Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of senescence and telomere shortening in cardiovascular disease

Abstract

Cellular senescence, defined as arrest during the cell cycle (G0), is involved in the complex process of the biological ageing of tissues, organs, and organisms. Senescence is driven by many factors including oxidative stress, the DNA damage and repair response, inflammation, mitogenic signals, and telomere shortening. Telomeres are shortened by each cell division until a critical length is reached and dysfunction ensues. DNA-repair pathways are then recruited and cells enter senescence, losing their capacity to proliferate. In addition to cell division, factors causing telomere shortening include DNA damage, inflammation, and oxidative stress. Both cardiovascular risk factors and common cardiovascular diseases, such as atherosclerosis, heart failure, and hypertension, are associated with short leucocyte telomeres, but causality remains undetermined. Telomere length does not satisfy strict criteria for being a biomarker of ageing, but adds predictive power to that of chronological age, and can be considered a marker of cardiovascular ageing. The 'senescence-associated secretory phenotype' of senescent cells exerts a wide range of autocrine and paracrine activities aimed at tissue repair, but which also fuel degenerative and proliferative alterations that contribute to cardiovascular disease. In this Review, the relationship between telomere shortening, senescence, and cardiovascular disease is discussed.

Key Points

  • Cellular senescence—arrest during the cell cycle (G0)—is involved in the ageing process, and driven by oxidative stress, DNA damage and repair response, inflammation, mitogenic signals, and telomere shortening

  • Cellular senescence parallels the development of atherosclerosis and other pathologies in the vasculature and heart and is, therefore, likely to have a pivotal role in cardiovascular disease

  • Telomere length, usually measured as leucocyte telomere length, is widely considered a marker of biological ageing, is largely inherited, and is modulated by various intrinsic and environmental factors throughout life

  • Endogenous factors causing telomere attrition include ageing, cell division, genetic factors, DNA damage, inflammation, and oxidative stress; telomere attrition can be retarded by genetic factors, telomerase, oestrogen, and antioxidants

  • Environmental factors associated with telomere shortening include poor lifestyle (smoking, excess calories, sedentary lifestyle, alcohol abuse), and severe mental stress, whereas healthy lifestyle is associated with maintenance of long telomeres

  • Telomere length seems to have a key role in cardiovascular disease by driving cells into cell-cycle arrest, senescence, and ultimately apoptosis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomere shortening and cellular senescence.
Figure 2: Human chromosomes and simplified telomere structure.
Figure 3: Telomere attrition, cellular senescence, and cardiovascular disease.

Similar content being viewed by others

References

  1. Campisi, J., Andersen, J. K., Kapahi, P. & Melov, S. Cellular senescence: a link between cancer and age-related degenerative disease? Semin. Cancer Biol. 21, 354–359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kovacic, J. C., Moreno, P., Hachinski, V., Nabel, E. G. & Fuster, V. Cellular senescence, vascular disease, and aging: part 1 of a 2-part review. Circulation 123, 1650–1660 (2011).

    Article  PubMed  Google Scholar 

  3. Kovacic, J. C., Moreno, P., Nabel, E. G., Hachinski, V. & Fuster, V. Cellular senescence, vascular disease, and aging: part 2 of a 2-part review. Circulation 123, 1990–1910 (2011).

    Google Scholar 

  4. Zhu, H., Belcher, M. & van der Harst, P. Healthy aging and disease: a role for telomere biology? Clin. Sci. 120, 427–440 (2011).

    Article  Google Scholar 

  5. Wang, J. C. & Bennett, M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ. Res. 111, 245–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Mather, K. A., Jorm, A. F., Parslow, R. A. & Christensen, H. Is telomere length a biomarker of aging? A review. J. Gerontol. A Biol. Sci. Med. Sci. 66, 202–213 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Der, G. et al. Is telomere length a biomarker of aging: cross-sectional evidence from the west of Scotland? PLoS ONE 7, e45166 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Samani, N. J., Boultby, R., Butler, R., Thompson, J. R. & Goodall, A. H. Telomere shortening in atherosclerosis. Lancet 358, 472–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Samani, N. J. & van der Harst, P. Biological ageing and cardiovascular disease. Heart 94, 537–539 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Blasco, M. A. Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet. 6, 611–622 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Calado, R. T. & Young, N. S. Telomere diseases. N. Engl. J. Med. 361, 2353–2365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. von Zglinicki, T., Saretzki, G., Ladhoff, J., d' Adda di Fagagna, F. & Jackson, S. P. Human cell senescence as a DNA damage response. Mech. Ageing Dev. 126, 111–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Campisi, J. Cellular senescence: putting the paradoxes in perspective. Curr. Opin. Genet. Dev. 21, 107–112 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Rodier, F. et al. DNA-SCARS: Distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokines. J. Cell. Sci. 124, 68–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Fumagalli, M. et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14, 355–365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Minamino, T. et al. Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541–1544 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Erusalimsky, J. D. & Kurz, D. J. Cellular senescence in vivo: its relevance in ageing and cardiovascular disease. Exp. Gerontol. 40, 634–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Matthews, G. et al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ. Res. 99, 156–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, E. & Harley, C. B. Telomere length and replicative aging in human vascular tissues. Proc. Natl Acad. Sci. USA 92, 11190–11194 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okuda, K. et al. Telomere shortening in human abdominal aorta: relationship with age and atherosclerosis. Atherosclerosis 152, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Aviv, H. et al. Age dependent aneuploidy and telomere length of the human endothelium. Atherosclerosis 159, 281–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Benetos, A. et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension 43, 182–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Huzen, J. et al. Circulating leukocyte and carotid atherosclerotic plaque telomere length: interrelation, association with plaque characteristics, and restenosis after endarterectomy. Arterioscler. Thromb. Vasc. Biol. 31, 1219–1225 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Nzietchueng, R. et al. Telomere length in vascular tissues from patients with atherosclerotic disease. J. Nutr. Health Aging 15, 153–156 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoffmann, J. et al. Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ. Res. 89, 709–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. El Assar, M. et al. Mechanisms involved in the aging-induced vascular dysfunction. Front. Physiol. 3, 132 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Blackburn, E. H. Switching and signaling at the telomere. Cell 106, 661–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Blackburn, E. H., Greider, C. W. & Szostak, J. W. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 12, 1133–1138 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Blasco, M. A. Telomere length, stem cells and aging. Nat. Chem. Biol. 3, 640–649 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2001–2010 (2005).

    Article  CAS  Google Scholar 

  32. Price, C. M. et al. Evolution of CST function and telomere maintenance. Cell Cycle 9, 3157–3165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Levy, D. et al. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc. Natl Acad. Sci. USA 107, 9293–9298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mangino, M. et al. Genome-wide meta-analysis points to CTC1 and ZNF676 as genes regulating telomere homeostasis in humans. Hum. Mol. Genet. 21, 5385–5394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cesare, A. J. & Reddel, R. R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 11, 319–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Shay, J. W. & Wright, W. E. Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26, 867–874 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Karlseder, J., Smogorzewska, A. & de Lange, T. Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Cesare, A. J. & Karlseder, J. A. Three-state model of telomere control over human proliferative boundaries. Curr. Opin. Cell. Biol. 24, 731–738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarin, K. Y. et al. Conditional telomerase induction causes proliferation of hair follicle cells. Nature 436, 1048–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rao, T. P. & Kühl, M. An updated overview on Wnt signaling pathways: a prelude for more. Circ. Res. 106, 1798–1806 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Savage, S. A. et al. Genetic variation, nucleotide diversity, and linkage disequilibrium in seven telomere stability genes suggest that these genes may be under constraint. Hum. Mutat. 26, 343–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Jacobs, T. L. et al. Intensive mediation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology 36, 664–681 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Blasco, M. A. The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet. 8, 299–309 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Aviv, A. et al. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res. 39, e134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hoffmann, J. & Spyridopoulos, I. Telomere length in cardiovascular disease: new challenges in measuring this marker of cardiovascular aging. Future Cardiol. 6, 789–803 (2011).

    Article  CAS  Google Scholar 

  46. Kimura, M. et al. Telomere length and mortality in elderly Danish twins. Am. J. Epidemiol. 167, 799–806 (2008).

    Article  PubMed  Google Scholar 

  47. Fyhrquist, F. et al. Telomere length and progression of diabetic nephropathy in patients with type 1 diabetes. J. Intern. Med. 267, 278–286 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Hemann, M. T. et al. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107, 67–77 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Zou, Y. et al. Does a sentinel or a subset of short telomeres determine replicative senescence? Mol. Biol. Cell 15, 3709–3718 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vera, E. & Blasco, M. A. Beyond average; potential for measurement of short telomeres. Aging (Albany NY) 4, 379–392 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  51. Butler, M. G. et al. Comparison of chromosome telomere integrity in multiple tissues from subjects at different ages. Cancer Genet. Cytogenet. 105, 138–144 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aviv, A. Genetics of leukocyte telomere length and its role in atherosclerosis. Mutat. Res. 730, 68–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Mangino, M. et al. A genome-wide association study identifies a novel locus on chromosome 18q12.2 influencing cell telomere length. J. Med. Genet. 46, 451–454 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Codd, V. et al. Common variants near TERC are associated with mean telomere length. Nat. Genet. 42, 197–199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kirwan, M. & Dokal, I. Dyskeratosis congenita, stem cells and telomeres. Biochim. Biophys. Acta 1792, 371–379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Armanios, M. & Blackburn E. H. The telomere syndromes. Nat. Rev. Genet. 13, 693–704 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guarante, L. The Franklin H. Epstein lecture: sirtuins, aging, and medicine. N. Engl. J. Med. 364, 2235–2244 (2011).

    Article  Google Scholar 

  58. Kim, S. et al. Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 13, 119–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Fyhrquist, F. et al. Telomere length is associated with ACE I/D polymorphism in hypertensive patients with left ventricular hypertrophy. J. Renin Angiotensin Aldosterone Syst. http://dx.doi.org/10.1177/1470320312460292.

  60. Vasan, R. S. et al. Association of leukocyte telomere length with circulating biomarkers of the renin–angiotensin—aldosterone system: the Framingham Heart Study. Circulation 117, 1138–1144 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sidorov, I., Kimura, M., Yashin, A. & Aviv, A. Leukocyte telomere dynamics and human hematopoietic stem cell kinetics during somatic growth. Exp. Hematol. 37, 514–524 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Akkad, A. et al. Telomere length in small-for-gestational-age babies. BJOG 113, 318–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Raqib, R. et al. Low birth weight is associated with altered immune function in rural Bangladeshi children: a birth cohort study. Am. J. Clin. Nutr. 85, 845–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Kajantie, E. et al. No association between body size at birth and leucocyte telomere length in adult life—evidence from three cohort studies. Int. J. Epidemiol. 41, 1400–1408 (2012).

    Article  PubMed  Google Scholar 

  65. Okuda, K. et al. Telomere length in the newborn. Pediatr. Res. 52, 377–381 (2002).

    Article  PubMed  Google Scholar 

  66. von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 27, 339–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Bekaert, S. et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 6, 639–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Strandberg, T. E. et al. Telomere length in old age and cholesterol across the life course. J. Amer. Geriatr. Soc. 59, 1979–1981 (2011).

    Article  Google Scholar 

  69. Kyo, S. et al. Estrogen activates telomerase. Cancer Res. 59, 5917–5921 (1999).

    CAS  PubMed  Google Scholar 

  70. Valdes, A. M. et al. Obesity, cigarette smoking, and telomere length in women. Lancet 366, 662–664 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Strandberg, T. E. et al. Association of telomere length in older men with mortality and midlife body mass index and smoking. J. Gerontol. A Biol. Sci. Med. Sci. 66, 815–820 (2011).

    Article  PubMed  CAS  Google Scholar 

  72. Carnevali, S. et al. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L955–L963 (2003).

    Article  CAS  PubMed  Google Scholar 

  73. Farhat, N. et al. Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Can. J. Physiol. Pharmacol. 86, 761–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Strandberg, T. E. et al. Association between alcohol consumption in healthy midlife and telomere length in older men: the Helsinki Businessmen Study. Eur. J. Epidemiol. 27, 815–822 (2012).

    Article  PubMed  Google Scholar 

  75. Comporti, M. et al. Ethanol-induced oxidative stress: basic knowledge. Genes Nutr. 5, 101–109 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA 101, 17312–17315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wolkowitz, O. M. et al. Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress—preliminary findings. PLoS ONE 6, e17837 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kananen, L. et al. Childhood adversities are associated with shorter telomeres at adult age both in individuals with an anxiety disorder and controls. PLoS ONE 5, 10826 (2010).

    Article  CAS  Google Scholar 

  79. Lin, J., Epel, E. & Blackburn, E. Telomeres and lifestyle factors: roles in cellular aging. Mutat. Res. 730, 85–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Farzaneh-Far, R. et al. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA 303, 250–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Richards, B. J. et al. Higher vitamin D concentrations are associated with longer leukocyte telomere length in women. Am. J. Clin. Nutr. 86, 1420–1425 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Xu, Q. et al. Multivitamin use and telomere length in women. Am. J. Clin. Nutr. 89, 1857–1863 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cherkas, L. F. et al. The association between physical activity in leisure time and leukocyte telomere length. Arch. Intern. Med. 168, 154–158 (2008).

    Article  PubMed  Google Scholar 

  84. Werner, C. et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 120, 2438–2447 (2009).

    Article  PubMed  Google Scholar 

  85. Njajou, O. T. et al. Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J. Gerontol. A Biol. Sci. Med. Sci. 64, 860–864 (2009).

    Article  PubMed  CAS  Google Scholar 

  86. Krauss, J. et al. Physical fitness and telomere length in patients with coronary heart disease: findings from the Heart and Soul Study. PLoS ONE 6, e26983 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ornish, D. et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 9, 1048–1057 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Brouilette, S. W. et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 369, 107–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Rando, T. A. The immortal strand hypothesis: segregation and construction. Cell 129, 1239–1243 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Flores, I., Benetti, R. & Blasco M. A. Telomerase regulation and stem cell behavior. Curr. Opin. Cell Biol. 18, 254–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Kimura, M. et al. Synchrony of telomere length among hematopoietic stem cells. Exp. Hematol. 38, 854–859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oeseburg, H. et al. Can critically short telomeres cause functional exhaustion of progenitor cells in postinfarction heart failure? J. Am. Coll. Cardiol. 50, 1911–1912 (2007).

    Article  PubMed  Google Scholar 

  93. Spyridopoulos, I. et al. Telomere gap between granulocytes and lymphocytes is a determinant for hematopoietic preogenitor cell impairment in patients with previous myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 28, 968–974 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Chimenti, C. et al. Senescence and death of primitive cells and myocytes lead premature cardiac aging and heart failure. Circ. Res. 93, 604–613 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Anversa, P., Kajstura, J., Leri, A. & Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation 113, 1451–1463 (2006).

    Article  PubMed  Google Scholar 

  96. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Svenson, U. et al. Blood cell telomere length is a dynamic feature. PLoS ONE 6, e21485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Farzaneh-Far, R. et al. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the Heart and Soul Study. PLoS ONE 5, e8612 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Wong, L. S. et al. Telomere biology in cardiovascular disease: the TERC-/- mouse as a model for heart failure and ageing. Cardiovasc. Res. 81, 244–252 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Breslow, J. L. Mouse models of atherosclerosis. Science 272, 685–688 (1996).

    Article  CAS  PubMed  Google Scholar 

  101. Zadelaar, S. et al. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler. Thromb. Vasc. Biol. 27, 1706–1721 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Poch, E. et al. Short telomeres protect from diet-induced atherosclerosis in apolipoprotein E-null mice. FASEB J. 18, 418–420 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Leri, A. et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J. 22, 131–139 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Minamino, T., Miyauchi, H., Yoshida, T., Tateno, K. & Komuro, I. The role of vascular cell senescense in atherosclerosis: antisenescense as a novel therapeutic strategy for vascular aging. Curr. Vasc. Pharmacol. 2, 141–148 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Minamino, T. & Komuro I. Vascular cell senescence: contribution to atherosclerosis. Circ. Res. 100, 15–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Hastings, R., Qureshi, M., Verma, R., Lacy, P. S. & Williams, B. Telomere attrition and accumulation of senescent cells in cultured human endothelial cells. Cell Prolif. 37, 317–324 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Matthews, C. et al. Vascular smooth muscle cells undergo telomere-based senescense in human atherosclerosis: effects of telomerase and oxidative stress. Circ. Res. 99, 156–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Leri, A., Malhotra, A., Liew, C. C., Kajstura, J. & Anversa, P. Telomerase activity in rat cardiac myocytes is age and gender dependent. J. Mol. Cell. Cardiol. 32, 385–390 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Kajstura, J. et al. The telomere–telomerase axis and the heart. Antioxid. Redox Signal. 8, 2125–2141 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Kajstura, J. et al. Cardiomyogenesis in the aging and failing human heart. Circulation 126, 1869–1881 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rosenzweig, A. Cardiac regeneration. Science 338, 1549–1550 (2012).

    Article  PubMed  Google Scholar 

  112. Torella, A. et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ. Res. 94, 514–524 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. van der Harst, P. et al. Telomere length of circulating leukocytes is decreased with chronic heart failure. J. Am. Coll. Cardiol. 49, 1459–1464 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Moslehi, J. DePinho, R. A. & Sahin, E. Telomeres and mitochondria in the aging heart. Circ. Res. 110, 1226–1237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rajabi, M., Kassiotis, C., Razeghi, P. & Taegtmeyer, H. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev. 12, 331–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Neubauer, S. The failing heart—an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).

    Article  PubMed  Google Scholar 

  117. Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set-up” for vascular disease. Circulation 107, 139–146 (2003).

    Article  PubMed  Google Scholar 

  118. Lakatta, E. G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation 107, 490–497 (2003).

    Article  PubMed  Google Scholar 

  119. O'Donnell, C. J. et al. Leukocyte telomere length and carotid artery intimal medial thickness: the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 28, 1165–1171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brouilette, S., Singh, R. K., Thompson, J. R., Goodall, A. H. & Samani, N. J. White cell telomere length and risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 23, 842–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Farzaneh-Far, R. et al. Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study. Arterioscler. Thromb. Vasc. Biol. 28, 1379–1384 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jeanclos, E. et al. Telomere length inversely correlates with pulse pressure and is highly familial. Hypertension 36, 195–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Fyhrquist, F. et al. Telomere length and cardiovascular risk in hypertensive patients with left ventricular hypertrophy, the LIFE study. J. Hum. Hypertens. 25, 711–718 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Ding, H. et al. Telomere length and risk of stroke in Chinese. Stroke 43, 658–663 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Zee, R. Y. L., Castonguay, A. J., Barton N. S. & Ridker, P. M. Relative leukocyte telomere length and risk of incident ischemic stroke in men: a prospective, nested case-control approach. Rejuvenation Res. 13, 411–414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brouilette, S. W. et al. Telomere length is shorter in healthy offspring of subjects with coronary artery disease: support for the telomere hypothesis. Heart 94, 422–425 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Wong, L. S. et al. Telomere length of circulating leukocyte subpopulations and buccal cells in patients with ischemic heart failure and their offspring. PLoS ONE 6, 23118 (2011).

    Article  CAS  Google Scholar 

  128. De Meyer, T. et al. No shorter telomeres in subjects with a family history of cardiovascular disease in the Asklepios Study. Arterioscler. Thromb. Vasc. Biol. 32, 3076–3081 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Voghel, G. et al. Cellular senescence in endothelial cells from atherosclerotic patients is accelerated by oxidative stress associated with cardiovascular risk factors. Mech. Ageing Dev. 128, 662–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Thorin, E. & Thorin-Trescases, N. Vascular endothelial ageing, heartbeat after heartbeat. Cardiovasc. Res. 84, 24–32 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Brandes, R. P., Fleming, I. & Busse, R. Endothelial aging. Cardiovasc. Res. 66, 286–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Voghel, G. et al. Endogenous oxidative stress prevents telomerase-dependent immortalization of human endothelial cells. Mech. Ageing Dev. 131, 354–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Imanishi, T., Hano, T. & Nishio, I. Angiotensin II accelerated endothelial progenitor cell senescence through induction of oxidative stress. J. Hypertens. 23, 97–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Feng, X, Wang, L. & Li, Y. Change of telomere length in angiotensin-induced human glomerular mesangial cell senescence and the protective role of losartan. Mol. Med. Report. 4, 255–260 (2011).

    CAS  Google Scholar 

  135. Spyridopoulos, I. et al. Statins enhance migratory capacity by upregulation of the telemere repeat-binding factor TR2 in endothelial progenitor cells. Circulation 110, 3136–3142 (2004).

    Article  CAS  PubMed  Google Scholar 

  136. Harley, C. B. Telomerase and cancer therapeutics. Nat. Rev. Cancer 8, 167–179 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F. Fyhrquist and O. Saijonmaa researched data for the article, and all the authors contributed substantially to discussion of its content. F. Fyhrquist and O. Saijonmaa wrote the article, and all the authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Frej Fyhrquist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fyhrquist, F., Saijonmaa, O. & Strandberg, T. The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol 10, 274–283 (2013). https://doi.org/10.1038/nrcardio.2013.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing