Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coronary microvascular dysfunction: mechanisms and functional assessment

Key Points

  • Prearterioles (100–500 μm in diameter) and arterioles (<100 μm in diameter, the site of metabolic regulation of myocardial blood flow) make up the coronary microcirculation

  • In the past 2 decades, coronary microvascular dysfunction emerged as an important mechanism of myocardial ischaemia

  • Coronary microvascular dysfunction can result from functional and/or structural alterations, the relative importance of which seems to vary across clinical settings; several such alterations can also coexist in one condition

  • No technique can visualize the coronary microcirculation in vivo in humans; microvascular function is, therefore, assessed indirectly, through measurements of coronary or myocardial blood flow and coronary flow reserve

  • Several invasive and noninvasive techniques can be used to assess microvascular function, including intracoronary Doppler flow velocity wires, PET, and cardiac MRI

Abstract

Obstructive disease of the epicardial coronary arteries was recognized as the cause of angina pectoris >2 centuries ago, and sudden thrombotic occlusion of an epicardial coronary artery has been established as the cause of acute myocardial infarction for >100 years. In the past 2 decades, dysfunction of the coronary microvasculature emerged as an additional mechanism of myocardial ischaemia that bears important prognostic implications. The coronary microvasculature (vessels <300 μm in diameter) cannot be directly imaged in vivo, but a number of invasive and noninvasive techniques, each with relative advantages and pitfalls, can be used to assess parameters that depend directly on coronary microvascular function. These methods include invasive or noninvasive measurement of Doppler-derived coronary blood flow velocity reserve, assessment of myocardial blood flow and flow reserve using noninvasive imaging, and calculation of microcirculatory resistance indexes during coronary catheterization. These advanced techniques for assessment of the coronary microvasculature have provided novel insights into the pathophysiological role of coronary microvascular dysfunction in the development of myocardial ischaemia in different clinical conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coronary arterial circulation.
Figure 2: Remodelling of coronary arterioles is associated with coronary microvascular dysfunction.
Figure 3: Coronary microvascular dysfunction can result from a variable combination of abnormal vasodilatation (owing to endothelium-dependent and endothelium-independent mechanisms) and increased vasoconstriction caused by various stimuli.
Figure 4: Coronary microvascular dysfunction can result from abnormal extravascular pressure.
Figure 5: Blood and tissue input functions for calculation of myocardial blood flow using PET and cardiac MRI.
Figure 6: Reverse coronary arteriolar remodelling after treatment in arterial hypertension.
Figure 7: Microvascular obstruction.
Figure 8: Coronary flow velocity reserve after acute infarction predicts mortality at follow-up.

Similar content being viewed by others

References

  1. Crea, F., Lanza, G. A. & Camici, P. G. Coronary Microvascular Dysfunction (Springer Verlag, 2014).

    Google Scholar 

  2. Camici, P. G., Olivotto, I. & Rimoldi, O. E. The coronary circulation and blood flow in left ventricular hypertrophy. J. Mol. Cell. Cardiol. 52, 857–864 (2012).

    CAS  PubMed  Google Scholar 

  3. Camici, P. G. & Crea, F. Coronary microvascular dysfunction. N. Engl. J. Med. 356, 830–840 (2007).

    CAS  PubMed  Google Scholar 

  4. Murthy, V. L. et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation 129, 2518–2527 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Crea, F., Camici, P. G. & Bairey Merz, C. N. Coronary microvascular dysfunction: an update. Eur. Heart J. 35, 1101–1111 (2013).

    PubMed  PubMed Central  Google Scholar 

  6. Tanaka, M. et al. Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 75, 1130–1139 (1987).

    CAS  PubMed  Google Scholar 

  7. Duncker, D. J. & Bache, R. J. Regulation of coronary blood flow during exercise. Physiol. Rev. 88, 1009–1086 (2008).

    CAS  PubMed  Google Scholar 

  8. Clarke, J. G. et al. Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1, 1057–1059 (1987).

    CAS  PubMed  Google Scholar 

  9. Ong, P. et al. Increased coronary vasoconstrictor response to acetylcholine in women with chest pain and normal coronary arteriograms (cardiac syndrome X). Clin. Res. Cardiol. 101, 673–681 (2012).

    CAS  PubMed  Google Scholar 

  10. Matsuda, K. et al. Response of the left anterior descending coronary artery to acetylcholine in patients with chest pain and angiographically normal coronary arteries. Am. J. Cardiol. 92, 1394–1398 (2003).

    CAS  PubMed  Google Scholar 

  11. Gould, K. L. et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J. Am. Coll. Cardiol. 62, 1639–1653 (2013).

    PubMed  Google Scholar 

  12. Inoue, K. et al. Myocardial microvascular abnormalities observed by intravenous myocardial contrast echocardiography in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 94, 55–58 (2004).

    PubMed  Google Scholar 

  13. Choudhury, L., Rosen, S. D., Patel, D., Nihoyannopoulos, P. & Camici, P. G. Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur. Heart J. 18, 108–116 (1997).

    CAS  PubMed  Google Scholar 

  14. Downey, J. M. in Physiology and Pathophysiology of the Heart (ed. Sperelakis, N.) 1109–1123 (Kluwer, 1995).

    Google Scholar 

  15. Chareonthaitawee, P., Kaufmann, P. A., Rimoldi, O. & Camici, P. G. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc. Res. 50, 151–161 (2001).

    CAS  PubMed  Google Scholar 

  16. Cortigiani, L. et al. Prognostic effect of coronary flow reserve in women versus men with chest pain syndrome and normal dipyridamole stress echocardiography. Am. J. Cardiol. 106, 1703–1708 (2010).

    PubMed  Google Scholar 

  17. Rosen, S. D. et al. Coronary vasodilator reserve, pain perception, and sex in patients with syndrome X. Circulation 90, 50–60 (1994).

    CAS  PubMed  Google Scholar 

  18. Renaud, J. M., DaSilva, J. N., Beanlands, R. S. & DeKemp, R. A. Characterizing the normal range of myocardial blood flow with 82rubidium and 13N-ammonia PET imaging. J. Nucl. Cardiol. 20, 578–591 (2013).

    PubMed  Google Scholar 

  19. Layland, J., Carrick, D., Lee, M., Oldroyd, K. & Berry, C. Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc. Interv. 7, 581–591 (2014).

    PubMed  Google Scholar 

  20. Jagathesan, R., Barnes, E., Rosen, S. D., Foale, R. A. & Camici, P. G. Comparison of myocardial blood flow and coronary flow reserve during dobutamine and adenosine stress: Implications for pharmacologic stress testing in coronary artery disease. J. Nucl. Cardiol. 13, 324–332 (2006).

    PubMed  Google Scholar 

  21. Heusch, G. Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res. Cardiol. 105, 1–5 (2010).

    PubMed  Google Scholar 

  22. Camici, P. G. Absolute figures are better than percentages. JACC Cardiovasc. Imaging 2, 759–760 (2009).

    PubMed  Google Scholar 

  23. Quinones, M. J. et al. Coronary vasomotor abnormalities in insulin-resistant individuals. Ann. Intern. Med. 140, 700–708 (2004).

    PubMed  Google Scholar 

  24. Schindler, T. H. et al. PET-measured responses of MBF to cold pressor testing correlate with indices of coronary vasomotion on quantitative coronary angiography. J. Nucl. Med. 45, 419–428 (2004).

    PubMed  Google Scholar 

  25. Meimoun, P. et al. Transthoracic coronary flow velocity reserve assessment: comparison between adenosine and dobutamine. J. Am. Soc. Echocardiogr. 19, 1220–1228 (2006).

    PubMed  Google Scholar 

  26. Caiati, C. et al. Validation of a new noninvasive method (contrast-enhanced transthoracic second harmonic echo Doppler) for the evaluation of coronary flow reserve: comparison with intracoronary Doppler flow wire. J. Am. Coll. Cardiol. 34, 1193–1200 (1999).

    CAS  PubMed  Google Scholar 

  27. Hozumi, T. et al. Noninvasive assessment of coronary flow velocity and coronary flow velocity reserve in the left anterior descending coronary artery by Doppler echocardiography: comparison with invasive technique. J. Am. Coll. Cardiol. 32, 1251–1259 (1998).

    CAS  PubMed  Google Scholar 

  28. Lethen, H., Tries, H. P., Kersting, S. & Lambertz, H. Validation of noninvasive assessment of coronary flow velocity reserve in the right coronary artery. A comparison of transthoracic echocardiographic results with intracoronary Doppler flow wire measurements. Eur. Heart J. 24, 1567–1575 (2003).

    PubMed  Google Scholar 

  29. Caiati, C., Zedda, N., Montaldo, C., Montisci, R. & Iliceto, S. Contrast-enhanced transthoracic second harmonic echo Doppler with adenosine: a noninvasive, rapid and effective method for coronary flow reserve assessment. J. Am. Coll. Cardiol. 34, 122–130 (1999).

    CAS  PubMed  Google Scholar 

  30. Takeuchi, M. et al. Measurement of coronary flow velocity reserve in the posterior descending coronary artery by contrast-enhanced transthoracic Doppler echocardiography. J. Am. Soc. Echocardiogr. 17, 21–27 (2004).

    PubMed  Google Scholar 

  31. Meimoun, P. & Tribouilloy, C. Non-invasive assessment of coronary flow and coronary flow reserve by transthoracic Doppler echocardiography: a magic tool for the real world. Eur. J. Echocardiogr. 9, 449–457 (2008).

    PubMed  Google Scholar 

  32. Cortigiani, L. et al. Implication of the continuous prognostic spectrum of Doppler echocardiographic derived coronary flow reserve on left anterior descending artery. Am. J. Cardiol. 105, 158–162 (2010).

    PubMed  Google Scholar 

  33. Sicari, R. et al. Additive prognostic value of coronary flow reserve in patients with chest pain syndrome and normal or near-normal coronary arteries. Am. J. Cardiol. 103, 626–631 (2009).

    PubMed  Google Scholar 

  34. Rigo, F. et al. Usefulness of coronary flow reserve over regional wall motion when added to dual-imaging dipyridamole echocardiography. Am. J. Cardiol. 91, 269–273 (2003).

    PubMed  Google Scholar 

  35. Kaul, S. Myocardial contrast echocardiography: 15 years of research and development. Circulation 96, 3745–3760 (1997).

    CAS  PubMed  Google Scholar 

  36. Kaul, S. Myocardial contrast echocardiography: a 25-year retrospective. Circulation 118, 291–308 (2008).

    PubMed  Google Scholar 

  37. Porter, T. R. & Xie, F. Myocardial perfusion imaging with contrast ultrasound. JACC Cardiovasc. Imaging 3, 176–187 (2010).

    PubMed  Google Scholar 

  38. Wei, K. et al. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 97, 473–483 (1998).

    CAS  PubMed  Google Scholar 

  39. Vogel, R. et al. The quantification of absolute myocardial perfusion in humans by contrast echocardiography: algorithm and validation. J. Am. Coll. Cardiol. 45, 754–762 (2005).

    PubMed  Google Scholar 

  40. Exuzides, A. et al. A retrospective comparison of mortality in critically ill hospitalized patients undergoing echocardiography with and without an ultrasound contrast agent. JACC Cardiovasc. Imaging 3, 578–585 (2010).

    PubMed  Google Scholar 

  41. Lepper, W. et al. Assessment of myocardial reperfusion by intravenous myocardial contrast echocardiography and coronary flow reserve after primary percutaneous transluminal coronary angioplasty [correction of angiography] in patients with acute myocardial infarction. Circulation 101, 2368–2374 (2000).

    CAS  PubMed  Google Scholar 

  42. Dwivedi, G., Janardhanan, R., Hayat, S. A., Swinburn, J. M. & Senior, R. Prognostic value of myocardial viability detected by myocardial contrast echocardiography early after acute myocardial infarction. J. Am. Coll. Cardiol. 50, 327–334 (2007).

    PubMed  Google Scholar 

  43. Galiuto, L. et al. The extent of microvascular damage during myocardial contrast echocardiography is superior to other known indexes of post-infarct reperfusion in predicting left ventricular remodeling: results of the multicenter AMICI study. J. Am. Coll. Cardiol. 51, 552–559 (2008).

    PubMed  Google Scholar 

  44. Gaibazzi, N., Reverberi, C., Lorenzoni, V., Molinaro, S. & Porter, T. R. Prognostic value of high-dose dipyridamole stress myocardial contrast perfusion echocardiography. Circulation 126, 1217–1224 (2012).

    CAS  PubMed  Google Scholar 

  45. Gurudevan, S. V. et al. Cocaine-induced vasoconstriction in the human coronary microcirculation: new evidence from myocardial contrast echocardiography. Circulation 128, 598–604 (2013).

    CAS  PubMed  Google Scholar 

  46. Nef, H. M., Mollmann, H., Akashi, Y. J. & Hamm, C. W. Mechanisms of stress (Takotsubo) cardiomyopathy. Nat. Rev. Cardiol. 7, 187–193 (2010).

    PubMed  Google Scholar 

  47. Galiuto, L. et al. Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in apical ballooning or Tako-Tsubo syndrome. Eur. Heart J. 31, 1319–1327 (2010).

    PubMed  Google Scholar 

  48. Camici, P. G. & Rimoldi, O. E. The clinical value of myocardial blood flow measurement. J. Nucl. Med. 50, 1076–1087 (2009).

    PubMed  Google Scholar 

  49. Schaefers, K. et al. Absolute quantification of myocardial blood flow with H25O and 3-dimensional PET: an experimental validation. J. Nucl. Med. 43, 1031–1040 (2002).

    Google Scholar 

  50. Schepis, T. et al. Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET. J. Nucl. Med. 48, 1783–1789 (2007).

    CAS  PubMed  Google Scholar 

  51. Kaufmann, P. A. et al. Coronary heart disease in smokers: vitamin C restores coronary microcirculatory function. Circulation 102, 1233–1238 (2000).

    CAS  PubMed  Google Scholar 

  52. Kaufmann, P. A., Gnecchi-Ruscone, T., Schafers, K. P., Luscher, T. F. & Camici, P. G. Low density lipoprotein cholesterol and coronary microvascular dysfunction in hypercholesterolemia. J. Am. Coll. Cardiol. 36, 103–109 (2000).

    CAS  PubMed  Google Scholar 

  53. Di Carli, M. F. et al. Coronary circulatory function in patients with the metabolic syndrome. J. Nucl. Med. 52, 1369–1377 (2011).

    CAS  PubMed  Google Scholar 

  54. Danad, I. et al. Coronary risk factors and myocardial blood flow in patients evaluated for coronary artery disease: a quantitative [15O]H2O PET/CT study. Eur. J. Nucl. Med. Mol. Imaging 39, 102–112 (2012).

    PubMed  Google Scholar 

  55. Recio-Mayoral, A., Rimoldi, O. E., Camici, P. G. & Kaski, J. C. Inflammation and microvascular dysfunction in cardiac syndrome x patients without conventional risk factors for coronary artery disease. JACC Cardiovasc. Imaging 6, 660–667 (2013).

    PubMed  Google Scholar 

  56. Schindler, T. H. et al. Improvement in coronary vascular dysfunction produced with euglycaemic control in patients with type 2 diabetes. Heart 93, 345–349 (2007).

    CAS  PubMed  Google Scholar 

  57. Schindler, T. H. et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J. Am. Coll. Cardiol. 47, 1188–1195 (2006).

    CAS  PubMed  Google Scholar 

  58. Neglia, D. et al. Perindopril and indapamide reverse coronary microvascular remodelling and improve flow in arterial hypertension. J. Hypertens. 29, 364–372 (2011).

    CAS  PubMed  Google Scholar 

  59. Prior, J. O. et al. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation 111, 2291–2298 (2005).

    CAS  PubMed  Google Scholar 

  60. Buus, N. H. et al. Myocardial perfusion during long-term angiotensin-converting enzyme inhibition or beta-blockade in patients with essential hypertension. Hypertension 44, 465–470 (2004).

    CAS  PubMed  Google Scholar 

  61. Akinboboye, O. O., Chou, R. L. & Bergmann, S. R. Augmentation of myocardial blood flow in hypertensive heart disease by angiotensin antagonists: a comparison of lisinopril and losartan. J. Am. Coll. Cardiol. 40, 703–709 (2002).

    CAS  PubMed  Google Scholar 

  62. Higuchi, T., Abletshauser, C., Nekolla, S. G., Schwaiger, M. & Bengel, F. M. Effect of the angiotensin receptor blocker valsartan on coronary microvascular flow reserve in moderately hypertensive patients with stable coronary artery disease. Microcirculation 14, 805–812 (2007).

    CAS  PubMed  Google Scholar 

  63. Iozzo, P. et al. Mismatch between insulin-mediated glucose uptake and blood flow in the heart of patients with type II diabetes. Diabetologia 45, 1404–1409 (2002).

    CAS  PubMed  Google Scholar 

  64. Momose, M. et al. Dysregulation of coronary microvascular reactivity in asymptomatic patients with type 2 diabetes mellitus. Eur. J. Nucl. Med. Mol. Imaging 29, 1675–1679 (2002).

    PubMed  Google Scholar 

  65. Yokoyama, I. et al. Coronary microangiopathy in type 2 diabetic patients: relation to glycemic control, sex, and microvascular angina rather than to coronary artery disease. J. Nucl. Med. 41, 978–985 (2000).

    CAS  PubMed  Google Scholar 

  66. Nahser P. J. Jr, Brown, R. E., Oskarsson, H., Winniford, M. D. & Rossen, J. D. Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 91, 635–640 (1995).

    PubMed  Google Scholar 

  67. Murthy, V. L. et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 126, 1858–1868 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lautamaki, R. et al. Insulin improves myocardial blood flow in patients with type 2 diabetes and coronary artery disease. Diabetes 55, 511–516 (2006).

    CAS  PubMed  Google Scholar 

  69. Yokoyama, I. et al. Reduced coronary flow reserve in hypercholesterolemic patients without overt coronary stenosis. Circulation 94, 3232–3238 (1996).

    CAS  PubMed  Google Scholar 

  70. Guethlin, M. et al. Delayed response of myocardial flow reserve to lipid-lowering therapy with fluvastatin. Circulation 99, 475–481 (1999).

    CAS  PubMed  Google Scholar 

  71. Naoumova, R. P. et al. Pioglitazone improves myocardial blood flow and glucose utilization in nondiabetic patients with combined hyperlipidemia: a randomized, double-blind, placebo-controlled study. J. Am. Coll. Cardiol. 50, 2051–2058 (2007).

    CAS  PubMed  Google Scholar 

  72. Gaemperli, O., Liga, R., Bhamra-Ariza, P. & Rimoldi, O. Nicotine addiction and coronary artery disease: impact of cessation interventions. Curr. Pharm. Des. 16, 2586–2597 (2010).

    CAS  PubMed  Google Scholar 

  73. Campisi, R. et al. Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 98, 119–125 (1998).

    CAS  PubMed  Google Scholar 

  74. Iwado, Y. et al. Decreased endothelium-dependent coronary vasomotion in healthy young smokers. Eur. J. Nucl. Med. Mol. Imaging 29, 984–990 (2002).

    CAS  PubMed  Google Scholar 

  75. Rooks, C. et al. Effects of smoking on coronary microcirculatory function: a twin study. Atherosclerosis 215, 500–506 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rajappan, K. et al. Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation 105, 470–476 (2002).

    PubMed  Google Scholar 

  77. Akinboboye, O. O. et al. Positron emission tomography, echo-doppler, and exercise studies of functional capacity in hypertensive heart disease. Am. J. Hypertens. 15, 907–910 (2002).

    PubMed  Google Scholar 

  78. Choudhury, L. et al. Transmural myocardial blood flow distribution in hypertrophic cardiomyopathy and effect of treatment. Basic Res. Cardiol. 94, 49–59 (1999).

    CAS  PubMed  Google Scholar 

  79. Knaapen, P. et al. Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 294, H986–H993 (2008).

    CAS  PubMed  Google Scholar 

  80. Timmer, S. A. et al. Effects of alcohol septal ablation on coronary microvascular function and myocardial energetics in hypertrophic obstructive cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 301, H129–H137 (2011).

    CAS  PubMed  Google Scholar 

  81. Cecchi, F. et al. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N. Engl. J. Med. 349, 1027–1035 (2003).

    CAS  PubMed  Google Scholar 

  82. Olivotto, I. et al. Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 47, 1043–1048 (2006).

    PubMed  Google Scholar 

  83. Maron, M. S. et al. The case for myocardial ischemia in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 54, 866–875 (2009).

    PubMed  Google Scholar 

  84. Carabello, B. A. Clinical practice. Aortic stenosis. N. Engl. J. Med. 346, 677–682 (2002).

    PubMed  Google Scholar 

  85. Garcia, D. et al. Impairment of coronary flow reserve in aortic stenosis. J. Appl. Physiol. 106, 113–121 (2009).

    PubMed  Google Scholar 

  86. Uren, N. G., Marraccini, P., Gistri, R., de Silva, R. & Camici, P. G. Altered coronary vasodilator reserve and metabolism in myocardium subtended by normal arteries in patients with coronary artery disease. J. Am. Coll. Cardiol. 22, 650–658 (1993).

    CAS  PubMed  Google Scholar 

  87. Herzog, B. A. et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J. Am. Coll. Cardiol. 54, 150–156 (2009).

    PubMed  Google Scholar 

  88. Murthy, V. L. et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 124, 2215–2224 (2011).

    PubMed  PubMed Central  Google Scholar 

  89. Fukushima, K. et al. Prediction of short-term cardiovascular events using quantification of global myocardial flow reserve in patients referred for clinical 82Rb PET perfusion imaging. J. Nucl. Med. 52, 726–732 (2011).

    PubMed  Google Scholar 

  90. Ziadi, M. C. et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J. Am. Coll. Cardiol. 58, 740–748 (2011).

    PubMed  Google Scholar 

  91. Neglia, D. et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105, 186–193 (2002).

    PubMed  Google Scholar 

  92. Tong, C. Y. et al. Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium. Magn. Reson. Med. 30, 337–346 (1993).

    CAS  PubMed  Google Scholar 

  93. Klem, I. et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J. Am. Coll. Cardiol. 47, 1630–1638 (2006).

    PubMed  Google Scholar 

  94. Ingkanisorn, W. P. et al. Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J. Am. Coll. Cardiol. 47, 1427–1432 (2006).

    PubMed  Google Scholar 

  95. Christian, T., Aletras, A. H. & Arai, A. E. Estimation of absolute myocardial blood flow during first-pass MR perfusion imaging using a dual-bolus injection technique: comparison to single-bolus injection method. J. Magn. Reson. Imaging 27, 1271–1277 (2008).

    PubMed  Google Scholar 

  96. Goldstein, T. A. et al. Fast mapping of myocardial blood flow with MR first-pass perfusion imaging. Magn. Reson. Med. 59, 1394–1400 (2008).

    PubMed  Google Scholar 

  97. Lee, D. C. et al. Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 110, 58–65 (2004).

    PubMed  Google Scholar 

  98. Hsu, L. Y. et al. Quantitative myocardial perfusion analysis with a dual-bolus contrast-enhanced first-pass MRI technique in humans. J. Magn. Reson. Imaging 23, 315–322 (2006).

    PubMed  Google Scholar 

  99. Köstler, H. et al. Comparison of different contrast agents and doses for quantitative MR myocardial perfusion imaging. J. Magn. Reson. Imaging 28, 382–389 (2008).

    PubMed  Google Scholar 

  100. Cheng, A. S. et al. Cardiovascular magnetic resonance perfusion imaging at 3-tesla for the detection of coronary artery disease: a comparison with 1.5-tesla. J. Am. Coll. Cardiol. 49, 2440–2449 (2007).

    PubMed  Google Scholar 

  101. Petersen, S. E. et al. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation 115, 2418–2425 (2007).

    PubMed  Google Scholar 

  102. Schwitter, J. et al. Assessment of myocardial perfusion in coronary artery disease by magnetic resonance: a comparison with positron emission tomography and coronary angiography. Circulation 103, 2230–2235 (2001).

    CAS  PubMed  Google Scholar 

  103. Rosen, B. D. et al. Lower myocardial perfusion reserve is associated with decreased regional left ventricular function in asymptomatic participants of the multi-ethnic study of atherosclerosis. Circulation 114, 289–297 (2006).

    PubMed  Google Scholar 

  104. Motwani, M., Jogiya, R., Kozerke, S., Greenwood, J. P. & Plein, S. Advanced cardiovascular magnetic resonance myocardial perfusion imaging: high-spatial resolution versus 3-dimensional whole-heart coverage. Circ. Cardiovasc. Imaging 6, 339–348 (2013).

    PubMed  Google Scholar 

  105. Coelho-Filho, O. R., Rickers, C., Kwong, R. Y. & Jerosch-Herold, M. MR myocardial perfusion imaging. Radiology 266, 701–715 (2013).

    PubMed  Google Scholar 

  106. Greenwood, J. P. et al. Comparison of cardiovascular magnetic resonance and single-photon emission computed tomography in women with suspected coronary artery disease from the Clinical Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease (CE-MARC) trial. Circulation 129, 1129–1138 (2014).

    PubMed  Google Scholar 

  107. Schwitter, J. et al. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary Artery Disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur. Heart J. 34, 775–781 (2013).

    PubMed  Google Scholar 

  108. Al-Saadi, N. et al. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101, 1379–1383 (2000).

    CAS  PubMed  Google Scholar 

  109. Jerosch-Herold, M., Swingen, C. & Seethamraju, R. T. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med. Phys. 29, 886–897 (2002).

    PubMed  Google Scholar 

  110. Motwani, M. et al. Quantitative three-dimensional cardiovascular magnetic resonance myocardial perfusion imaging in systole and diastole. J. Cardiovasc. Magn. Reson. 16, 19 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Hsu, L. Y., Kellman, P. & Arai, A. E. Nonlinear myocardial signal intensity correction improves quantification of contrast-enhanced first-pass MR perfusion in humans. J. Magn. Reson. Imaging 27, 793–801 (2008).

    PubMed  Google Scholar 

  112. Gargiulo, P. et al. The prognostic value of normal stress cardiac magnetic resonance in patients with known or suspected coronary artery disease: a meta-analysis. Circ. Cardiovasc. Imaging 6, 574–582 (2013).

    PubMed  Google Scholar 

  113. Lipinski, M. J., McVey, C. M., Berger, J. S., Kramer, C. M. & Salerno, M. Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 62, 826–838 (2013).

    PubMed  Google Scholar 

  114. Wang, L., Jerosch-Herold, M., Jacobs, J. D. R., Shahar, E. & Folsom, A. R. Coronary risk factors and myocardial perfusion in asymptomatic adults: the Multi-Ethnic Study of Atherosclerosis (MESA). J. Am. Coll. Cardiol. 47, 565–572 (2006).

    PubMed  Google Scholar 

  115. Doyle, M. et al. Prognostic value of global MR myocardial perfusion imaging in women with suspected myocardial ischemia and no obstructive coronary disease: results from the NHLBI-sponsored WISE (Women's Ischemia Syndrome Evaluation) study. JACC Cardiovasc. Imaging 3, 1030–1036 (2010).

    PubMed  PubMed Central  Google Scholar 

  116. Karamitsos, T. D. et al. Blunted myocardial oxygenation response during vasodilator stress in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 61, 1169–1176 (2013).

    PubMed  PubMed Central  Google Scholar 

  117. Ito, H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat. Clin. Pract. Cardiovasc. Med. 3, 499–506 (2006).

    PubMed  Google Scholar 

  118. Bekkers, S. C., Yazdani, S. K., Virmani, R. & Waltenberger, J. Microvascular obstruction: underlying pathophysiology and clinical diagnosis. J. Am. Coll. Cardiol. 55, 1649–1660 (2010).

    PubMed  Google Scholar 

  119. Wu, K. CMR of microvascular obstruction and hemorrhage in myocardial infarction. J. Cardiovasc. Magn. Reson. 14, 68 (2012).

    PubMed  PubMed Central  Google Scholar 

  120. White, S. K., Hausenloy, D. J. & Moon, J. C. Imaging the myocardial microcirculation post-myocardial infarction. Curr. Heart Fail. Rep. 9, 282–292 (2012).

    PubMed  Google Scholar 

  121. Orn, S. et al. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur. Heart J. 30, 1978–1985 (2009).

    PubMed  Google Scholar 

  122. Mather, A. N. et al. Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction. J. Cardiovasc. Magn. Reson. 11, 33 (2009).

    PubMed  PubMed Central  Google Scholar 

  123. Cochet, A. A. et al. Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction. Eur. Radiol. 19, 2117–2126 (2009).

    PubMed  Google Scholar 

  124. de Waha, S. et al. Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur. Heart J. 31, 2660–2668 (2010).

    PubMed  Google Scholar 

  125. Klug, G. et al. Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 14, 46 (2012).

    PubMed  PubMed Central  Google Scholar 

  126. Larose, E. et al. Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance. J. Am. Coll. Cardiol. 55, 2459–2469 (2010).

    PubMed  Google Scholar 

  127. Wu, E. et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart 94, 730–736 (2008).

    CAS  PubMed  Google Scholar 

  128. Robbers, L. F. et al. Magnetic resonance imaging-defined areas of microvascular obstruction after acute myocardial infarction represent microvascular destruction and haemorrhage. Eur. Heart J. 34, 2346–2353 (2013).

    CAS  PubMed  Google Scholar 

  129. Kidambi, A. et al. The effect of microvascular obstruction and intramyocardial hemorrhage on contractile recovery in reperfused myocardial infarction: insights from cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 15, 58 (2013).

    PubMed  PubMed Central  Google Scholar 

  130. Husser, O. et al. Cardiovascular magnetic resonance-derived intramyocardial hemorrhage after STEMI: Influence on long-term prognosis, adverse left ventricular remodeling and relationship with microvascular obstruction. Int. J. Cardiol. 167, 2047–2054 (2013).

    PubMed  Google Scholar 

  131. Eitel, I. et al. Prognostic value and determinants of a hypointense infarct core in T2-weighted cardiac magnetic resonance in acute reperfused ST-elevation-myocardial infarction. Circ. Cardiovasc. Imaging 4, 354–362 (2011).

    PubMed  Google Scholar 

  132. George, R. T. et al. Quantification of myocardial perfusion using dynamic 64-detector computed tomography. Invest. Radiol. 42, 815–822 (2007).

    PubMed  Google Scholar 

  133. Bamberg, F. et al. Dynamic myocardial CT perfusion imaging for evaluation of myocardial ischemia as determined by MR imaging. JACC Cardiovasc. Imaging 7, 267–277 (2014).

    PubMed  Google Scholar 

  134. Taylor, C. A., Fonte, T. A. & Min, J. K. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J. Am. Coll. Cardiol. 61, 2233–2241 (2013).

    PubMed  Google Scholar 

  135. Norgaard, B. L. et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J. Am. Coll. Cardiol. 63, 1145–1155 (2014).

    PubMed  Google Scholar 

  136. Chesebro, J. H. et al. Thrombolysis in myocardial infarction (TIMI) trial, phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation 76, 142–154 (1987).

    CAS  PubMed  Google Scholar 

  137. Niccoli, G., Burzotta, F., Galiuto, L. & Crea, F. Myocardial no-reflow in humans. J. Am. Coll. Cardiol. 54, 281–292 (2009).

    PubMed  Google Scholar 

  138. Taylor, A. et al. Detection of acutely impaired microvascular reperfusion after infarct angioplasty with magnetic resonance imaging. Circulation 109, 2080–2085 (2004).

    PubMed  Google Scholar 

  139. Nijveldt, R. et al. Functional recovery after acute myocardial infarction: comparison between angiography, electrocardiography, and cardiovascular magnetic resonance measures of microvascular injury. J. Am. Coll. Cardiol. 52, 181–189 (2008).

    PubMed  Google Scholar 

  140. Abaci, A., Oguzhan, A., Eryol, N. K. & Ergin, A. Effect of potential confounding factors on the Thrombolysis in Myocardial Infarction (TIMI) trial frame count and its reproducibility. Circulation 100, 2219–2223 (1999).

    CAS  PubMed  Google Scholar 

  141. van 't Hof, A. W. et al. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle myocardial infarction study group. Circulation 97, 2302–2306 (1998).

    PubMed  Google Scholar 

  142. Iwakura, K. et al. Alternation in the coronary blood flow velocity pattern in patients with no reflow and reperfused acute myocardial infarction. Circulation 94, 1269–1275 (1996).

    CAS  PubMed  Google Scholar 

  143. Yamamoto, K. et al. Two different coronary blood flow velocity patterns in thrombolysis in myocardial infarction flow grade 2 in acute myocardial infarction: insight into mechanisms of microvascular dysfunction. J. Am. Coll. Cardiol. 40, 1755–1760 (2002).

    PubMed  Google Scholar 

  144. Marcus, M. L., Doty, D. B., Hiratzka, L. F., Wright, C. B. & Eastham, C. L. Decreased coronary reserve: a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. N. Engl. J. Med. 307, 1362–1366 (1982).

    CAS  PubMed  Google Scholar 

  145. Doucette, J. W. et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 85, 1899–1911 (1992).

    CAS  PubMed  Google Scholar 

  146. Jenni, R. et al. In vitro validation of volumetric blood flow measurement using Doppler flow wire. Ultrasound Med. Biol. 26, 1301–1310 (2000).

    CAS  PubMed  Google Scholar 

  147. Serruys, P. W. et al. Prognostic value of intracoronary flow velocity and diameter stenosis in assessing the short- and long-term outcomes of coronary balloon angioplasty: the DEBATE Study (Doppler Endpoints Balloon Angioplasty Trial Europe). Circulation 96, 3369–3377 (1997).

    CAS  PubMed  Google Scholar 

  148. van de Hoef, T. P. et al. Impact of coronary microvascular function on long-term cardiac mortality in patients with acute ST-segment-elevation myocardial infarction. Circ. Cardiovasc. Interv. 6, 207–215 (2013).

    PubMed  Google Scholar 

  149. van de Hoef, T. P. et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ. Cardiovasc. Interv. 7, 301–311 (2014).

    PubMed  Google Scholar 

  150. Pepine, C. J. et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women's Ischemia Syndrome Evaluation) study. J. Am. Coll. Cardiol. 55, 2825–2832 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Pauly, D. F. et al. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: a double-blind randomized study from the National Heart, Lung and Blood Institute Women's Ischemia Syndrome Evaluation (WISE). Am. Heart J. 162, 678–684 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Meuwissen, M. et al. Hyperemic stenosis resistance index for evaluation of functional coronary lesion severity. Circulation 106, 441–446 (2002).

    PubMed  Google Scholar 

  153. Escaned, J. et al. Assessment of microcirculatory remodeling with intracoronary flow velocity and pressure measurements: validation with endomyocardial sampling in cardiac allografts. Circulation 120, 1561–1568 (2009).

    CAS  PubMed  Google Scholar 

  154. De Bruyne, B., Pijls, N. H., Smith, L., Wievegg, M. & Heyndrickx, G. R. Coronary thermodilution to assess flow reserve: experimental validation. Circulation 104, 2003–2006 (2001).

    CAS  PubMed  Google Scholar 

  155. Pijls, N. H. et al. Coronary thermodilution to assess flow reserve: validation in humans. Circulation 105, 2482–2486 (2002).

    PubMed  Google Scholar 

  156. Ng, M. K., Yeung, A. C. & Fearon, W. F. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation 113, 2054–2061 (2006).

    PubMed  Google Scholar 

  157. Aarnoudse, W. et al. Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation 110, 2137–2142 (2004).

    PubMed  Google Scholar 

  158. Verhoeff, B. J., van de Hoef, T. P., Spaan, J. A., Piek, J. J. & Siebes, M. Minimal effect of collateral flow on coronary microvascular resistance in the presence of intermediate and noncritical coronary stenoses. Am. J. Physiol. Heart Circ. Physiol. 303, H422–H428 (2012).

    CAS  PubMed  Google Scholar 

  159. Spaan, J. A. E., Piek, J. J., Hoffman, J. I. E. & Siebes, M. Physiological basis of clinically used coronary hemodynamic indices. Circulation 113, 446–455 (2006).

    PubMed  Google Scholar 

  160. Duncker, D. J. & Bache, R. J. Effect of chronotropic and inotropic stimulation on the coronary pressure-flow relation in left ventricular hypertrophy. Basic Res. Cardiol. 92, 271–286 (1997).

    CAS  PubMed  Google Scholar 

  161. Fearon, W. F. et al. Prognostic value of the index of microcirculatory resistance measured after primary percutaneous coronary intervention. Circulation 127, 2436–2441 (2013).

    PubMed  PubMed Central  Google Scholar 

  162. Ng, M. K. et al. The index of microcirculatory resistance predicts myocardial infarction related to percutaneous coronary intervention. Circ. Cardiovasc. Interv. 5, 515–522 (2012).

    PubMed  Google Scholar 

  163. Cuisset, T. et al. Direct stenting for stable angina pectoris is associated with reduced periprocedural microcirculatory injury compared with stenting after pre-dilation. J. Am. Coll. Cardiol. 51, 1060–1065 (2008).

    PubMed  Google Scholar 

  164. Mangiacapra, F. et al. Intracoronary enalaprilat to reduce MICROvascular damage during percutaneous coronary intervention (ProMicro) study. J. Am. Coll. Cardiol. 61, 615–621 (2013).

    CAS  PubMed  Google Scholar 

  165. Bergmann, S. R. et al. Quantification of regional myocardial blood flow in vivo with H25O. Circulation 70, 724–733 (1984).

    CAS  PubMed  Google Scholar 

  166. Bergmann, S. R., Hack, S., Tewson, T., Welch, M. J. & Sobel, B. E. The dependence of accumulation of 13NH3 by myocardium on metabolic factors and its implications for quantitative assessment of perfusion. Circulation 61, 34–43 (1980).

    CAS  PubMed  Google Scholar 

  167. Senthamizhchelvan, S. et al. Human biodistribution and radiation dosimetry of 82Rb. J. Nucl. Med. 51, 1592–1599 (2010).

    PubMed  Google Scholar 

  168. Berman, D. S. et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J. Am. Coll. Cardiol. 61, 469–477 (2013).

    CAS  PubMed  Google Scholar 

  169. Bailey, D. L., Townsend, D. W., Valk, P. E. & Maisey, M. N. (Eds) Positron Emission Tomography (Springer–Verlag, 2005).

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr E. Barbato (Cardiovascular Research Center, Aalst, Belgium) for helpful discussions of methods for invasive measurement of myocardial blood flow and coronary flow reserve.

Author information

Authors and Affiliations

Authors

Contributions

O.R. researched the data for the article, and O.R. and P.G.C. discussed the content. All the authors participated in writing, reviewing, and editing of the manuscript before submission.

Corresponding author

Correspondence to Ornella Rimoldi.

Ethics declarations

Competing interests

P.G.C. declares that he has acted as a consultant for Servier International. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camici, P., d'Amati, G. & Rimoldi, O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol 12, 48–62 (2015). https://doi.org/10.1038/nrcardio.2014.160

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing