J. C. et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur. Heart J. 24, 2151–2155 (2003).

    PubMed  Google Scholar 

  129. Eng, C. M. et al. Safety and efficacy of recombinant human alpha-galactosidase A—replacement therapy in Fabry's disease. N. Engl. J. Med. 345, 9–16 (2001).

    CAS  PubMed  Google Scholar 

  130. Beer, M. et al. Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry's cardiomyopathy. Am. J. Cardiol. 97, 1515–1518 (2006).

    CAS  PubMed  Google Scholar 

  131. Bradley, J. L. et al. Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Hum. Mol. Genet. 9, 275–282 (2000).

    CAS  PubMed  Google Scholar 

  132. Hewer, R. The heart in Friedreich's ataxia. Br. Heart J. 31, 5–14 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Child, J. S. et al. Cardiac involvement in Friedreich's ataxia: a clinical study of 75 patients. J. Am. Coll. Cardiol. 7, 1370–1378 (1986).

    CAS  PubMed  Google Scholar 

  134. Weidemann, F. et al. Quantification of regional right and left ventricular function by ultrasonic strain rate and strain indexes in Friedreich's ataxia. Am. J. Cardiol. 91, 622–626 (2003).

    PubMed  Google Scholar 

  135. Rustin, P. et al. Effect of idebenone on cardiomyopathy in Friedreich's ataxia: a preliminary study. Lancet 354, 477–479 (1999).

    CAS  PubMed  Google Scholar 

  136. Biggar, W. D. Duchenne muscular dystrophy. Pediatr. Rev. 27, 83–88 (2006).

    PubMed  Google Scholar 

  137. Hoffman, E. P., Brown, R. H. Jr & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Ministry of Science, Education and Sports of the Republic of Croatia (project number 108-1081875-1991), and the L'Oréal-UNESCO Scholarship for Women in Science.

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Cikes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cikes, M., Sutherland, G., Anderson, L. et al. The role of echocardiographic deformation imaging in hypertrophic myopathies. Nat Rev Cardiol 7, 384–396 (2010). https://doi.org/10.1038/nrcardio.2010.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2010.56

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing