Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assessment and treatment of right ventricular failure

Abstract

Right ventricular (RV) failure is a complex problem with poor outcomes. Diagnosis requires a high degree of clinical suspicion, because many of the signs and symptoms of this condition are nonspecific and can be acute or chronic. Identification of the underlying aetiology, which can include pulmonary hypertension, cardiomyopathy, myocardial infarction, congenital or valvular heart disease, and sepsis, is essential. Echocardiography is the technique of choice for first-line assessment, but cardiac MRI is the current gold standard for anatomical and functional assessment of the right ventricle. Therapy for RV failure should be directed at the underlying cause, although management of symptoms is also important. Therapeutic options range from pharmacological treatment to mechanical RV support and heart transplantation. The complex 3D geometry of the right ventricle and its intricate interactions with the left ventricle have left many questions about RV failure unanswered. However, promising new targeted therapies are under development and mechanical support is becoming increasingly feasible. The next decade will be an exciting time for advances in our understanding and management of RV failure.

Key Points

  • Right ventricular failure has many aetiologies, including cardiomyopathies, congenital or valvular heart disease, arrhythmias, sepsis, and pressure overload

  • Diagnosis of right ventricular failure requires a high degree of clinical suspicion

  • Modalities to assess right ventricular function continue to evolve, but the mainstays are echocardiography, cardiac MRI, and invasive haemodynamic assessment

  • Effective therapy for right ventricular failure must be directed towards the underlying aetiology as well as the clinical presentation

  • Treatment for right ventricular failure ranges from pharmacological management to mechanical support

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart for the diagnostic evaluation of suspected RV failure associated with suspected PH.
Figure 2: Pressure–volume loops of the right and left ventricles.
Figure 3: Ventricular assist devices that have been used for right ventricular support.

Similar content being viewed by others

References

  1. Palevsky, H. I. & Fishman, A. P. Chronic cor pulmonale. Etiology and management. JAMA 263, 2347–2353 (1990).

    CAS  PubMed  Google Scholar 

  2. Andersen, H. R., Falk, E. & Nielsen, D. Right ventricular infarction: frequency, size and topography in coronary heart disease: a prospective study comprising 107 consecutive autopsies from a coronary care unit. J. Am. Coll. Cardiol. 10, 1223–1232 (1987).

    CAS  PubMed  Google Scholar 

  3. Marelli, A. J., Mackie, A. S., Ionescu-Ittu, R., Rahme, E. & Pilote, L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115, 163–172 (2007).

    PubMed  Google Scholar 

  4. Warnes, C. A. et al. ACC/AHA 2008 Guidelines for the management of adults with congenital heart disease. Circulation 118, 2395–2451 (2008).

    PubMed  Google Scholar 

  5. Davlouros, P. A., Niwa, K., Webb, G. & Gatzoulis, M. A. The right ventricle in congenital heart disease. Heart 92 (Suppl. 1), i27–i38 (2006).

    PubMed Central  PubMed  Google Scholar 

  6. Fogel, M. A. et al. Power loss and right ventricular efficiency in patients after tetralogy of Fallot repair with pulmonary insufficiency: clinical implications. J. Thorac. Cardiovasc. Surg. 143, 1279–1285 (2012).

    PubMed  Google Scholar 

  7. Galiè, N. et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur. Heart J. 30, 2493–2537 (2009).

    PubMed  Google Scholar 

  8. Murray, B. Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C): a review of molecular and clinical literature. J. Genet. Couns. 21, 494–504 (2012).

    PubMed  Google Scholar 

  9. Hunt, S. A. et al. ACC/AHA 2005 Guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation 112, e154–e235 (2005).

    PubMed  Google Scholar 

  10. Luk, A., Ahn, E., Soor, G. S. & Butany, J. Dilated cardiomyopathy: a review. J. Clin. Pathol. 62, 219–225 (2009).

    CAS  PubMed  Google Scholar 

  11. Simon, M. A. et al. Phenotyping the right ventricle in patients with pulmonary hypertension. Clin. Transl. Sci. 2, 294–249 (2009).

    PubMed Central  PubMed  Google Scholar 

  12. Bogaard, H. J., Abe, K., Vonk Noordegraaf, A. & Voelkel, N. F. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 135, 794–804 (2009).

    CAS  PubMed  Google Scholar 

  13. Modesti, P. A. et al. Different growth factor activation in the right and left ventricles in experimental volume overload. Hypertension 43, 101–108 (2004).

    CAS  PubMed  Google Scholar 

  14. Lowes, B. D. et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J. Clin. Invest. 100, 2315–2324 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Herron, T. J. & McDonald, K. S. Small amounts of alpha-myosin heavy chain isoform expression significantly increase power output of rat cardiac myocyte fragments. Circ. Res. 90, 1150–1152 (2002).

    CAS  PubMed  Google Scholar 

  16. Gómez, A. et al. Right ventricular ischemia in patients with primary pulmonary hypertension. J. Am. Coll. Cardiol. 38, 1137–1142 (2001).

    PubMed  Google Scholar 

  17. Zaobornyj, T. et al. Mitochondrial nitric oxide metabolism during rat heart adaptation to high altitude: effect of sildenafil, L-NAME, and L-arginine treatments. Am. J. Physiol. Heart Circ. Physiol. 296, H1741–H1747 (2009).

    CAS  PubMed  Google Scholar 

  18. Nagendran, J. et al. A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J. Thorac. Cardiovasc. Surg. 136, 168–178 (2008).

    PubMed  Google Scholar 

  19. Nagendran, J. et al. Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116, 238–248 (2007).

    CAS  PubMed  Google Scholar 

  20. Shan, X. et al. Differential expression of PDE5 in failing and nonfailing human myocardium. Circ. Heart Fail. 5, 79–86 (2012).

    CAS  PubMed  Google Scholar 

  21. Haddad, F. et al. Pulmonary hypertension associated with left heart disease: characteristics, emerging concepts, and treatment strategies. Prog. Cardiovasc. Dis. 54, 154–167 (2011).

    PubMed  Google Scholar 

  22. Matthews J. C. & McLaughlin, V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr. Cardiol. Rev. 4, 49–59 (2008).

    PubMed Central  PubMed  Google Scholar 

  23. Watts, J. A., Marchick, M. R. & Kline J. A. Right ventricular heart failure from pulmonary embolism: key distinctions from chronic pulmonary hypertension. J. Card. Fail. 16, 250–259 (2010).

    PubMed  Google Scholar 

  24. Simonneau, G. et al. Clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 43 (Suppl. S), 5S–12S (2004).

    PubMed  Google Scholar 

  25. Santamore, W. P. & Dell'Italia, L. J. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog. Cardiovasc. Dis. 40, 289–308 (1998).

    CAS  PubMed  Google Scholar 

  26. Weber, K. T., Janicki, J. S., Shroff, S. & Fishman, A. P. Contractile mechanisms and interaction of the right and left ventricles. Am. J. Cardiol. 47, 686–695 (1981).

    CAS  PubMed  Google Scholar 

  27. Hoffman, D., Sisto, D., Frater, R. W. & Nikolic, S. D. Left-to-right ventricular interaction with a noncontracting right ventricle. J. Thorac. Cardiovasc. Surg. 107, 1496–1502 (1994).

    CAS  PubMed  Google Scholar 

  28. Van Tassell, B. W. et al. Right ventricular systolic dysfunction in patients with reperfused ST-segment elevation acute myocardial infarction. Int. J. Cardiol. 155, 314–316 (2012).

    PubMed  Google Scholar 

  29. Hirose, K., Shu, N. H., Reed, J. E. & Rumberger, J. A. Right ventricular dilatation and remodeling the first year after an initial transmural wall left ventricular myocardial infarction. Am. J. Cardiol. 72, 1126–1130 (1993).

    CAS  PubMed  Google Scholar 

  30. Bussani, R. et al. Right ventricular dilatation after left ventricular acute myocardial infarction is predictive of extremely high peri-infarctual apoptosis at postmortem examination in humans. J. Clin. Pathol. 56, 672–676 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Toldo, S. et al. Right ventricular dysfunction following acute myocardial infarction in the absence of pulmonary hypertension in the mouse. PLoS ONE 6, e18102 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Miszalski-Jamka, T. et al. Extent of RV dysfunction and myocardial infarction assessed by CMR are independent outcome predictors early after STEMI treated with primary angioplasty. JACC Cardiovasc. Imaging 3, 1237–1246 (2010).

    PubMed  Google Scholar 

  33. Antoni, M. L. et al. Prognostic value of right ventricular function in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Circ. Cardiovasc. Imaging 3, 264–271 (2010).

    PubMed  Google Scholar 

  34. Anavekar, N. S. et al. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO Study). Am. J. Cardiol. 101, 607–612 (2008).

    PubMed  Google Scholar 

  35. Zornoff, L. A. et al. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J. Am. Coll. Cardiol. 39, 1450–1455 (2002).

    PubMed  Google Scholar 

  36. Mehta, S. R. et al. Impact of right ventricular involvement on mortality and morbidity in patients with inferior myocardial infarction. J. Am. Coll. Cardiol. 37, 37–43 (2001).

    CAS  PubMed  Google Scholar 

  37. Haddad, F., Hunt, S. A., Rosenthal, D. N. & Murphy, D. J. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation 117, 1436–1448 (2008).

    PubMed  Google Scholar 

  38. Gan, C. T. et al. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol. 290, H1528–H1533 (2006).

    CAS  PubMed  Google Scholar 

  39. Hopkins, W. E. & Waggoner, A. D. Severe pulmonary hypertension without right ventricular failure: the unique hearts of patients with Eisenmenger syndrome. Am. J. Cardiol. 89, 34–38 (2002).

    PubMed  Google Scholar 

  40. Hopkins, W. E. Right ventricular performance in congenital heart disease: a physiologic and pathophysiologic perspective. Cardiol. Clin. 30, 205–218 (2012).

    PubMed  Google Scholar 

  41. Warnes, C. A. Adult congenital heart disease importance of the right ventricle. J. Am. Coll. Cardiol. 54, 1903–1910 (2009).

    PubMed  Google Scholar 

  42. Mitsuo, T., Shimazaki, S. & Matsuda, H. Right ventricular dysfunction in septic patients. Crit. Care Med. 20, 630–634 (1992).

    CAS  PubMed  Google Scholar 

  43. Chan, C. M. & Klinger, J. R. The right ventricle in sepsis. Clin. Chest Med. 20, 661–676 (2008).

    Google Scholar 

  44. Dhainaut, J. F. et al. Right ventricular dysfunction in patients with septic shock. Intensive Care Med. 14, 488–491 (1988).

    PubMed  Google Scholar 

  45. Haddad, F., Doyle, R., Murphy, D. J. & Hunt, S. A. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117, 1717–1731 (2008).

    PubMed  Google Scholar 

  46. Guazzi, M. & Arena, R. Pulmonary hypertension with left-sided heart disease. Nat. Rev. Cardiol. 7, 648–659 (2010).

    PubMed  Google Scholar 

  47. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    PubMed Central  PubMed  Google Scholar 

  48. Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 53, 582–588 (2009).

    PubMed  Google Scholar 

  49. Schrier, R. W. & Bansal, S. Pulmonary hypertension, right ventricular failure, and kidney: different from left ventricular failure? Clin. J. Am. Soc. Nephrol. 3, 1232–1237 (2008).

    PubMed Central  PubMed  Google Scholar 

  50. Feldt, R. H. et al. Protein-losing enteropathy after the Fontan operation. J. Thorac. Cardiovasc. Surg. 112, 672–680 (1996).

    CAS  PubMed  Google Scholar 

  51. McGoon, M. D. & Kane, G. C. Pulmonary hypertension: diagnosis and management. Mayo Clin. Proc. 84, 191–207 (2009).

    PubMed Central  PubMed  Google Scholar 

  52. Sanz, J., Conroy, J. & Narula, J. Imaging of the right ventricle. Cardiol. Clin. 30, 189–203 (2012).

    PubMed  Google Scholar 

  53. Forfia, P. R. et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 174, 1034–1041 (2006).

    PubMed  Google Scholar 

  54. van Wolferen, S. A. et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur. Heart J. 28, 1250–1257 (2007).

    PubMed  Google Scholar 

  55. McLaughlin, V. V. et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J. Am. Coll. Cardiol. 53, 1573–1619 (2009).

    PubMed  Google Scholar 

  56. Horton, K. D., Meece, R. W. & Hill, J. C. Assessment of the right ventricle by echocardiography: a primer for cardiac sonographers. J. Am. Soc. Echocardiogr. 22, 776–792 (2009).

    PubMed  Google Scholar 

  57. Woodard, P. K. et al. ACR practice guideline for the performance and interpretation of cardiac magnetic resonance imaging (MRI). J. Am. Coll. Radiol. 3, 665–676 (2006).

    PubMed  Google Scholar 

  58. Ma, N. et al. Cardiac magnetic resonance imaging in arrhythmogenic right ventricular cardiomyopathy: correlation to the QRS dispersion. Magn. Reson. 30, 1454–1460 (2012).

    Google Scholar 

  59. Tei, C. et al. Doppler echocardiographic index for assessment of global right ventricular function. J. Am. Soc. Echocardiogr. 9, 838–847 (1996).

    CAS  PubMed  Google Scholar 

  60. Dujardin, K. S. et al. Prognostic value of a Doppler index combining systolic and diastolic performance in idiopathic-dilated cardiomyopathy. Am. J. Cardiol. 82, 1071–1076 (1998).

    CAS  PubMed  Google Scholar 

  61. Eidem, B. W., Tei, C., O'Leary, P. W., Cetta, F. & Seward, J. B. Nongeometric quantitative assessment of right and left ventricular function: myocardial performance index in normal children and patients with Ebstein anomaly. J. Am. Soc. Echocardiogr. 11, 849–856 (1998).

    CAS  PubMed  Google Scholar 

  62. Ishii, M. et al. Quantitation of the global right ventricular function in children with normal heart and congenital heart disease: a right ventricular myocardial performance index. Pediatr. Cardiol. 21, 416–421 (2000).

    CAS  PubMed  Google Scholar 

  63. Eidem, B. W., O'Leary, P. W., Tei, C. & Seward, J. B. Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease. Am. J. Cardiol. 86, 654–658 (2000).

    CAS  PubMed  Google Scholar 

  64. Damy, T. et al. Prevalence of, associations with, and prognostic value of tricuspid annular plane systolic excursion (TAPSE) among out-patients referred for the evaluation of heart failure. J. Card. Fail. 18, 216–225 (2012).

    PubMed  Google Scholar 

  65. Rajagopalan, N., Simon, M. A., Mathier, M. A. & López-Candales, A. Identifying right ventricular dysfunction with tissue Doppler imaging in pulmonary hypertension. Int. J. Cardiol. 128, 359–363 (2008).

    PubMed  Google Scholar 

  66. Simon, M. A. et al. Tissue Doppler imaging of right ventricular decompensation in pulmonary hypertension. Congest. Heart Fail. 15, 271–276 (2009).

    PubMed Central  PubMed  Google Scholar 

  67. Sade, L. E. et al. Tissue Doppler study of the right ventricle with a multisegmental approach: comparison with cardiac magnetic resonance imaging. J. Am. Soc. Echocardiogr. 22, 361–368 (2009).

    PubMed  Google Scholar 

  68. Matias, C. et al. Speckle-tracking-derived strain and strain-rate analysis: a technique for the evaluation of early alterations in right ventricle systolic function in patients with systemic sclerosis and normal pulmonary artery pressure. J. Cardiovasc. Med. (Hagerstown) 10, 129–134 (2009).

    Google Scholar 

  69. Jategaonkar, S. R. et al. Two-dimensional strain and strain rate imaging of the right ventricle in adult patients before and after percutaneous closure of atrial septal defects. Eur. J. Echocardiogr. 10, 499–502 (2009).

    PubMed  Google Scholar 

  70. Meris, A. et al. Timing and magnitude of regional right ventricular function: a speckle tracking-derived strain study of normal subjects and patients with right ventricular dysfunction. J. Am. Soc. Echocardiogr. 23, 823–831 (2010).

    PubMed  Google Scholar 

  71. Schindera, S. T., Mehwald, P. S., Sahn, D. J. & Kececioglu, D. Accuracy of real-time three-dimensional echocardiography for quantifying right ventricular volume: static and pulsatile flow studies in an anatomic in vitro model. J. Ultrasound Med. 21, 1069–1075 (2002).

    PubMed  Google Scholar 

  72. Hubka, M. et al. Three-dimensional echocardiographic measurement of left and right ventricular mass and volume: in vitro validation. Int. J. Cardiovasc. Imaging 18, 111–118 (2002).

    PubMed  Google Scholar 

  73. Menzel, T. et al. Quantitative assessment of right ventricular volumes in severe chronic thromboembolic pulmonary hypertension using transthoracic three-dimensional echocardiography: changes due to pulmonary thromboendarterectomy. Eur. J. Echocardiogr. 3, 67–72 (2002).

    CAS  PubMed  Google Scholar 

  74. Caiani, E. G. et al. Improved semiautomated quantification of left ventricular volumes and ejection fraction using 3-dimensional echocardiography with a full matrix-array transducer: comparison with magnetic resonance imaging. J. Am. Soc. Echocardiogr. 18, 779–788 (2005).

    PubMed  Google Scholar 

  75. Benza, R., Biederman, R., Murali, S. & Gupta, H. Role of cardiac magnetic resonance imaging in the management of patients with pulmonary arterial hypertension. J. Am. Coll. Cardiol. 52, 1683–1692 (2008).

    PubMed  Google Scholar 

  76. McLure, L. E. & Peacock, A. J. Cardiac magnetic resonance imaging for the assessment of the heart and pulmonary circulation in pulmonary hypertension. Eur. Respir. J. 33, 1454–1466 (2009).

    CAS  PubMed  Google Scholar 

  77. Sanz, J. et al. Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc. Imaging 2, 286–295 (2009).

    PubMed  Google Scholar 

  78. Reiter, G. et al. Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ. Cardiovasc. Imaging 1, 23–30 (2008).

    PubMed  Google Scholar 

  79. Swift, A. J. et al. Diagnostic accuracy of cardiovascular magnetic resonance imaging of right ventricular morphology and function in the assessment of suspected pulmonary hypertension results from the ASPIRE registry. J. Cardiovasc. Magn. Reson. 14, 40 (2012).

    PubMed Central  PubMed  Google Scholar 

  80. Chen, S. S. et al. Cardiovascular magnetic resonance tagging of the right ventricular free wall for the assessment of long axis myocardial function in congenital heart disease. J. Cardiovasc. Magn. Reson. 13, 80 (2011).

    PubMed Central  PubMed  Google Scholar 

  81. Kim, R. J. et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N. Engl. J. Med. 343, 1445–1453 (2000).

    CAS  PubMed  Google Scholar 

  82. Tandri, H. et al. Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J. Am. Coll. Cardiol. 45, 98–103 (2005).

    PubMed  Google Scholar 

  83. Shehata, M. L. et al. Myocardial delayed enhancement in pulmonary hypertension: pulmonary hemodynamics, right ventricular function, and remodeling. Am. J. Roentgenol. 196, 87–94 (2011).

    Google Scholar 

  84. Wong T. C. et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short term mortality. Circulation 126, 1206–1216 (2012).

    PubMed Central  PubMed  Google Scholar 

  85. Plumhans, C. et al. Assessment of global right ventricular function on 64-MDCT compared with MRI. Am. J. Roentgenol. 190, 1358–1361 (2008).

    Google Scholar 

  86. Koch, K. et al. Assessment of right ventricular function by 16-detector-row CT: comparison with magnetic resonance imaging. Eur. Radiol. 15, 312–318 (2005).

    CAS  PubMed  Google Scholar 

  87. Raman, S. V., Shah, M., McCarthy, B., Garcia, A. & Ferketich, A. K. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am. Heart J. 151, 736–744 (2006).

    PubMed  Google Scholar 

  88. Wu, J., Wang, Y., Simon, M. A. & Brigham, J. C. A new approach to kinematic feature extraction from the human right ventricle for classification of hypertension: a feasibility study. Phys. Med. Biol. 57, 7905–7922 (2012).

    PubMed  Google Scholar 

  89. Steele, P., Kirch, D., LeFree, M. & Battock, D. Measurement of right and left ventricular ejection fractions by radionuclide angiocardiography in coronary artery disease. Chest 70, 51–56 (1976).

    CAS  PubMed  Google Scholar 

  90. van der Maas, N. et al. Right ventricular ejection fraction measured by multigated planar equilibrium radionuclide ventriculography is an independent prognostic factor in patients with ischemic heart disease. J. Nucl. Cardiol. 19, 1162–1169 (2012).

    CAS  PubMed  Google Scholar 

  91. de Groote, P. et al. Right ventricular systolic function for risk stratification in patients with stable left ventricular systolic dysfunction: comparison of radionuclide angiography to echoDoppler parameters. Eur. Heart J. 33, 2672–2679 (2012).

    PubMed  Google Scholar 

  92. Brent, B. N., Mahler, D., Matthay, R. A., Berger, H. J. & Zaret, B. L. Noninvasive diagnosis of pulmonary arterial hypertension in chronic obstructive pulmonary disease: right ventricular ejection fraction at rest. Am. J. Cardiol. 53, 1349–1353 (1984).

    CAS  PubMed  Google Scholar 

  93. Le Guludec, D. et al. Prognostic value of radionuclide angiography in patients with right ventricular arrhythmias. Circulation 103, 1972–1976 (2001).

    CAS  PubMed  Google Scholar 

  94. Morise, A. P. & Goodwin, C. Exercise radionuclide angiography in patients with mitral stenosis: value of right ventricular response. Am. Heart J. 112, 509–517 (1986).

    CAS  PubMed  Google Scholar 

  95. Aepfelbacher, F. C., Yeon, S. B., Ho, K. K., Parker, J. A. & Danias, P. G. ECG-gated 99mTc single-photon emission CT for assessment of right ventricular structure and function: is the information provided similar to echocardiography? Chest 124, 227–232 (2003).

    PubMed  Google Scholar 

  96. Caresia-Aroztegui, A. P. et al. Gated-SPECT equilibrium radionuclide angiography in right ventricular assessment of patients with repaired tetralogy of Fallot. Nucl. Med. Commun. 28, 159–164 (2007).

    PubMed  Google Scholar 

  97. Le Guludec, D. et al. Evaluation of radionuclide angiography in diagnosis of arrhythmogenic right ventricular cardiomyopathy. J. Am. Coll. Cardiol. 26, 1476–1483 (1995).

    CAS  PubMed  Google Scholar 

  98. Arora, R., Zhao, Q. H., Guguchev, P. A., Wexler, J. P. & Travin, M. I. Identification of severe right ventricular dysfunction and pressure overload by stress radionuclide myocardial perfusion SPECT imaging with gating. J. Nucl. Cardiol. 6, 375–376 (1999).

    CAS  PubMed  Google Scholar 

  99. Daou, D., Coaguila, C. & Vilain, D. Electrocardiograph-gated single photon emission computed tomography radionuclide angiography presents good interstudy reproducibility for the quantification of global systolic right ventricular function. Nucl. Med. Commun. 28, 391–399 (2007).

    PubMed  Google Scholar 

  100. Mazraeshahi, R. M., Striet, J., Oeltgen, R. C. & Gerson, M. C. Myocardial SPECT images for diagnosis of pulmonary hypertension and right ventricular hypertrophy. J. Nucl. Med. Technol. 38, 175–180 (2010).

    PubMed  Google Scholar 

  101. Nishijima, K., Miyahara, Y., Furukawa, K., Matsushita, T. & Kohno, S. Simultaneous assessment of right ventricular function and hypertrophy by Tc-99m MIBI. Clin. Nucl. Med. 24, 151–155 (1999).

    CAS  PubMed  Google Scholar 

  102. Ukkonen, H. et al. Is ventilatory efficiency (VE/VCO2 slope) associated with right ventricular oxidative metabolism in patients with congestive heart failure? Eur. J. Heart Fail. 10, 1117–1122 (2008).

    CAS  PubMed  Google Scholar 

  103. Mielniczuk, L. M. et al. Relation between right ventricular function and increased right ventricular [18F]fluorodeoxyglucose accumulation in patients with heart failure. Circ. Cardiovasc. Imaging 4, 59–66 (2011).

    PubMed  Google Scholar 

  104. Oikawa, M. et al. Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J. Am. Coll. Cardiol. 45, 1849–1855 (2005).

    CAS  PubMed  Google Scholar 

  105. Champion, H. C., Michelakis, E. D. & Hassoun, P. M. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120, 992–1007 (2009).

    PubMed  Google Scholar 

  106. Rich, S., Kaufmann, E. & Levy, P. S. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N. Engl. J Med. 327, 76–81 (1992).

    CAS  PubMed  Google Scholar 

  107. Lankhaar, J. W. et al. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 291, H1731–H1737 (2006).

    CAS  PubMed  Google Scholar 

  108. Lankhaar, J. et al. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur. Heart J. 29, 1688–1695 (2008).

    PubMed  Google Scholar 

  109. Tedford, R. J. et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation 125, 289–297 (2012).

    PubMed  Google Scholar 

  110. Mahapatra, S., Nishimura, R. A., Sorajja, P., Cha, S. & McGoon, M. D. Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J. Am. Coll. Cardiol. 47, 799–803 (2006).

    PubMed  Google Scholar 

  111. Kerbaul, F. et al. How prostacyclin improves cardiac output in right heart failure in conjunction with pulmonary hypertension. Am. J. Respir. Crit. Care Med. 175, 846–850 (2007).

    CAS  PubMed  Google Scholar 

  112. Hunter, K. S. et al. Pulmonary vascular input impedance is a combined measure of pulmonary vascular resistance and stiffness and predicts clinical outcomes better than pulmonary vascular resistance alone in pediatric patients with pulmonary hypertension. Am. Heart J. 155, 166–174 (2008).

    PubMed  Google Scholar 

  113. Ghofrani, H. A. et al. Future perspectives for the treatment of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54, S108–S117 (2009).

    PubMed Central  PubMed  Google Scholar 

  114. Badesch, D. B. et al. Diagnosis and assessment of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 54 (Suppl. S), S55–S66 (2009).

    PubMed  Google Scholar 

  115. Bistola, V. et al. Prognostic value of tissue Doppler right ventricular systolic and diastolic function indexes combined with plasma B-type natriuretic peptide in patients with advanced heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 105, 249–254 (2010).

    CAS  PubMed  Google Scholar 

  116. Fijalkowska, A. et al. Serum N-terminal brain natriuretic peptide as a prognostic parameter in patients with pulmonary hypertension. Chest 129, 1313–1321 (2006).

    CAS  PubMed  Google Scholar 

  117. Nagaya, N. et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 102, 865–870 (2000).

    CAS  PubMed  Google Scholar 

  118. Lowenthal, A. et al. Usefulness of B-type natriuretic peptide and N-terminal pro-B-type natriuretic peptide as biomarkers for heart failure in young children with single ventricle congenital heart disease. Am. J. Cardiol. 109, 866–872 (2012).

    CAS  PubMed  Google Scholar 

  119. Kucher, N., Printzen, G. & Goldhaber, S. Z. Prognostic role of brain natriuretic peptide in acute pulmonary embolism. Circulation 107, 2545–2547 (2003).

    CAS  PubMed  Google Scholar 

  120. Andresen, M. et al. Natriuretic peptide type-B can be a marker of reperfusion in patients with pulmonary thromboembolism subjected to invasive treatment. Int. J. Cardiovasc. Imaging 28, 659–666 (2012).

    PubMed  Google Scholar 

  121. Kaya, M. G. et al. Plasma B-type natriuretic peptide in diagnosing inferior myocardial infarction with right ventricular involvement. Coron. Artery Dis. 19, 609–613 (2008).

    PubMed  Google Scholar 

  122. Kostrubiec, M. et al. Signs of myocardial ischemia on electrocardiogram correlate with elevated plasma cardiac troponin and right ventricular systolic dysfunction in acute pulmonary embolism. Cardiol. J. 17, 157–162 (2010).

    PubMed  Google Scholar 

  123. Torbicki, A. et al. Detectable serum cardiac troponin T as a marker of poor prognosis among patients with chronic precapillary pulmonary hypertension. Circulation 108, 844–848 (2003).

    CAS  PubMed  Google Scholar 

  124. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    PubMed Central  PubMed  Google Scholar 

  125. Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 53, 582–588 (2009).

    PubMed  Google Scholar 

  126. Cook, J. A. et al. Kinetics, dynamics, and bioavailability of bumetanide in healthy subjects and patients with congestive heart failure. Clin. Pharmacol. Ther. 44, 487–500 (1988).

    CAS  PubMed  Google Scholar 

  127. Brater, D. C., Day, B., Burdette, A. & Anderson, S. Bumetanide and furosemide in heart failure. Kidney Int. 26, 183–189 (1984).

    CAS  PubMed  Google Scholar 

  128. Binanay, C. et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294, 1625–1633 (2005).

    PubMed  Google Scholar 

  129. Lowes, B. D., Simon, M. A., Tsvetkova, T. O. & Bristow, M. R. Inotropes in the beta-blocker era. Clin. Cardiol. 23 (Suppl.), III11–III16 (2000).

    CAS  PubMed  Google Scholar 

  130. Chen, E. P., Bittner, H. B., Davis, R. D. Jr & Van Trigt, P. 3rd Milrinone improves pulmonary hemodynamics and right ventricular function in chronic pulmonary hypertension. Ann. Thorac. Surg. 63, 814–821 (1997).

    CAS  PubMed  Google Scholar 

  131. Pepke-Zaba, J., Higenbottam, T. W., Dinh-Xuan, A. T., Stone, D. & Wallwork, J. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 338, 1173–1174 (1991).

    CAS  PubMed  Google Scholar 

  132. Rossaint, R. et al. Effects of inhaled nitric oxide on right ventricular function in severe acute respiratory distress syndrome. Intensive Care Med. 21, 197–203 (1995).

    CAS  PubMed  Google Scholar 

  133. Szold, O. et al. Inhaled nitric oxide improves pulmonary functions following massive pulmonary embolism: a report of four patients and review of the literature. Lung 184, 1–5 (2006).

    PubMed  Google Scholar 

  134. Summerfield, D. T., Desai, H., Levitov, A., Grooms, D. A. & Marik, P. E. Inhaled nitric oxide as salvage therapy in massive pulmonary embolism: a case series. Respir. Care 57, 444–448 (2012).

    PubMed  Google Scholar 

  135. Solina, A. et al. A comparison of inhaled nitric oxide and milrinone for the treatment of pulmonary hypertension in adult cardiac surgery patients. J. Cardiothorac. Vasc. Anesth. 14, 12–17 (2000).

    CAS  PubMed  Google Scholar 

  136. Solina, A. R. et al. Dose response to nitric oxide in adult cardiac surgery patients. J. Clin. Anesth. 13, 281–286 (2001).

    CAS  PubMed  Google Scholar 

  137. Stobierska-Dzierzek, B., Awad, H. & Michler, R. E. The evolving management of acute right-sided heart failure in cardiac transplant recipients. J. Am. Coll. Cardiol. 38, 923–931 (2001).

    CAS  PubMed  Google Scholar 

  138. Semigran, M. J. et al. Hemodynamic effects of inhaled nitric oxide in heart failure. J. Am. Coll. Cardiol. 24, 982–988 (1994).

    CAS  PubMed  Google Scholar 

  139. Jolliet, P., Bulpa, P., Thorens, J. B., Ritz, M. & Chevrolet, J. C. Nitric oxide and prostacyclin as test agents of vasoreactivity in severe precapillary pulmonary hypertension: predictive ability and consequences on haemodynamics and gas exchange. Thorax 52, 369–372 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Taylor, R. W. et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 291, 1603–1609 (2004).

    CAS  PubMed  Google Scholar 

  141. Griffiths, M. J. & Evans, T. W. Inhaled nitric oxide therapy in adults. N. Engl. J. Med. 353, 2683–2695 (2005).

    CAS  PubMed  Google Scholar 

  142. Kushner, F. G. et al. 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update) a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 54, 2205–2241 (2009).

    PubMed  Google Scholar 

  143. Jacobs, A. K. et al. Cardiogenic shock caused by right ventricular infarction: a report from the SHOCK registry. J. Am. Coll. Cardiol. 41, 1273–1279 (2003).

    PubMed  Google Scholar 

  144. Kucher, N. & Goldhaber, S. Z. Management of massive pulmonary embolism. Circulation 112, e28–e32 (2005).

    PubMed  Google Scholar 

  145. Konstantinides, S. & Goldhaber, S. Z. Pulmonary embolism: risk assessment and management. Eur. Heart J. 33, 3014–3022 (2012).

    CAS  PubMed  Google Scholar 

  146. Bogaard, H. J. et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am. J. Respir. Crit. Care Med. 182, 652–660 (2010).

    CAS  PubMed  Google Scholar 

  147. Quaife, R. A. et al. Effects of carvedilol on right ventricular function in chronic heart failure. Am. J. Cardiol. 81, 247–250 (1998).

    CAS  PubMed  Google Scholar 

  148. Henein, M. Y., O'Sullivan, C. A., Coats, A. J. & Gibson, D. G. Angiotensin-converting enzyme (ACE) inhibitors revert abnormal right ventricular filling in patients with restrictive left ventricular disease. J. Am. Coll. Cardiol. 32, 1187–1193 (1998).

    CAS  PubMed  Google Scholar 

  149. Nguyen, Q. T. et al. AT1 receptor antagonist therapy preferentially ameliorated right ventricular function and phenotype during the early phase of remodeling post-MI. Br. J. Pharmacol. 138, 1485–1494 (2003).

    CAS  PubMed Central  PubMed  Google Scholar 

  150. de Man, F. S. et al. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186, 780–789 (2012).

    CAS  PubMed  Google Scholar 

  151. Rich, S. & Brundage, B. H. High-dose calcium channel-blocking therapy for primary pulmonary hypertension: evidence for long-term reduction in pulmonary arterial pressure and regression of right ventricular hypertrophy. Circulation 76, 135–141 (1987).

    CAS  PubMed  Google Scholar 

  152. Hinderliter, A. L. et al. Effects of long-term infusion of prostacyclin (epoprostenol) on echocardiographic measures of right ventricular structure and function in primary pulmonary hypertension. Primary Pulmonary Hypertension Study Group. Circulation 95, 1479–1486 (1997).

    CAS  PubMed  Google Scholar 

  153. Roeleveld, R. J. et al. Effects of epoprostenol on right ventricular hypertrophy and dilatation in pulmonary hypertension. Chest 125, 572–579 (2004).

    CAS  PubMed  Google Scholar 

  154. Lewis, G. D. et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 116, 1555–1562 (2007).

    CAS  PubMed  Google Scholar 

  155. Hoeper, M. M. et al. Riociguat for interstitial lung disease and pulmonary hypertension: a pilot trial. Eur. Respir. J. http://dx.doi.org/10.1183/09031936.00213911.

  156. Ghio, S. et al. Left ventricular systolic dysfunction associated with pulmonary hypertension riociguat trial (LEPHT): rationale and design. Eur. J. Heart Fail. 14, 946–953 (2012).

    CAS  PubMed  Google Scholar 

  157. Sidharta, P. N., van Giersbergen, P. L., Halabi, A. & Dingemanse, J. Macitentan: entry-into-humans study with a new endothelin receptor antagonist. Eur. J. Clin. Pharmacol. 67, 977–984 (2011).

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Bogaard, H. J. et al. Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120, 1951–1960 (2009).

    PubMed  Google Scholar 

  159. Garjani, A. et al. Protective effects of hydroalcoholic extract from rhizomes of Cynodon dactylon (L.) Pers. on compensated right heart failure in rats. BMC Complement. Altern. Med. 9, 28 (2009).

    PubMed Central  PubMed  Google Scholar 

  160. Rich, S. & Lam, W. Atrial septostomy as palliative therapy for refractory primary pulmonary hypertension. Am. J. Cardiol. 51, 1560–1561 (1983).

    CAS  PubMed  Google Scholar 

  161. Papaioannou, T. G. & Stefanadis, C. Basic principles of the intraaortic balloon pump and mechanisms affecting its performance. ASAIO J. 51, 296–300 (2005).

    PubMed  Google Scholar 

  162. Goldstein, J. A. & Kern, M. J. Percutaneous mechanical support for the failing right heart. Cardiol. Clin. 30, 303–310 (2012).

    PubMed  Google Scholar 

  163. Berman, M., Tsui, S., Vuylsteke, A., Klein, A. & Jenkins, D. P. Life-threatening right ventricular failure in pulmonary hypertension: RVAD or ECMO? J. Heart Lung Transplant. 27, 1188–1189 (2008).

    PubMed  Google Scholar 

  164. Berman, M. et al. Successful extracorporeal membrane oxygenation support after pulmonary thromboendarterectomy. Ann. Thorac. Surg. 86, 1261–1267 (2008).

    PubMed  Google Scholar 

  165. Scherer, M., Sirat, A. S., Moritz, A. & Martens, S. Extracorporeal membrane oxygenation as perioperative right ventricular support in patients with biventricular failure undergoing left ventricular assist device implantation. Eur. J. Cardiothorac. Surg. 39, 939–944 (2011).

    PubMed  Google Scholar 

  166. Scherer, M., Moritz, A. & Martens, S. The use of extracorporeal membrane oxygenation in patients with therapy refractory cardiogenic shock as a bridge to implantable left ventricular assist device and perioperative right heart support. J. Artif. Organs 12, 160–165 (2009).

    CAS  PubMed  Google Scholar 

  167. Taghavi, S. et al. Extracorporeal membrane oxygenation is superior to right ventricular assist device for acute right ventricular failure after heart transplantation. Ann. Thorac. Surg. 78, 1644–1649 (2004).

    PubMed  Google Scholar 

  168. Moazami, N. et al. Mechanical support for isolated right ventricular failure in patients after cardiotomy. J. Heart Lung Transplant. 23, 1371–1375 (2004).

    PubMed  Google Scholar 

  169. Kaul, T. K. & Kahn, D. R. Postinfarct refractory right ventricle: right ventricular exclusion. A possible option to mechanical cardiac support, in patients unsuitable for heart transplant. J. Cardiovasc. Surg. (Torino) 41, 349–355 (2000).

    CAS  Google Scholar 

  170. Furukawa, K., Motomura, T. & Nosé, Y. Right ventricular failure after left ventricular assist device implantation: the need for an implantable right ventricular assist device. Artif. Organs 29, 369–377 (2005).

    PubMed  Google Scholar 

  171. Klima, U. et al. Severe right heart failure after heart transplantation. A single-center experience. Transpl. Int. 18, 326–332 (2005).

    PubMed  Google Scholar 

  172. Kormos, R. L. et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J. Thorac. Cardiovasc. Surg. 139, 1316–1324 (2010).

    PubMed  Google Scholar 

  173. Matthews, J. C., Koelling, T. M., Pagani, F. D. & Aaronson, K. D. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J. Am. Coll. Cardiol. 51, 2163–2172 (2008).

    PubMed Central  PubMed  Google Scholar 

  174. Fitzpatrick, J. R. 3rd et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J. Heart Lung Transplant. 27, 1286–1292 (2008).

    PubMed Central  PubMed  Google Scholar 

  175. Drakos, S. G. et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am. J. Cardiol. 105, 1030–1035 (2010).

    PubMed  Google Scholar 

  176. Potapov, E. V. et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J. Heart Lung Transplant. 27, 1275–1281 (2008).

    PubMed  Google Scholar 

  177. Kukucka, M. et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J. Heart Lung Transplant. 30, 64–69 (2011).

    PubMed  Google Scholar 

  178. Grant, A. D., Smedira, N. G., Starling, R. C. & Marwick, T. H. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J. Am. Coll. Cardiol. 60, 521–528 (2012).

    PubMed  Google Scholar 

  179. Fitzpatrick, J. R. 3rd et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J. Thorac. Cardiovasc. Surg. 137, 971–977 (2009).

    PubMed Central  PubMed  Google Scholar 

  180. Palardy, M. et al. Right ventricular dysfunction during intensive pharmacologic unloading persists after mechanical unloading. J. Card. Fail. 16, 218–224 (2010).

    PubMed  Google Scholar 

  181. Bhama, J. K. et al. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J. Heart Lung Transplant. 28, 971–976 (2009).

    PubMed  Google Scholar 

  182. Takayama, H. et al. A novel approach to percutaneous right-ventricular mechanical support. Eur. J. Cardiothorac. Surg. 41, 423–426 (2012).

    PubMed  Google Scholar 

  183. McGee, E. C. Jr et al. Biventricular continuous flow VADs demonstrate diurnal flow variation and lead to end-organ recovery. Ann. Thorac. Surg. 92, e1–e3 (2011).

    PubMed  Google Scholar 

  184. Loebe, M. et al. Initial clinical experience of total cardiac replacement with dual HeartMate-II axial flow pumps for severe biventricular heart failure. Methodist Debakey Cardiovasc. J. 7, 40–44 (2011).

    PubMed  Google Scholar 

  185. Takagaki, M. et al. Successful conversion of TandemHeart left ventricular assist device to right ventricular assist device after implantation of a HeartMate XVE. Ann. Thorac. Surg. 86, 1677–1679 (2008).

    PubMed  Google Scholar 

  186. Giesler, G. M., Gomez, J. S., Letsou, G., Vooletich, M. & Smalling, R. W. Initial report of percutaneous right ventricular assist for right ventricular shock secondary to right ventricular infarction. Catheter. Cardiovasc. Interv. 68, 263–266 (2006).

    PubMed  Google Scholar 

  187. Prutkin, J. M., Strote, J. A. & Stout, K. K. Percutaneous right ventricular assist device as support for cardiogenic shock due to right ventricular infarction. J. Invasive Cardiol. 20, E215–E216 (2008).

    PubMed  Google Scholar 

  188. Copeland, J. G. et al. Cardiac replacement with a total artificial heart as a bridge to transplantation. N. Engl. J. Med. 351, 859–867 (2004).

    CAS  PubMed  Google Scholar 

  189. Kirsch, M. et al. Survival after biventricular mechanical circulatory support: does the type of device matter? J. Heart Lung Transplant. 31, 501–508 (2012).

    PubMed  Google Scholar 

  190. Meyns, B. P. et al. Clinical benefits of partial circulatory support in New York Heart Association class IIIB and early class IV patients. Eur. J. Cardiothorac. Surg. 39, 693–698 (2011).

    PubMed  Google Scholar 

  191. Schmitto, J. D. et al. Two axial-flow Synergy Micro-pumps as a biventricular assist device in an ovine animal model. J. Heart Lung Transplant. 31, 1223–1229 (2012).

    PubMed  Google Scholar 

  192. Stehlik, J. et al. The Registry of the International Society for Heart and Lung Transplantation: 29th official adult heart transplant report—2012. J. Heart Lung Transplant. 31, 1052–1064 (2012).

    PubMed  Google Scholar 

  193. Christie, J. D. et al. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report—2012. J. Heart Lung Transplant. 31, 1073–1086 (2012).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

M. A. Simon has received research support from AHA, Pfizer, and The Pittsburgh Foundation, and has acted as a consultant for United Therapeutics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, M. Assessment and treatment of right ventricular failure. Nat Rev Cardiol 10, 204–218 (2013). https://doi.org/10.1038/nrcardio.2013.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.12

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing