Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of cardiovascular disease in patients with kidney disease

Abstract

The burden of cardiovascular disease is high in patients with chronic kidney disease or end-stage renal disease. The presence of kidney dysfunction affects the cardiovascular system in multiple ways, including accelerated progression of atherosclerosis and valvular disease, the exacerbation of congestive heart failure, and the development of pericardial disease. This comorbidity results not only from the concordance of shared risk factors, but also from other issues specific to this population, such as systemic inflammation and vascular calcification. Furthermore, both the sensitivity and specificity of noninvasive testing modalities, and the efficacy of several pharmacotherapeutic strategies, are diminished in this population. The exclusion of patients with severe kidney disease from many clinical trials of cardiac interventions raises various therapeutic uncertainties, and kidney disease itself is likely to alter the underlying cardiovascular physiology. In this Review, we discuss aspects of the epidemiology, pathophysiology, and diagnosis of cardiovascular disease in patients with kidney disease, and propose specific, evidence-based recommendations for pharmacological and surgical treatment.

Key Points

  • The substantial morbidity and mortality from coronary artery disease (CAD) in patients with chronic kidney disease or end-stage renal disease (ESRD) make the effective management of these conditions critical

  • The high burden of CAD in patients with kidney disease is related to both shared traditional risk factors and issues specific to this population, including systemic inflammation and vascular calcification

  • Some medications, such as statins, have been found to be beneficial in the early stages of kidney disease, but have not proved to be effective in patients with ESRD

  • Pressure and volume overload in patients with kidney disease lead to left ventricular changes and congestive heart failure, which necessitate medical therapy and, potentially, ultrafiltration for fluid removal

  • No robust data exist regarding prophylactic coronary revascularization in asymptomatic patients with kidney disease; adherence to the current guidelines for revascularization in the general population seems reasonable

  • Randomized controlled trials in patients with moderate-to-severe kidney disease—individuals who are often excluded from clinical trials—are sparse, which makes therapeutic decisions in this population challenging

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationship between chronic kidney disease and coronary artery disease.
Figure 2: Pathophysiology of the cardiorenal syndrome.
Figure 3: Treatment of cardiovascular diseases in patients with kidney disease.

Similar content being viewed by others

References

  1. US Renal Data System. 2011 Atlas of CKD & ESRD [online], (2012).

  2. Stack, A. G. & Bloembergen, W. E. Prevalence and clinical correlates of coronary artery disease among new dialysis patients in the United States: a cross-sectional study. J. Am. Soc. Nephrol. 12, 1516–1523 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Herzog, C. A., Ma, J. Z. & Collins, A. J. Poor long-term survival after acute myocardial infarction among patients on long-term dialysis. N. Engl. J. Med. 339, 799–805 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Joki, N., Hase, H., Nakamura, R. & Yamaguchi, T. Onset of coronary artery disease prior to initiation of hemodialysis in patients with end-stage renal disease. Nephrol. Dial. Transplant. 12, 718–723 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Ohtake, T. et al. High prevalence of occult coronary artery stenosis in patients with chronic kidney disease at the initiation of renal replacement therapy: an angiographic examination. J. Am. Soc. Nephrol. 16, 1141–1148 (2005).

    Article  PubMed  Google Scholar 

  6. Charytan, D., Kuntz, R. E., Mauri, L. & DeFilippi, C. Distribution of coronary artery disease and relation to mortality in asymptomatic hemodialysis patients. Am. J. Kidney Dis. 49, 409–416 (2007).

    Article  PubMed  Google Scholar 

  7. Stenvinkel, P. & Alvestrand, A. Inflammation in end-stage renal disease: sources, consequences, and therapy. Semin. Dial. 15, 329–337 (2002).

    Article  PubMed  Google Scholar 

  8. Manske, C. L., Thomas, W., Wang, T. & Wilson, R. F. Screening diabetic transplant candidates for coronary artery disease: identification of a low risk subgroup. Kidney Int. 44, 617–621 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Wanner, C. & Metzger, T. C-reactive protein a marker for all-cause and cardiovascular mortality in haemodialysis patients. Nephrol. Dial. Transplant. 17, 29–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Qunibi, W. Y., Nolan, C. A. & Ayus, J. C. Cardiovascular calcification in patients with end-stage renal disease: a century-old phenomenon. Kidney Int. Suppl. 82, S73–S80 (2002).

    Article  CAS  Google Scholar 

  11. Block, G. A., Hulbert-Shearon, T. E., Levin, N. W. & Port, F. K. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am. J. Kidney Dis. 31, 607–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Moe, S. M. & Chen, N. X. Mechanisms of vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 19, 213–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. van der Zee, S., Baber, U., Elmariah, S., Winston, J. & Fuster, V. Cardiovascular risk factors in patients with chronic kidney disease. Nat. Rev. Cardiol. 6, 580–589 (2009).

    Article  PubMed  Google Scholar 

  14. Klassen, P. S. et al. Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. JAMA 287, 1548–1555 (2002).

    Article  PubMed  Google Scholar 

  15. Kahn, M. R., Fallahi, A., Kim, M. C., Esquitin, R. & Robbins, M. J. Coronary artery disease in a large renal transplant population: implications for management. Am. J. Transplant. 11, 2665–2674 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Patel, A. D. et al. Prognostic value of myocardial perfusion imaging in predicting outcome after renal transplantation. Am. J. Cardiol. 92, 146–151 (2003).

    Article  PubMed  Google Scholar 

  17. De Lima, J. J. et al. Coronary angiography is the best predictor of events in renal transplant candidates compared with noninvasive testing. Hypertension 42, 263–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, L. W. et al. Cardiac testing for coronary artery disease in potential kidney transplant recipients. Cochrane Database Systematic Reviews, Issue 1 Art. No.: CD008691 http://dx.doi.org/10.1002/14651858.CD008691.pub2 (2011).

  19. Lentine, K. L. et al. Cardiac disease evaluation and management among kidney and liver transplantation candidates: a scientific statement from the American Heart Association and the American College of Cardiology Foundation. Circulation 126, 617–663 (2012).

    Article  PubMed  Google Scholar 

  20. K/DOQI Workgroup. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am. J. Kidney Dis. 45 (Suppl. 3), S1–S153 (2005).

  21. Friedman, S. E. et al. A call to action: variability in guidelines for cardiac evaluation before renal transplantation. Clin. J. Am. Soc. Nephrol. 6, 1185–1191 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hillis, L. D. et al. 2011 ACCF/AHA guideline for coronary artery bypass graft surgery: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124, e652–e735 (2011).

    PubMed  Google Scholar 

  23. Palmer, S. C. et al. Effects of antiplatelet therapy on mortality and cardiovascular and bleeding outcomes in persons with chronic kidney disease: a systematic review and meta-analysis. Ann. Intern. Med. 156, 445–459 (2012).

    Article  PubMed  Google Scholar 

  24. Holden, R. M. et al. Major bleeding in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 3, 105–110 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hansson, L. et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. Lancet 351, 1755–1762 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Jardine, M. J. et al. Aspirin is beneficial in hypertensive patients with chronic kidney disease: a post-hoc subgroup analysis of a randomized controlled trial. J. Am. Coll. Cardiol. 56, 956–965 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Htun, P. et al. Low responsiveness to clopidogrel increases risk among CKD patients undergoing coronary intervention. J. Am. Soc. Nephrol. 22, 627–633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morel, O. et al. Cardiovascular mortality in chronic kidney disease patients undergoing percutaneous coronary intervention is mainly related to impaired P2Y12 inhibition by clopidogrel. J. Am. Coll. Cardiol. 57, 399–408 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Cuisset, T. et al. Lack of effect of chronic kidney disease on clopidogrel response with high loading and maintenance doses of clopidogrel after acute coronary syndrome. Thromb. Res. 126, e400–e402 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Angiolillo, D. J. et al. Impact of chronic kidney disease on platelet function profiles in diabetes mellitus patients with coronary artery disease taking dual antiplatelet therapy. J. Am. Coll. Cardiol. 55, 1139–1146 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Steinhubl, S. R. et al. Clopidogrel for the Reduction of Events During Observation. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA 288, 2411–2420 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Best, P. J. et al. The efficacy and safety of short- and long-term dual antiplatelet therapy in patients with mild or moderate chronic kidney disease: results from the Clopidogrel for the Reduction of Events During Observation (CREDO) trial. Am. Heart J. 155, 687–693 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. James, S. et al. Ticagrelor versus clopidogrel in acute coronary syndromes in relation to renal function: results from the Platelet Inhibition and Patient Outcomes (PLATO) trial. Circulation 122, 1056–1067 (2010).

    Article  PubMed  Google Scholar 

  35. Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Small, D. S. et al. Prasugrel pharmacokinetics and pharmacodynamics in subjects with moderate renal impairment and end-stage renal disease. J. Clin. Pharm. Ther. 34, 585–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Kidney Disease Outcomes Quality Initiative (K/DOQI) Group. K/DOQI clinical practice guidelines for management of dyslipidemias in patients with kidney disease. Am. J. Kidney Dis. 41 (Suppl. 3), S1–S91 (2003).

  38. Tonelli, M. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet 380, 807–814 (2012).

    Article  PubMed  Google Scholar 

  39. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III): final report. Circulation 106, 3143–3421 (2002).

  40. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  41. Tonelli, M. et al. Pravastatin for secondary prevention of cardiovascular events in persons with mild chronic renal insufficiency. Ann. Intern. Med. 138, 98–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Tonelli, M. et al. Effect of pravastatin on cardiovascular events in people with chronic kidney disease. Circulation 110, 1557–1563 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Shepherd, J. et al. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study. J. Am. Coll. Cardiol. 51, 1448–1454 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Fellström, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stevens, K. K. & Jardine, A. G. SHARP: a stab in the right direction in chronic kidney disease. Lancet 377, 2153–2154 (2011).

    Article  PubMed  Google Scholar 

  48. Holdaas, H. et al. Rosuvastatin in diabetic hemodialysis patients. J. Am. Soc. Nephrol. 22, 1335–1341 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krane, V. & Wanner, C. Statins, inflammation and kidney disease. Nat. Rev. Nephrol. 7, 385–397 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Iseki, K., Tozawa, M., Yoshi, S. & Fukiyama, K. Serum C-reactive protein (CRP) and risk of death in chronic dialysis patients. Nephrol. Dial. Transplant. 14, 1956–1960 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Krane, V. et al. Effect of atorvastatin on inflammation and outcome in patients with type 2 diabetes mellitus on hemodialysis. Kidney Int. 74, 1461–1467 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Laufs, U. et al. Atorvastatin upregulates type III nitric oxide synthase in thrombocytes, decreases platelet activation, and protects from cerebral ischemia in normocholesterolemic mice. Stroke 31, 2442–2449 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Zoccali, C. et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 358, 2113–2117 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Ravani, P. et al. Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J. Am. Soc. Nephrol. 16, 2449–2455 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Hemmelgarn, B. R. et al. Survival after coronary revascularization among patients with kidney disease. Circulation 110, 1890–1895 (2004).

    Article  PubMed  Google Scholar 

  56. Szczech, L. A. et al. Differential survival after coronary revascularization procedures among patients with renal insufficiency. Kidney Int. 60, 292–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Herzog, C. A., Ma, J. Z. & Collins, A. J. Comparative survival of dialysis patients in the United States after coronary angioplasty, coronary artery stenting, and coronary artery bypass surgery and impact of diabetes. Circulation 106, 2207–2211 (2002).

    Article  PubMed  Google Scholar 

  58. Herzog, C. A., Ma, J. Z. & Collins, A. J. Long-term outcome of renal transplant recipients in the United States after coronary revascularization procedures. Circulation 109, 2866–2871 (2004).

    Article  PubMed  Google Scholar 

  59. Hage, F. G. et al. Predictors of survival in patients with end-stage renal disease evaluated for kidney transplantation. Am. J. Cardiol. 100, 1020–1025 (2007).

    Article  PubMed  Google Scholar 

  60. Sunagawa, G. et al. Coronary artery bypass surgery is superior to percutaneous coronary intervention with drug-eluting stents for patients with chronic renal failure on hemodialysis. Ann. Thorac. Surg. 89, 1896–1900 (2010).

    Article  PubMed  Google Scholar 

  61. Manabe, S. et al. Coronary artery bypass surgery versus percutaneous coronary artery intervention in patients on chronic hemodialysis: does a drug-eluting stent have an impact on clinical outcome? J. Card. Surg. 24, 234–239 (2009).

    Article  PubMed  Google Scholar 

  62. Halkin, A. et al. Impact of moderate renal insufficiency on restenosis and adverse clinical events after paclitaxel-eluting and bare metal stent implantation: results from the TAXUS-IV trial. Am. Heart J. 150, 1163–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Gruberg, L. et al. Clinical outcome following percutaneous coronary interventions in patients with chronic renal failure. Catheter. Cardiovasc. Interv. 55, 66–72 (2002).

    Article  PubMed  Google Scholar 

  64. Otsuka, Y. et al. Comparison of haemodialysis patients and non-haemodialysis patients with respect to clinical characteristics and 3-year clinical outcomes after sirolimus-eluting stent implantation: insights from the Japan multi-centre post-marketing surveillance registry. Eur. Heart J. 32, 829–837 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Moses, J. W. et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med. 349, 1315–1323 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Stone, G. W. et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 350, 221–231 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kuchulakanti, P. K. et al. Impact of chronic renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary intervention with sirolimus-eluting stents versus bare metal stents. Am. J. Cardiol. 97, 792–797 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Tsai, T. T. et al. Safety and efficacy of drug-eluting stents in older patients with chronic kidney disease: a report from the linked CathPCI Registry–CMS Claims Database. J. Am. Coll. Cardiol. 58, 1859–1869 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Das, P. et al. Impact of drug-eluting stents on outcomes of patients with end-stage renal disease undergoing percutaneous coronary revascularization. J. Invasive Cardiol. 18, 405–408 (2006).

    PubMed  Google Scholar 

  70. Green, S. M. et al. Comparison of bare-metal and drug-eluting stents in patients with chronic kidney disease (from the NHLBI Dynamic Registry). Am. J. Cardiol. 108, 1658–1664 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Halkin, A. et al. Clinical outcomes following percutaneous coronary intervention with drug-eluting vs. bare-metal stents in dialysis patients. J. Invasive Cardiol. 18, 577–583 (2006).

    PubMed  Google Scholar 

  72. Rosenblum, M. A., Robbins, M. J., Farkouh, M. E., Winston, J. A. & Kim, M. C. Diminished benefits of drug-eluting stents versus bare metal stents in patients with severe renal insufficiency. Nephron Clin. Pract. 113, c198–c202 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Syed, A. I. et al. Sirolimus-eluting stents versus paclitaxel-eluting stents in patients with chronic renal insufficiency. J. Interv. Cardiol. 23, 33–39 (2010).

    Article  PubMed  Google Scholar 

  74. Ishio, I. et al. Impact of drug-eluting stents on clinical and angiographic outcomes in dialysis patients. Circ. J. 71, 1525–1529 (2007).

    Article  PubMed  Google Scholar 

  75. Yachi, S. et al. Clinical and angiographic outcomes following percutaneous coronary intervention with sirolimus-eluting stents versus bare-metal stents in hemodialysis patients. Am. J. Kidney Dis. 54, 299–306 (2009).

    Article  PubMed  Google Scholar 

  76. Aoyama, T. et al. Sirolimus-eluting stents vs bare metal stents for coronary intervention in Japanese patients with renal failure on hemodialysis. Circ. J. 72, 56–60 (2008).

    Article  PubMed  Google Scholar 

  77. Simsek, C. et al. Impact of renal insufficiency on safety and efficacy of drug-eluting stents compared to bare-metal stents at 6 years. Catheter. Cardiovasc. Interv. 80, 18–26 (2012).

    Article  PubMed  Google Scholar 

  78. Ronco, C., Haapio, M., House, A. A., Anavekar, N. & Bellomo, R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 52, 1527–1539 (2008).

    Article  PubMed  Google Scholar 

  79. Herzog. et al. Cardiovascular disease in chronic kidney disease: a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 80, 572–586 (2011).

    Article  PubMed  Google Scholar 

  80. Stack, A. G. & Bloembergen, W. E. A cross-sectional study of the prevalence and clinical correlates of congestive heart failure among incident US dialysis patients. Am. J. Kidney Dis. 38, 992–1000 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Foley, R. N. et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 47, 186–192 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Foley, R. N. et al. Long-term evolution of cardiomyopathy in dialysis patients. Kidney Int. 54, 1720–1725 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Bock, J. S. & Gottlieb, S. S. Cardiorenal syndrome: new perspectives. Circulation 121, 2592–2600 (2010).

    Article  PubMed  Google Scholar 

  84. Binanay, C. et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294, 1625–1633 (2005).

    Article  PubMed  Google Scholar 

  85. Mullens, W. et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J. Am. Coll. Cardiol. 51, 300–306 (2008).

    Article  PubMed  Google Scholar 

  86. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 53, 582–588 (2009).

    Article  PubMed  Google Scholar 

  88. CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353, 9–13 (1999).

  89. Castagno, D. et al. Improved survival with bisoprolol in patients with heart failure and renal impairment: an analysis of the cardiac insufficiency bisoprolol study II (CIBIS-II) trial. Eur. J. Heart Fail. 12, 607–616 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Ghali, J. K. et al. The influence of renal function on clinical outcome and response to beta-blockade in systolic heart failure: insights from Metoprolol CR/XL Randomized Intervention Trial in Chronic HF (MERIT-HF). J. Card. Fail. 15, 310–318 (2009).

    Article  PubMed  Google Scholar 

  91. Badve, S. V. et al. Effects of beta-adrenergic antagonists in patients with chronic kidney disease: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 58, 1152–1161 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Cice, G. et al. Dilated cardiomyopathy in dialysis patients—beneficial effects of carvedilol: a double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 37, 407–411 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Cice, G. et al. Carvedilol increases two-year survival in dialysis patients with dilated cardiomyopathy: a prospective, placebo-controlled trial. J. Am. Coll. Cardiol. 41, 1438–1444 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Bakris, G. L. & Weir, M. R. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern? Arch. Intern. Med. 160, 685–693 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Zannad, F. et al. Prevention of cardiovascular events in end-stage renal disease: results of a randomized trial of fosinopril and implications for future studies. Kidney Int. 70, 1318–1324 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Suzuki, H. et al. Effect of angiotensin receptor blockers on cardiovascular events in patients undergoing hemodialysis: an open-label randomized controlled trial. Am. J. Kidney Dis. 52, 501–506 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Cohn, J. N. et al. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 45, 1667–1675 (2001).

    Article  Google Scholar 

  98. CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N. Engl. J. Med. 31, 1429–1435 (1987).

  99. Pfeffer, M. A. et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction—results of the Survival And Ventricular Enlargement trial. N. Engl. J. Med. 327, 669–677 (1992).

    Article  CAS  PubMed  Google Scholar 

  100. SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N. Engl. J. Med. 327, 685–691 (1992).

  101. Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 342, 821–828 (1993).

  102. Cohn, J. N. et al. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Engl. J. Med. 345, 1667–1675 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Pfeffer, M. A. et al. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362, 759–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Anand, I. S. et al. Proteinuria, chronic kidney disease, and the effect of an angiotensin receptor blocker in addition to an angiotensin-converting enzyme inhibitor in patients with moderate to severe heart failure. Circulation 120, 1577–1584 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Cice, G. et al. Effects of telmisartan added to angiotensin-converting enzyme inhibitors on mortality and morbidity in hemodialysis patients with chronic heart failure: a double-blind, placebo-controlled trial. J. Am. Coll. Cardiol. 56, 1701–1708 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Schjoedt, K. J. et al. Beneficial impact of spironolactone in diabetic nephropathy. Kidney Int. 68, 2829–2836 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Bianchi, S., Bigazzi, R. & Campese, V. M. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 70, 2116–2123 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Chrysostomou, A., Pedagogos, E., MacGregor, L. & Becker, G. J. Double-blind, placebo-controlled study on the effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long-term angiotensin-converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Clin. J. Am. Soc. Nephrol. 1, 256–262 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Bomback, A. S., Kshirsagar, A. V., Amamoo, M. A. & Klemmer, P. J. Change in proteinuria after adding aldosterone blockers to ACE inhibitors or angiotensin receptor blockers in CKD: a systematic review. Am. J. Kidney Dis. 51, 199–211 (2008).

    Article  PubMed  Google Scholar 

  112. Navaneethan, S. D., Nigwekar, S. U., Sehgal, A. R. & Strippoli, G. F. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin. J. Am. Soc. Nephrol. 4, 542–551 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Edwards, N. C. et al. Effect of spironolactone on left ventricular systolic and diastolic function in patients with early stage chronic kidney disease. Am. J. Cardiol. 106, 1505–1511 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Saudan, P. et al. Safety of low-dose spironolactone administration in chronic haemodialysis patients. Nephrol. Dial. Transplant. 18, 2359–2363 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Hussain, S., Dreyfus, D. E., Marcus, R. J., Biederman, R. W. & McGill, R. L. Is spironolactone safe for dialysis patients? Nephrol. Dial. Transplant. 18, 2364–2368 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Michea, L., Vukusich, A., González, M., Zehnder, C. & Marusic, E. T. Effect of spironolactone on K+ homeostasis and ENaC expression in lymphocytes from chronic hemodialysis patients. Kidney Int. 66, 1647–1653 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Matsumoto, Y. et al. Long-term low-dose spironolactone therapy is safe in oligoanuric hemodialysis patients. Cardiology 114, 32–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Hauptman, P. J. & Kelly, R. A. Digitalis. Circulation 99, 1265–1270 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Chan, K. E., Lazarus, J. M. & Hakim, R. M. Digoxin associates with mortality in ESRD. J. Am. Soc. Nephrol. 21, 1550–1559 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bauman, J. L., DiDomenico, R. J., Viana, M. & Fitch, M. A method of determining the dose of digoxin for heart failure in the modern era. Arch. Intern. Med. 166, 2539–2545 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Eshaghian, S., Horwich, T. B. & Fonarow, G. C. Relation of loop diuretic dose to mortality in advanced heart failure. Am. J. Cardiol. 97, 1759–1764 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Packer, M. et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. Circulation 100, 2312–2318 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Maher, E. R., Young, G., Smyth-Walsh, B., Pugh, S. & Curtis, J. R. Aortic and mitral valve calcification in patients with end-stage renal disease. Lancet 2, 875–877 (1987).

    Article  CAS  PubMed  Google Scholar 

  124. Straumann, E. et al. Aortic and mitral valve disease in patients with end stage renal failure on long-term haemodialysis. Br. Heart J. 62, 236–239 (1992).

    Article  Google Scholar 

  125. Perkovic, V. et al. Accelerated progression of calcific aortic stenosis in dialysis patients. Nephron Clin. Pract. 94, c40–c45 (2003).

    Article  PubMed  Google Scholar 

  126. Maher, E. R., Pazianas, M. & Curtis, J. R. Calcific aortic stenosis: a complication of chronic uraemia. Nephron 47, 119–122 (1987).

    Article  CAS  PubMed  Google Scholar 

  127. Kume, T. et al. Rate of progression of valvular aortic stenosis in patients undergoing dialysis. J. Am. Soc. Echocardiogr. 19, 914–918 (2006).

    Article  PubMed  Google Scholar 

  128. Herzog, C. A., Ma, J. Z. & Collins, A. J. Long-term survival of dialysis patients in the United States with prosthetic heart valves: should ACC/AHA practice guidelines on valve selection be modified? Circulation 105, 1336–1341 (2002).

    Article  PubMed  Google Scholar 

  129. Bonow, R. O. et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 118, e523–e661 (2008).

    PubMed  Google Scholar 

  130. Kaplon, R. J. et al. Cardiac valve replacement in patients on dialysis: influence of prosthesis on survival. Ann. Thorac. Surg. 70, 438–441 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Brinkman, W. T., Williams, W. H., Guyton, R. A., Jones, E. L. & Craver, J. M. Valve replacement in patients on chronic renal dialysis: implications for valve prosthesis selection. Ann. Thorac. Surg. 74, 37–42 (2002).

    Article  PubMed  Google Scholar 

  132. Chan, V. et al. Valve replacement surgery in end-stage renal failure: mechanical prostheses versus bioprostheses. Ann. Thorac. Surg. 81, 857–862 (2006).

    Article  PubMed  Google Scholar 

  133. Chan, V., Chen, L., Mesana, L., Mesana, T. G. & Ruel, M. Heart valve prosthesis selection in patients with end-stage renal disease requiring dialysis: a systematic review and meta-analysis. Heart 97, 2033–2037 (2011).

    Article  PubMed  Google Scholar 

  134. Reinecke, H. et al. Dilemmas in the management of atrial fibrillation in chronic kidney disease. J. Am. Soc. Nephrol. 20, 705–711 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Hart, R. G., Pearce, L. A., Asinger, R. W. & Herzog, C. A. Warfarin in atrial fibrillation patients with moderate chronic kidney disease. Clin. J. Am. Soc. Nephrol. 6, 2599–2604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Nakagawa, K. et al. Chronic kidney disease and CHADS2 score independently predict cardiovascular events and mortality in patients with nonvalvular atrial fibrillation. Am. J. Cardiol. 107, 912–916 (2011).

    Article  PubMed  Google Scholar 

  137. Hart, R. G., Eikelboom, J. W., Ingram, A. J. & Herzog, C. A. Anticoagulants in atrial fibrillation patients with chronic kidney disease. Nat. Rev. Nephrol. 8, 569–578 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Vázquez, E. et al. Comparison of prognostic value of atrial fibrillation versus sinus rhythm in patients on long-term hemodialysis. Am. J. Cardiol. 92, 868–871 (2003).

    Article  PubMed  Google Scholar 

  139. Vázquez, E. et al. Atrial fibrillation in incident dialysis patients. Kidney Int. 76, 324–330 (2009).

    Article  PubMed  Google Scholar 

  140. Limdi, N. A. et al. Kidney function influences warfarin responsiveness and hemorrhagic complications. J. Am. Soc. Nephrol. 20, 912–921 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang, F., Chou, D., Schweitzer, P. & Hanon, S. Warfarin in haemodialysis patients with atrial fibrillation: what benefit? Europace 12, 1666–1672 (2010).

    Article  PubMed  Google Scholar 

  142. Connolly, S. J. et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 361, 1139–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Connolly, S. J. et al. Apixaban in patients with atrial fibrillation. N. Engl. J. Med. 364, 806–817 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Granger, C. B. et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 365, 981–992 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Patel, M. R. et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 365, 883–891 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Cairns, J. A. et al. Canadian Cardiovascular Society atrial fibrillation guidelines 2010: prevention of stroke and systemic thromboembolism in atrial fibrillation and flutter. Can. J. Cardiol. 27, 74–90 (2011).

    Article  PubMed  Google Scholar 

  147. Green, D. et al. Sudden cardiac death in hemodialysis patients: an in-depth review. Am. J. Kidney Dis. 57, 921–929 (2011).

    Article  PubMed  Google Scholar 

  148. Herzog, C. A. et al. Survival of dialysis patients after cardiac arrest and the impact of implantable cardioverter defibrillators. Kidney Int. 68, 818–825 (2005).

    Article  PubMed  Google Scholar 

  149. Krysa, J. et al. Outcome of patients on renal replacement therapy after colorectal surgery. Dis. Colon Rectum 51, 961–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, J. Y. et al. Risks of morbidity and mortality in dialysis patients undergoing coronary artery bypass surgery. Circulation 102, 2973–2977 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Charytan, D. M. & Kuntz, R. E. Risks of coronary artery bypass surgery in dialysis-dependent patients—analysis of the 2001 National Inpatient Sample. Nephrol. Dial. Transplant. 22, 1665–1671 (2007).

    Article  PubMed  Google Scholar 

  152. Mistry, B. M. et al. Prognostic value of dipyridamole thallium-201 screening to minimize perioperative cardiac complications in diabetics undergoing kidney or kidney-pancreas transplantation. Clin. Transplant. 12, 130–135 (1998).

    CAS  PubMed  Google Scholar 

  153. Kasiske, B. L. et al. The evaluation of renal transplant candidates: clinical practice guidelines. Patient Care and Education Committee of the American Society of Transplant Physicians. J. Am. Soc. Nephrol. 6, 1–34 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Fleisher, L. A. et al. ACC/AHA 2007 guidelines on perioperative cardiovascular evaluation and care for noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 2002 guidelines on perioperative cardiovascular evaluation for noncardiac surgery): developed in collaboration with the American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, and Society for Vascular Surgery. Circulation 116, e418–e499 (2007).

    PubMed  Google Scholar 

  155. Wali, R. K. et al. Effect of kidney transplantation on left ventricular systolic dysfunction and congestive heart failure in patients with end-stage renal disease. J. Am. Coll. Cardiol. 45, 1051–1060 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, contributed substantially to discussions of its content, wrote the manuscript, and reviewed and edited it before submission.

Corresponding author

Correspondence to Mark R. Kahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahn, M., Robbins, M., Kim, M. et al. Management of cardiovascular disease in patients with kidney disease. Nat Rev Cardiol 10, 261–273 (2013). https://doi.org/10.1038/nrcardio.2013.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.15

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing