Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diagnostic evaluation of left-sided prosthetic heart valve dysfunction

Abstract

Prosthetic heart valve (PHV) dysfunction is a rare, but potentially life-threatening, complication. In clinical practice, PHV dysfunction poses a diagnostic dilemma. Echocardiography and fluoroscopy are the imaging techniques of choice and are routinely used in daily practice. However, these techniques sometimes fail to determine the specific cause of PHV dysfunction, which is crucial to the selection of the appropriate treatment strategy. Multidetector-row CT (MDCT) can be of additional value in diagnosing the specific cause of PHV dysfunction and provides valuable complimentary information for surgical planning in case of reoperation. Cardiac magnetic resonance imaging (CMR) has limited value in the evaluation of biological PHV dysfunction. In this Review, we discuss the use of established imaging modalities for the detection of left-sided mechanical and biological PHV dysfunction and discuss the complementary role of MDCT in this context.

Key Points

  • Echocardiography and fluoroscopy are the 'gold standard' for the evaluation of mechanical prosthetic heart valve (PHV) dysfunction

  • Echocardiography is the preferred imaging technique to assess biological PHV dysfunction.

  • Determining the exact cause of PHV dysfunction is essential for optimal patient treatment, but echocardiography and fluoroscopy sometimes fail to identify the exact cause of the PHV dysfunction

  • Multislice CT can complement echocardiography and fluoroscopy particularly in patients with mechanical heart valve obstruction and infective PHV endocarditis

  • Multislice CT can provide specific anatomical information assisting the cardiothoracic surgeon during the planning of reoperation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assessment of PHV dysfunction with TEE.
Figure 2: CT images of a thrombosed Carbomedics® (Sorin Group USA Inc., Arvada, CO, USA) bileaflet prosthetic heart valve in the aortic position.
Figure 3: CT image of a Carbomedics® (Sorin Group USA Inc., Arvada, CO, USA) prosthetic bileaflet heart valve in the aortic position with pannus formation.
Figure 4: Flowchart for suggested noninvasive imaging protocol in the diagnostic work-up of patients with suspected PHV dysfunction.
Figure 5: Transesophageal echocardiography of mechanical bileaflet prosthetic heart valves.
Figure 6: MDCT images of a Carbomedics® (Sorin Group USA Inc., Arvada, CO, USA) valve in a patient with infective endocarditis.

Similar content being viewed by others

References

  1. Yacoub, M. H. & Takkenberg, J. J. Will heart valve tissue engineering change the world? Nat. Clin. Pract. Cardiovasc. Med. 2, 60–61 (2005).

    CAS  PubMed  Google Scholar 

  2. Cannegieter, S. C., Rosendaal, F. R. & Briet, E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89, 635–641 (1994).

    CAS  PubMed  Google Scholar 

  3. Khan, S. Long-term outcomes with mechanical and tissue valves. J. Heart Valve Dis. 11, S8–S14 (2002).

    PubMed  Google Scholar 

  4. Grunkemeier, G. L., Li, H. H., Naftel, D. C., Starr, A. & Rahimtoola, S. H. Long-term performance of heart valve prostheses. Curr. Probl. Cardiol. 25, 73–154 (2000).

    CAS  PubMed  Google Scholar 

  5. Hammermeister, K. et al. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J. Am. Coll. Cardiol. 36, 1152–1158 (2000).

    CAS  PubMed  Google Scholar 

  6. Akins, C. W. et al. Guidelines for reporting mortality and morbidity after cardiac valve interventions. J. Thorac. Cardiovasc. Surg. 135, 732–738 (2008).

    PubMed  Google Scholar 

  7. Girard, S. E. et al. Reoperation for prosthetic aortic valve obstruction in the era of echocardiography: trends in diagnostic testing and comparison with surgical findings. J. Am. Coll. Cardiol. 37, 579–584 (2001).

    CAS  PubMed  Google Scholar 

  8. Tsai, I. C. et al. Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard. Eur. Radiol. 19, 857–867 (2009).

    PubMed  Google Scholar 

  9. Teshima, H. et al. Usefulness of a multidetector-row computed tomography scanner for detecting pannus formation. Ann. Thorac. Surg. 77, 523–526 (2004).

    PubMed  Google Scholar 

  10. Symersky, P., Budde, R. P., de Mol, B. A. & Prokop, M. Comparison of multidetector-row computed tomography to echocardiography and fluoroscopy for evaluation of patients with mechanical prosthetic valve obstruction. Am. J. Cardiol. 104, 1128–1134 (2009).

    PubMed  Google Scholar 

  11. LaBounty, T. M. et al. Evaluation of mechanical heart valve size and function with ECG-gated 64-MDCT. AJR Am. J. Roentgenol. 193, W389–W396 (2009).

    PubMed  Google Scholar 

  12. Konen, E. et al. The role of ECG-gated MDCT in the evaluation of aortic and mitral mechanical valves: initial experience. Am. J. Roentgenol. 191, 26–31 (2008).

    Google Scholar 

  13. Feuchtner, G. M. et al. Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings. J. Am. Coll. Cardiol. 53, 436–444 (2009).

    PubMed  Google Scholar 

  14. Chenot, F. et al. Evaluation of anatomic valve opening and leaflet morphology in aortic valve bioprosthesis by using multidetector CT: comparison with transthoracic echocardiography. Radiology 255, 377–385 (2010).

    PubMed  Google Scholar 

  15. Soulen, R. L., Budinger, T. F. & Higgins, C. B. Magnetic resonance imaging of prosthetic heart valves. Radiology 154, 705–707 (1985).

    CAS  PubMed  Google Scholar 

  16. von Knobelsdorff-Brenkenhoff, F., Rudolph, A., Wassmuth, R. & Schulz-Menger, J. Assessment of mitral bioprostheses using cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 12, 36 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. von Knobelsdorff-Brenkenhoff, F. et al. Feasibility of cardiovascular magnetic resonance to assess the orifice area of aortic bioprostheses. Circ. Cardiovasc. Imaging 2, 397–404 (2009).

    PubMed  Google Scholar 

  18. Zoghbi, W. A. et al. Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report From the American Society of Echocardiography's Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 22, 975–1014 (2009).

    PubMed  Google Scholar 

  19. Feigenbaum, H., Armstrong, W. F., Thomas, R. in Feigenbaum's echocardiography (eds. Feigenbaum H., Armstrong W. F., Thomas R.) 11–21 (Lippincott Williams & Wilkins, Philadelphia, 2005).

    Google Scholar 

  20. Bitar, J. N., Lechin, M. E., Salazar, G. & Zoghbi, W. A. Doppler echocardiographic assessment with the continuity equation of St Jude Medical mechanical prostheses in the mitral valve position. Am. J. Cardiol. 76, 287–293 (1995).

    CAS  PubMed  Google Scholar 

  21. van den Brink, R. B. Evaluation of prosthetic heart valves by transesophageal echocardiography: problems, pitfalls, and timing of echocardiography. Semin. Cardiothorac. Vasc. Anesth. 10, 89–100 (2006).

    PubMed  Google Scholar 

  22. Garcia, D. & Kadem, L. What do you mean by aortic valve area: geometric orifice area, effective orifice area, or gorlin area? J. Heart Valve Dis. 15, 601–608 (2006).

    PubMed  Google Scholar 

  23. Steiner, R. M. et al. The radiology of cardiac valve prostheses. Radiographics 8, 277–298 (1988).

    CAS  PubMed  Google Scholar 

  24. Chambers, J., Coppack, F., Deverall, P., Jackson, G. & Sowton, E. The continuity equation tested in a bileaflet aortic prosthesis. Int. J. Cardiol. 31, 149–154 (1991).

    CAS  PubMed  Google Scholar 

  25. Keser, N. et al. Hemodynamic evaluation of normally functioning Sulzer Carbomedics prosthetic valves. Ultrasound Med. Biol. 29, 649–657 (2003).

    PubMed  Google Scholar 

  26. Hage, F. G. & Nanda, N. C. Guidelines for the evaluation of prosthetic valves with echocardiography and Doppler ultrasound: value and limitations. Echocardiography 27, 91–93 (2010).

    PubMed  Google Scholar 

  27. Singh, P. et al. Usefulness of live/real time three-dimensional transthoracic echocardiography in evaluation of prosthetic valve function. Echocardiography 26, 1236–1249 (2009).

    PubMed  Google Scholar 

  28. Feigenbaum, H., Armstrong, W. F., Thomas, R. in Feigenbaum's echocardiography (eds. Feigenbaum H., Armstrong W. F., Thomas R.) 59–61 (Lippincott Williams&Wilkins, Philadelphia, 2005).

    Google Scholar 

  29. Zabalgoitia, M. et al. Improvement in the diagnosis of bioprosthetic valve dysfunction by transesophageal echocardiography. J. Heart Valve Dis. 2, 595–603 (1993).

    CAS  PubMed  Google Scholar 

  30. Daniel, L. B., Grigg, L. E., Weisel, R. D. & Rakowski, H. Comparison of transthoracic and transesophageal assessment of prosthetic valve dysfunction. Echocardiography 7, 83–95 (1990).

    CAS  PubMed  Google Scholar 

  31. Karalis, D. G. et al. Single-plane transesophageal echocardiography for assessing function of mechanical or bioprosthetic valves in the aortic valve position. Am. J. Cardiol. 69, 1310–1315 (1992).

    CAS  PubMed  Google Scholar 

  32. Chaudhry, F. A., Herrera, C., DeFrino, P. F., Mehlman, D. J. & Zabalgoitia, M. Pathologic and angiographic correlations of transesophageal echocardiography in prosthetic heart valve dysfunction. Am. Heart J. 122, 1057–1064 (1991).

    CAS  PubMed  Google Scholar 

  33. Cianciulli, T. E. et al. Cinefluoroscopic assessment of mechanical disc prostheses: its value as a complementary method to echocardiography. J. Heart Valve Dis. 14, 664–673 (2005).

    PubMed  Google Scholar 

  34. Singh, P. et al. Live/real time three-dimensional transesophageal echocardiographic evaluation of mitral and aortic valve prosthetic paravalvular regurgitation. Echocardiography 26, 980–987 (2009).

    PubMed  Google Scholar 

  35. Muratori, M. et al. Feasibility and diagnostic accuracy of quantitative assessment of mechanical prostheses leaflet motion by transthoracic and transesophageal echocardiography in suspected prosthetic valve dysfunction. Am. J. Cardiol. 97, 94–100 (2006).

    PubMed  Google Scholar 

  36. Faletra, F. F., Alain, M. & Moccetti, T. Blockage of bileaflet mitral valve prosthesis imaged by computed tomography virtual endoscopy. Heart 93, 324 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Symersky, P., Budde, R. P., Prokop, M. & de Mol, B. A. Multidetector-row computed tomography imaging characteristics of mechanical prosthetic valves. J. Heart Valve Dis. 20, 216–222 (2011).

    PubMed  Google Scholar 

  38. Habets, J. et al. Prosthetic heart valve assessment with multidetector-row CT: imaging characteristics of 91 valves in 83 patients. Eur. Radiol. doi: 10.1007/s00330-011-2068–8.

  39. Symersky, P., Budde, R. P., Prokop, M. & de Mol, B. A. Abstract 541: prosthetic valve evaluation using prospective triggering with 256-detector row computed tomography reduces radiation dose [abstract]. Circulation 120, S355 (2009).

    Google Scholar 

  40. Vahanian, A. et al. Guidelines on the management of valvular heart disease: the Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur. Heart J. 28, 230–268 (2007).

    PubMed  Google Scholar 

  41. Lin, S. S. et al. Prediction of thrombus-related mechanical prosthetic valve dysfunction using transesophageal echocardiography. Am. J. Cardiol. 86, 1097–1101 (2000).

    CAS  PubMed  Google Scholar 

  42. Licata, A. & Matthai, W. H. Jr Evaluating the etiology of mechanical valve obstruction: use of clinical parameters, fluoroscopy, and echocardiography. Catheter. Cardiovasc. Interv. 55, 495–500 (2002).

    PubMed  Google Scholar 

  43. Teshima, H. et al. Obstruction of St Jude Medical valves in the aortic position: histology and immunohistochemistry of pannus. J. Thorac. Cardiovasc. Surg. 126, 401–407 (2003).

    PubMed  Google Scholar 

  44. Deviri, E., Sareli, P., Wisenbaugh, T. & Cronje, S. L. Obstruction of mechanical heart valve prostheses: clinical aspects and surgical management. J. Am. Coll. Cardiol. 17, 646–650 (1991).

    CAS  PubMed  Google Scholar 

  45. Barbetseas, J. et al. Differentiating thrombus from pannus formation in obstructed mechanical prosthetic valves: an evaluation of clinical, transthoracic and transesophageal echocardiographic parameters. J. Am. Coll. Cardiol. 32, 1410–1417 (1998).

    CAS  PubMed  Google Scholar 

  46. Guiar-Souto, P., Mirelis, J. G. & Silva-Melchor, L. Guidelines on the management of valvular heart disease. Eur. Heart J. 28, 1267–1268 (2007).

    Google Scholar 

  47. Vitale, N. et al. Obstruction of mechanical mitral prostheses: analysis of pathologic findings. Ann. Thorac. Surg. 63, 1101–1106 (1997).

    CAS  PubMed  Google Scholar 

  48. Kondruweit, M. et al. Early failure of a mechanical bileaflet aortic valve prosthesis due to pannus: a rare complication. J. Thorac. Cardiovasc. Surg. 136, 213–214 (2008).

    PubMed  Google Scholar 

  49. Daniel, W. G. et al. Comparison of transthoracic and transesophageal echocardiography for detection of abnormalities of prosthetic and bioprosthetic valves in the mitral and aortic positions. Am. J. Cardiol. 71, 210–215 (1993).

    CAS  PubMed  Google Scholar 

  50. Montorsi, P., De, B. F., Muratori, M., Cavoretto, D. & Pepi, M. Role of cine-fluoroscopy, transthoracic, and transesophageal echocardiography in patients with suspected prosthetic heart valve thrombosis. Am. J. Cardiol. 85, 58–64 (2000).

    CAS  PubMed  Google Scholar 

  51. Aoyagi, S. et al. Obstruction of St Jude medical valves in the aortic position: a consideration for pathogenic mechanism of prosthetic valve obstruction. Cardiovasc. Surg. 10, 339–344 (2002).

    CAS  PubMed  Google Scholar 

  52. Chan, J. et al. Images in cardiovascular medicine. Cardiac CT assessment of prosthetic aortic valve dysfunction secondary to acute thrombosis and response to thrombolysis. Circulation 120, 1933–1934 (2009).

    PubMed  Google Scholar 

  53. Bleiziffer, S. et al. Prediction of valve prosthesis-patient mismatch prior to aortic valve replacement: which is the best method? Heart 93, 615–620 (2007).

    PubMed  Google Scholar 

  54. Urso, S., Sadaba, R. & Aldamiz-Echevarria, G. Is mismatch an independent risk factor for early and mid-term overall mortality in adult patients undergoing aortic valve replacement? Interact. Cardiovasc. Thorac. Surg. 9, 510–518 (2009).

    PubMed  Google Scholar 

  55. Blais, C. et al. Impact of valve prosthesis-patient mismatch on short-term mortality after aortic valve replacement. Circulation 108, 983–988 (2003).

    PubMed  Google Scholar 

  56. Pibarot, P. & Dumesnil, J. G. Hemodynamic and clinical impact of prosthesis-patient mismatch in the aortic valve position and its prevention. J. Am. Coll. Cardiol. 36, 1131–1141 (2000).

    CAS  PubMed  Google Scholar 

  57. Tasca, G. et al. Impact of valve prosthesis-patient mismatch on left ventricular mass regression following aortic valve replacement. Ann. Thorac. Surg. 79, 505–510 (2005).

    PubMed  Google Scholar 

  58. Pibarot, P. & Dumesnil, J. G. Prevention of valve prosthesis—patient mismatch before aortic valve replacement: does it matter and is it feasible? Heart 93, 549–551 (2007).

    PubMed  PubMed Central  Google Scholar 

  59. Pibarot, P. & Dumesnil, J. G. Prosthesis-patient mismatch in the mitral position: old concept, new evidences. J. Thorac. Cardiovasc. Surg. 133, 1405–1408 (2007).

    PubMed  Google Scholar 

  60. Yazdanbakhsh, A. P., van den Brink, R. B., Dekker, E. & de Mol, B. A. Small valve area index: its influence on early mortality after mitral valve replacement. Eur. J. Cardiothorac. Surg. 17, 222–227 (2000).

    CAS  PubMed  Google Scholar 

  61. LaBounty, T. M. et al. Hemodynamic and functional assessment of mechanical aortic valves using combined echocardiography and multidetector computed tomography. J. Cardiovasc. Comput. Tomogr. 3, 161–167 (2009).

    PubMed  Google Scholar 

  62. Doddamani, S. et al. Demonstration of left ventricular outflow tract eccentricity by 64-slice multi-detector CT. Int. J. Cardiovasc. Imaging 25, 175–181 (2009).

    PubMed  Google Scholar 

  63. Van den Brink, R. B. et al. Comparison of transthoracic and transesophageal color Doppler flow imaging in patients with mechanical prostheses in the mitral valve position. Am. J. Cardiol. 63, 1471–1474 (1989).

    CAS  PubMed  Google Scholar 

  64. Daniel, L. B., Grigg, L. E., Weisel, R. D. & Rakowski, H. Comparison of transthoracic and transesophageal assessment of prosthetic valve dysfunction. Echocardiography 7, 83–95 (1990).

    CAS  PubMed  Google Scholar 

  65. Bashore, T. M., Cabell, C. & Fowler, V. Jr Update on infective endocarditis. Curr. Probl. Cardiol. 31, 274–352 (2006).

    PubMed  Google Scholar 

  66. Li, J. S. et al. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin. Infect. Dis. 30, 633–638 (2000).

    CAS  PubMed  Google Scholar 

  67. Hanrath, P. Imaging techniques: transoesophageal echo-doppler in cardiology. Heart 86, 586–592 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Jacob, S. & Tong, A. T. Role of echocardiography in the diagnosis and management of infective endocarditis. Curr. Opin. Cardiol. 17, 478–485 (2002).

    PubMed  Google Scholar 

  69. Bonow, R. O. et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 52, e1–e142 (2008).

    PubMed  Google Scholar 

  70. Daniel, W. G. et al. Comparison of transthoracic and transesophageal echocardiography for detection of abnormalities of prosthetic and bioprosthetic valves in the mitral and aortic positions. Am. J. Cardiol. 71, 210–215 (1993).

    CAS  PubMed  Google Scholar 

  71. Meijboom, W. B. et al. Pre-operative computed tomography coronary angiography to detect significant coronary artery disease in patients referred for cardiac valve surgery. J. Am. Coll. Cardiol. 48, 1658–1665 (2006).

    PubMed  Google Scholar 

  72. Ro, T. K., Cotter, B. R., Simsir, S. A. & Karlsberg, R. P. Complicated ruptured sinus of Valsalva: cardiac computed tomographic angiography (64 slice) predicts surgical appearance and obviates need for invasive cardiac catheterization. Interact. Cardiovasc. Thorac. Surg. 9, 888–890 (2009).

    PubMed  Google Scholar 

  73. Daniel, W. G. et al. Improvement in the diagnosis of abscesses associated with endocarditis by transesophageal echocardiography. N. Engl. J. Med. 324, 795–800 (1991).

    CAS  PubMed  Google Scholar 

  74. Lerakis, S. et al. The role of transesophageal echocardiography in the diagnosis and management of patients with aortic perivalvular abscesses. Am. J. Med. Sci. 321, 152–155 (2001).

    CAS  PubMed  Google Scholar 

  75. Leung, D. Y., Cranney, G. B., Hopkins, A. P. & Walsh, W. F. Role of transoesophageal echocardiography in the diagnosis and management of aortic root abscess. Br. Heart J. 72, 175–181 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Daniel, W. G. et al. Comparison of transthoracic and transesophageal echocardiography for detection of abnormalities of prosthetic and bioprosthetic valves in the mitral and aortic positions. Am. J. Cardiol. 71, 210–215 (1993).

    CAS  PubMed  Google Scholar 

  77. Teoh, K. H. et al. Clinical and Doppler echocardiographic evaluation of bioprosthetic valve failure after 10 years. Circulation 82, IV110–IV116 (1990).

    CAS  PubMed  Google Scholar 

  78. Chen, Y. T. et al. Detection of prosthetic mitral valve leak: a comparative study using transesophageal echocardiography, transthoracic echocardiography, and auscultation. J. Clin. Ultrasound 18, 557–561 (1990).

    CAS  PubMed  Google Scholar 

  79. Mahesh, B., Angelini, G., Caputo, M., Jin, X. Y. & Bryan, A. Prosthetic valve endocarditis. Ann. Thorac. Surg. 80, 1151–1158 (2005).

    PubMed  Google Scholar 

  80. Effron, M. K. & Popp, R. L. Two-dimensional echocardiographic assessment of bioprosthetic valve dysfunction and infective endocarditis. J. Am. Coll. Cardiol. 2, 597–606 (1983).

    CAS  PubMed  Google Scholar 

  81. Kirzner, C. F. et al. Hemodynamic performance evaluation of small aortic ATS Medical valves by Doppler echocardiography. J. Heart Valve Dis. 6, 661–665 (1997).

    CAS  PubMed  Google Scholar 

  82. Karpuz, H. et al. Doppler echocardiographic assessment of the new ATS medical prosthetic valve in the aortic position. Am. J. Card Imaging 10, 254–260 (1996).

    CAS  PubMed  Google Scholar 

  83. De Paulis, R. et al. Doppler echocardiography evaluation of the CarboMedics valve in patients with small aortic anulus and valve prosthesis-body surface area mismatch. J. Thorac. Cardiovasc. Surg. 108, 57–62 (1994).

    CAS  PubMed  Google Scholar 

  84. Chakraborty, B., Quek, S., Pin, D. Z., Siong, C. T. & Kheng, T. L. Doppler echocardiographic assessment of normally functioning Starr-Edwards, carbomedics and Carpentier-Edwards valves in aortic position. Angiology 47, 481–489 (1996).

    CAS  PubMed  Google Scholar 

  85. Chambers, J., Cross, J., Deverall, P. & Sowton, E. Echocardiographic description of the CarboMedics bileaflet prosthetic heart valve. J. Am. Coll. Cardiol. 21, 398–405 (1993).

    CAS  PubMed  Google Scholar 

  86. De Paulis, R. et al. Hemodynamic performances of small diameter carbomedics and St Jude valves. J. Heart Valve Dis. 5, S339–S343 (1996).

    PubMed  Google Scholar 

  87. Globits, S. et al. Doppler sonographic evaluation of the CarboMedics bileaflet valve prosthesis: one-year experience. J. Card Surg. 7, 9–16 (1992).

    CAS  PubMed  Google Scholar 

  88. Ihlen, H. et al. Hemodynamic evaluation of the CarboMedics prosthetic heart valve in the aortic position: comparison of noninvasive and invasivse techniques. Am. Heart J. 123, 151–159 (1992).

    CAS  PubMed  Google Scholar 

  89. Izzat, M. B., Birdi, I., Wilde, P., Bryan, A. J. & Angelini, G. D. Evaluation of the hemodynamic performance of small CarboMedics aortic prostheses using dobutamine-stress Doppler echocardiography. Ann. Thorac. Surg. 60, 1048–1052 (1995).

    CAS  PubMed  Google Scholar 

  90. Gibbs, J. L., Wharton, G. A. & Williams, G. J. Doppler echocardiographic characteristics of the Carpentier-Edwards xenograft. Eur. Heart J. 7, 353–356 (1986).

    CAS  PubMed  Google Scholar 

  91. Wiseth, R. et al. Hemodynamic evaluation by Doppler echocardiography of small (less than or equal to 21 mm) prostheses and bioprostheses in the aortic valve position. Am. J. Cardiol. 70, 240–246 (1992).

    CAS  PubMed  Google Scholar 

  92. Gioia, G. & Rutsch, W. Normal echo-Doppler values in Duromedics valvular prostheses [Italian]. G. Ital. Cardiol. 18, 213–217 (1988).

    CAS  PubMed  Google Scholar 

  93. Chambers, J. & Ely, J. L. Early postoperative echocardiographic hemodynamic performance of the On-X prosthetic heart valve: a multicenter study. J. Heart Valve Dis. 7, 569–573 (1998).

    CAS  PubMed  Google Scholar 

  94. Noera, G. et al. Hemodynamic evaluation of the Carbomedics R, St Jude Medical HP and Sorin-Bicarbon valve in patients with small aortic annulus. Eur. J. Cardiothorac. Surg. 11, 473–475 (1997).

    CAS  PubMed  Google Scholar 

  95. Badano, L. et al. Normal echocardiographic characteristics of the Sorin Bicarbon bileaflet prosthetic heart valve in the mitral and aortic positions. J. Am. Soc. Echocardiogr. 10, 632–643 (1997).

    CAS  PubMed  Google Scholar 

  96. Flameng, W. et al. Postoperative hemodynamics of two bileaflet heart valves in the aortic position. J. Heart Valve Dis. 6, 269–273 (1997).

    CAS  PubMed  Google Scholar 

  97. Bech-Hanssen, O., Wallentin, I., Larsson, S. & Caidahl, K. Reference Doppler echocardiographic values for St Jude Medical, Omnicarbon, and Biocor prosthetic valves in the aortic position. J. Am. Soc. Echocardiogr. 11, 466–477 (1998).

    CAS  PubMed  Google Scholar 

  98. Aris, A. et al. The 20 mm Medtronic Hall prosthesis in the small aortic root. J. Heart Valve Dis. 5, 459–462 (1996).

    CAS  PubMed  Google Scholar 

  99. Henneke, K. H., Pongratz, G., Pohlmann, M. & Bachmann, K. Doppler echocardiographic determination of geometric orifice areas in mechanical aortic valve prostheses. Cardiology 86, 508–513 (1995).

    CAS  PubMed  Google Scholar 

  100. Cooper, D. M. et al. Evaluation of normal prosthetic valve function by Doppler echocardiography. Am. Heart J. 114, 576–582 (1987).

    CAS  PubMed  Google Scholar 

  101. Chafizadeh, E. R. & Zoghbi, W. A. Doppler echocardiographic assessment of the St Jude Medical prosthetic valve in the aortic position using the continuity equation. Circulation 83, 213–223 (1991).

    CAS  PubMed  Google Scholar 

  102. Kadir, I. et al. Hemodynamics of St Jude Medical prostheses in the small aortic root: in vivo studies using dobutamine Doppler echocardiography. J. Heart Valve Dis. 6, 123–129 (1997).

    CAS  PubMed  Google Scholar 

  103. Panidis, I. P., Ross, J. & Mintz, G. S. Normal and abnormal prosthetic valve function as assessed by Doppler echocardiography. J. Am. Coll. Cardiol. 8, 317–326 (1986).

    CAS  PubMed  Google Scholar 

  104. Perin, E. C., Jin, B. S., de Castro, C. M., Ferguson, J. J. & Hall, R. J. Doppler echocardiography in 180 normally functioning St Jude Medical aortic valve prostheses. Early and late postoperative assessments. Chest 100, 988–990 (1991).

    CAS  PubMed  Google Scholar 

  105. Ren, J. F. et al. Effect of depressed left ventricular function on hemodynamics of normal St Jude Medical prosthesis in the aortic valve position. Am. J. Cardiol. 65, 1004–1009 (1990).

    CAS  PubMed  Google Scholar 

  106. Carrel, T., Zingg, U., Jenni, R., Aeschbacher, B. & Turina, M. I. Early in vivo experience with the Hemodynamic Plus St Jude Medical heart valves in patients with narrowed aortic annulus. Ann. Thorac. Surg. 61, 1418–1422 (1996).

    CAS  PubMed  Google Scholar 

  107. Laske, A. et al. Pressure gradients across bileaflet aortic valves by direct measurement and echocardiography. Ann. Thorac. Surg. 61, 48–57 (1996).

    CAS  PubMed  Google Scholar 

  108. Kenny, A. et al. Hemodynamic evaluation of the Monostrut and spherical disc Bjork-Shiley aortic valve prosthesis with Doppler echocardiography. J. Thorac. Cardiovasc. Surg. 104, 1025–1028 (1992).

    CAS  PubMed  Google Scholar 

  109. Sagar, K. B., Wann, L. S., Paulsen, W. H. & Romhilt, D. W. Doppler echocardiographic evaluation of Hancock and Bjork-Shiley prosthetic values. J. Am. Coll. Cardiol. 7, 681–687 (1986).

    CAS  PubMed  Google Scholar 

  110. Gibbs, J. L., Wharton, G. A. & Williams, G. J. Doppler ultrasound of normally functioning mechanical mitral and aortic valve prostheses. Int. J. Cardiol. 18, 391–398 (1988).

    CAS  PubMed  Google Scholar 

  111. Habib, G. et al. Contribution of Doppler echocardiography in the evaluation of normal and pathologic aortic valve prosthesis [abstract]. Arch. Mal. Coeur Vaiss. 83, 937–945 (1990).

    CAS  PubMed  Google Scholar 

  112. Mikhail, A. A hemodynamic comparison of Omniscience and Medtronic Hall aortic prostheses. J. Heart Valve Dis. 5, 675–677 (1996).

    CAS  PubMed  Google Scholar 

  113. Raisaro, A. et al. Doppler evaluation of the Sorin and Medtronic-Hall prostheses in the aortic position [Italian]. G. Ital. Cardiol. 18, 206–212 (1988).

    CAS  PubMed  Google Scholar 

  114. Badano, L. et al. Doppler haemodynamic assessment of clinically and echocardiographically normal mitral and aortic Allcarbon valve prostheses. Valve Prostheses Ligurian Cooperative Doppler Study. Eur. Heart J. 14, 1602–1609 (1993).

    CAS  PubMed  Google Scholar 

  115. Soo, C. S. et al. Doppler-echocardiographic assessment of Carbomedics prosthetic values in the mitral position. J. Am. Soc. Echocardiogr. 7, 159–164 (1994).

    CAS  PubMed  Google Scholar 

  116. Bjørnerheim, R., Ihlen, H., Simonsen, S., Sire, S. & Svennevig, J. Hemodynamic characterization of the CarboMedics mitral valve prosthesis. J. Heart Valve Dis. 6, 115–122 (1997).

    PubMed  Google Scholar 

  117. Mohan, J. C., Agrawal, R., Arora, R. & Khalilullah, M. Improved Doppler assessment of the Bjork-Shiley mitral prosthesis using the continuity equation. Int. J. Cardiol. 43, 321–326 (1994).

    CAS  PubMed  Google Scholar 

  118. Eriksson, M., Brodin, L. A., Ericsson, A. & Lindblom, D. Doppler-derived pressure differences in normally functioning aortic valve prostheses. Studies in Bjork-Shiley monostrut and Biocor porcine prostheses. Scand. J. Thorac. Cardiovasc. Surg. 27, 93–97 (1993).

    CAS  PubMed  Google Scholar 

  119. Myken, P. S. et al. Long-term Doppler echocardiographic results of aortic or mitral valve replacement with Biocor porcine bioprosthesis. J. Thorac. Cardiovasc. Surg. 116, 599–608 (1998).

    CAS  PubMed  Google Scholar 

  120. Eriksson, M. J., Brodin, L. A., Dellgren, G. N. & Radegran, K. Rest and exercise hemodynamics of an extended stentless aortic bioprosthesis. J. Heart Valve Dis. 6, 653–660 (1997).

    CAS  PubMed  Google Scholar 

  121. Gonzalez-Juanatey, J. R. et al. Hemodynamics of various designs of 19 mm pericardial aortic valve bioprosthesis. Eur. J. Cardiothorac. Surg. 10, 201–206 (1996).

    CAS  PubMed  Google Scholar 

  122. Gonzalez-Juanatey, J. R. et al. Doppler echocardiographic evaluation of the Bioflo pericardial bioprosthesis. J. Heart Valve Dis. 2, 315–319 (1993).

    CAS  PubMed  Google Scholar 

  123. Ramirez, M. L., Wong, M., Sadler, N. & Shah, P. M. Doppler evaluation of bioprosthetic and mechanical aortic valves: data from four models in 107 stable, ambulatory patients. Am. Heart J. 115, 418–425 (1988).

    CAS  PubMed  Google Scholar 

  124. Habib, G. et al. Contribution of Doppler echocardiography in the evaluation of normal and pathologic aortic valve prosthesis [French]. Arch. Mal. Coeur Vaiss. 83, 937–945 (1990).

    CAS  PubMed  Google Scholar 

  125. Chakraborty, B., Quek, S., Pin, D. Z., Siong, C. T. & Kheng, T. L. Doppler echocardiographic assessment of normally functioning Starr-Edwards, carbomedics and Carpentier-Edwards valves in aortic position. Angiology 47, 481–489 (1996).

    CAS  PubMed  Google Scholar 

  126. Bojar, R. M., Rastegar, H., Payne, D. D., Mack, C. A. & Schwartz, S. L. Clinical and hemodynamic performance of the 19-mm Carpentier-Edwards porcine bioprosthesis. Ann. Thorac. Surg. 56, 1141–1147 (1993).

    CAS  PubMed  Google Scholar 

  127. Gibbs, J. L., Wharton, G. A. & Williams, G. J. Doppler echocardiographic characteristics of the Carpentier-Edwards xenograft. Eur. Heart J 7, 353–356 (1986).

    CAS  PubMed  Google Scholar 

  128. McDonald, M. L. et al. Hemodynamic performance of small aortic valve bioprostheses: is there a difference? Ann. Thorac. Surg. 63, 362–366 (1997).

    CAS  PubMed  Google Scholar 

  129. Mullany, C. J., Schaff, H. V., Orszulak, T. A. & Miller, F. A. Early clinical and hemodynamic evaluation of the aortic intact porcine bioprosthesis. J. Heart Valve Dis. 3, 641–647 (1994).

    CAS  PubMed  Google Scholar 

  130. Wiseth, R. et al. Hemodynamic evaluation by Doppler echocardiography of small (less than or equal to 21 mm) prostheses and bioprostheses in the aortic valve position. Am. J. Cardiol. 70, 240–246 (1992).

    CAS  PubMed  Google Scholar 

  131. Cooper, D. M. et al. Evaluation of normal prosthetic valve function by Doppler echocardiography. Am. Heart J. 114, 576–582 (1987).

    CAS  PubMed  Google Scholar 

  132. Lesbre, J. P. et al. Evaluation of new pericardial bioprostheses by pulsed and continuous Doppler ultrasound [French]. Arch. Mal. Coeur Vaiss. 79, 1439–1448 (1986).

    CAS  PubMed  Google Scholar 

  133. Sagar, K. B., Wann, L. S., Paulsen, W. H. & Romhilt, D. W. Doppler echocardiographic evaluation of Hancock and Bjork-Shiley prosthetic values. J. Am. Coll. Cardiol. 7, 681–687 (1986).

    CAS  PubMed  Google Scholar 

  134. David, T. E., Armstrong, S. & Sun, Z. Clinical and hemodynamic assessment of the Hancock II bioprosthesis. Ann. Thorac. Surg. 54, 661–667 (1992).

    CAS  PubMed  Google Scholar 

  135. Eichinger, W. B. et al. The mosaic bioprosthesis in the aortic position: hemodynamic performance after 2 years. Ann. Thorac. Surg. 66, S126–S129 (1998).

    CAS  PubMed  Google Scholar 

  136. Ius, P. et al. Hemodynamic evaluation of 23 mm Pericarbon and 23 mm Hancock II bioprostheses in the aortic position at mid-term follow up. J. Heart Valve Dis. 5, 656–661 (1996).

    CAS  PubMed  Google Scholar 

  137. Bojar, R. M. et al. Clinical and hemodynamic performance of the Ionescu-Shiley valve in the small aortic root. Results in 117 patients with 17 and 19 mm valves. J. Thorac. Cardiovasc. Surg. 98, 1087–1095 (1989).

    CAS  PubMed  Google Scholar 

  138. Simpson, I. A. et al. Non-invasive assessment by Doppler ultrasound of 155 patients with bioprosthetic valves: a comparison of the Wessex porcine, low profile Ionescu-Shiley, and Hancock pericardial bioprostheses. Br. Heart J. 56, 83–88 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gonzalez-Juanatey, J. R. et al. The influence of the design on the medium to long-term hemodynamic behavior of 19 mm pericardial aortic valve prostheses. J. Heart Valve Dis. 5, S317–S323 (1996).

    PubMed  Google Scholar 

  140. Bojar, R. M. et al. Clinical and hemodynamic performance of the Ionescu-Shiley valve in the small aortic root. Results in 117 patients with 17 and 19 mm valves. J. Thorac. Cardiovasc. Surg. 98, 1087–1095 (1989).

    CAS  PubMed  Google Scholar 

  141. Cartier, P. C. et al. Clinical and hemodynamic performance of the Freestyle aortic root bioprosthesis. Ann. Thorac. Surg. 67, 345–349 (1999).

    CAS  PubMed  Google Scholar 

  142. Baur, L. H. et al. Echocardiographic parameters of the freestyle stentless bioprosthesis in aortic position: the European experience. J. Am. Soc. Echocardiogr. 12, 729–735 (1999).

    CAS  PubMed  Google Scholar 

  143. Yun, K. L. et al. Prosthesis-patient mismatch: hemodynamic comparison of stented and stentless aortic valves. Semin. Thorac. Cardiovasc. Surg. 11, 98–102 (1999).

    CAS  PubMed  Google Scholar 

  144. Dumesnil, J. G. et al. Hemodynamic features of the freestyle aortic bioprosthesis compared with stented bioprosthesis. Ann. Thorac. Surg. 66, S130–S133 (1998).

    CAS  PubMed  Google Scholar 

  145. Dagenais, F. et al. A single center experience with the freestyle bioprosthesis: midterm results at the Quebec Heart Institute. Semin. Thorac. Cardiovasc. Surg. 13, 156–162 (2001).

    CAS  PubMed  Google Scholar 

  146. Yun, K. L. et al. Aortic valve replacement with the freestyle stentless bioprosthesis: five-year experience. Circulation 100, II17–II23 (1999).

    CAS  PubMed  Google Scholar 

  147. Kappetein, A. P. et al. Outcome and follow-up of aortic valve replacement with the freestyle stentless bioprosthesis. Ann. Thorac. Surg. 71, 601–607 (2001).

    CAS  PubMed  Google Scholar 

  148. Baur, L. H. et al. Echocardiographic parameters of the freestyle stentless bioprosthesis in aortic position: the European experience. J. Am. Soc. Echocardiogr. 12, 729–735 (1999).

    CAS  PubMed  Google Scholar 

  149. Del Rizzo, D. F. & Abdoh, A. Clinical and hemodynamic comparison of the Medtronic Freestyle and Toronto SPV stentless valves. J. Card. Surg. 13, 398–407 (1998).

    CAS  PubMed  Google Scholar 

  150. Fries, R., Wendler, O., Schieffer, H. & Schafers, H. J. Comparative rest and exercise hemodynamics of 23-mm stentless versus 23-mm stented aortic bioprostheses. Ann. Thorac. Surg. 69, 817–822 (2000).

    CAS  PubMed  Google Scholar 

  151. Jaffe, W. M. et al. Early follow-up of patients with the Medtronic Intact porcine valve. A new cardiac bioprosthesis. J. Thorac. Cardiovasc. Surg. 98, 181–192 (1989).

    CAS  PubMed  Google Scholar 

  152. Etienne, Y. et al. Evaluation of the normal bioprosthetic Intact aortic valve by Doppler echocardiography [French]. Arch. Mal. Coeur Vaiss. 83, 2039–2044 (1990).

    CAS  PubMed  Google Scholar 

  153. Ricou, F., Brun, A. & Lerch, R. Hemodynamic comparison of Medtronic intact bioprostheses and bileaflet mechanical prostheses in aortic position. Cardiology 87, 212–215 (1996).

    CAS  PubMed  Google Scholar 

  154. Dumesnil, J. G., Honos, G. N., Lemieux, M. & Beauchemin, J. Validation and applications of indexed aortic prosthetic valve areas calculated by Doppler echocardiography. J. Am. Coll. Cardiol. 16, 637–643 (1990).

    CAS  PubMed  Google Scholar 

  155. Thomson, D. J. et al. Medtronic mosaic porcine bioprosthesis satisfactory early clinical performance. Ann. Thorac. Surg. 66, S122–S125 (1998).

    CAS  PubMed  Google Scholar 

  156. Jamieson, W. R., Janusz, M. T., MacNab, J. & Henderson, C. Hemodynamic comparison of second- and third-generation stented bioprostheses in aortic valve replacement. Ann. Thorac. Surg. 71, S282–S284 (2001).

    CAS  PubMed  Google Scholar 

  157. Eichinger, W. et al. The Mosaic bioprosthesis in the aortic position at five years. J. Heart Valve Dis. 9, 653–660 (2000).

    CAS  PubMed  Google Scholar 

  158. Corbineau, H., Lelong, B., Langanay, T., Verhoye, J. P. & Leguerrier, A. Echocardiographic assessment and preliminary clinical results after aortic valve replacement with the Medtronic Mosaic bioprosthesis. J. Heart Valve Dis. 10, 171–176 (2001).

    CAS  PubMed  Google Scholar 

  159. Fradet, G. J., Bleese, N., Burgess, J. & Cartier, P. C. Mosaic valve international clinical trial: early performance results. Ann. Thorac. Surg. 71, S273–S277 (2001).

    CAS  PubMed  Google Scholar 

  160. Fradet, G. et al. The mosaic valve clinical performance at seven years: results from a multicenter prospective clinical trial. J. Heart Valve Dis. 13, 239–246 (2004).

    PubMed  Google Scholar 

  161. Yun, K. L. et al. Prosthesis-patient mismatch: hemodynamic comparison of stented and stentless aortic valves. Semin. Thorac. Cardiovasc. Surg. 11, 98–102 (1999).

    CAS  PubMed  Google Scholar 

  162. Wong, S. P. et al. Early experience with the mosaic bioprosthesis: a new generation porcine valve. Ann. Thorac. Surg. 69, 1846–1850 (2000).

    CAS  PubMed  Google Scholar 

  163. Gansera, B. et al. The Mosaic bioprosthesis in the aortic position: seven years' results. J. Heart Valve Dis. 12, 354–361 (2003).

    PubMed  Google Scholar 

  164. Nardi, C., Scioti, G., Milano, A. D., De, C. M. & Bortolotti, U. Hemodynamic assessment of the Medtronic Mosaic bioprosthesis in the aortic position. J. Heart Valve Dis. 10, 100–104 (2001).

    CAS  PubMed  Google Scholar 

  165. Milano, A. D. et al. Hemodynamic performance of stented and stentless aortic bioprostheses. Ann. Thorac. Surg. 72, 33–38 (2001).

    CAS  PubMed  Google Scholar 

  166. Eichinger, W. B. et al. Exercise hemodynamics of bovine versus porcine bioprostheses: a prospective randomized comparison of the mosaic and perimount aortic valves. J. Thorac. Cardiovasc. Surg. 129, 1056–1063 (2005).

    PubMed  Google Scholar 

  167. Habib, G. et al. Contribution of Doppler echocardiography to the evaluation and monitoring of normal and pathologic mitral valve prostheses [French]. Arch. Mal. Coeur Vaiss. 83, 469–477 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. A. Rijnbach (Department of Radiology, University Medical Center Utrecht) for her help with the final editing of the Figures and I. G. Janssen (Department of Multimedia Productions, University Medical Center Utrecht) for designing Figure 1b. This work was supported by a grant of the Netherlands Heart Foundation (grant number 2009B014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Habets.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habets, J., Budde, R., Symersky, P. et al. Diagnostic evaluation of left-sided prosthetic heart valve dysfunction. Nat Rev Cardiol 8, 466–478 (2011). https://doi.org/10.1038/nrcardio.2011.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2011.71

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing