Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Early detection of pulmonary arterial hypertension

Key Points

  • Pulmonary arterial hypertension (PAH) remains a devastating disease without a cure, despite therapeutic innovations

  • Most patients are diagnosed at a very advanced stage of the disease

  • Specific populations of patients, such as those with systemic sclerosis and carriers of PAH-causing mutations (such as in the BMPR2 gene) are at high risk of developing PAH

  • Screening of high-risk populations for PAH is recommended by current guidelines and is an important strategy to improve clinical outcomes

  • Optimal screening algorithms for the early detection of PAH will continue to evolve with ongoing research

Abstract

Pulmonary arterial hypertension (PAH) remains an incurable disease associated with an unacceptably high early mortality, despite advances in therapeutic options. The disease is clinically silent until late in its natural history, when most of the distal pulmonary arteries have been obliterated. Early diagnosis of PAH is associated with improved long-term survival, and screening of at-risk populations is, therefore, a rational strategy to improve outcomes in this condition. Doppler echocardiography is the most widely used screening tool in current clinical practice. The role of evidence-based screening strategies has been clarified by research such as the DETECT study in patients with systemic sclerosis. A multimodal approach, using a range of noninvasive tests, improves the performance of screening algorithms. Right heart catheterization is mandatory to confirm a diagnosis of PAH. Uncertainties exist about the definition and prognostic relevance of pulmonary hypertension during exercise, but accumulating evidence suggests that stress testing of the pulmonary circulation can unmask clinically important early disease. Novel tools for the early detection of pulmonary vascular disease are urgently needed, given the substantial limitations of currently available techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The main components of how early detection of PAH might improve clinical outcomes.
Figure 2: Relationship between PH on exercise and resting PAH.

Similar content being viewed by others

References

  1. Simonneau, G. et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D34–D41 (2013).

    Article  PubMed  Google Scholar 

  2. Hoeper, M. M. et al. Definitions and diagnosis of pulmonary hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D42–D50 (2013).

    Article  PubMed  Google Scholar 

  3. Thenappan, T. et al. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur. Respir. J. 35, 1079–1087 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Humbert, M. et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 122, 156–163 (2010).

    Article  PubMed  Google Scholar 

  5. Condliffe, R. et al. Connective tissue disease-associated pulmonary arterial hypertension in the modern treatment era. Am. J. Respir. Crit. Care Med. 179, 151–157 (2009).

    Article  PubMed  Google Scholar 

  6. Mathai, S. C. et al. Survival in pulmonary hypertension associated with the scleroderma spectrum of diseases: impact of interstitial lung disease. Arthritis Rheum. 60, 569–577 (2009).

    Article  PubMed  Google Scholar 

  7. Launay, D. et al. Survival in systemic sclerosis-associated pulmonary arterial hypertension in the modern management era. Ann. Rheum. Dis. 72, 1940–1946 (2013).

    Article  PubMed  Google Scholar 

  8. Ling, Y. et al. Changing demographics, epidemiology, and survival of incident pulmonary arterial hypertension: results from the pulmonary hypertension registry of the United Kingdom and Ireland. Am. J. Respir. Crit. Care Med. 186, 790–796 (2012).

    Article  PubMed  Google Scholar 

  9. Strange, G. et al. Time from symptoms to definitive diagnosis of idiopathic pulmonary arterial hypertension: the delay study. Pulm. Circ. 3, 89–94 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Galie, N. et al. Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): a double-blind, randomised controlled trial. Lancet 371, 2093–2100 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Benza, R. L. et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122, 164–172 (2010).

    Article  PubMed  Google Scholar 

  12. Humbert, M. et al. Screening for pulmonary arterial hypertension in patients with systemic sclerosis: clinical characteristics at diagnosis and long-term survival. Arthritis Rheum. 63, 3522–3530 (2011).

    Article  PubMed  Google Scholar 

  13. Rose, G. & Barker, D. J. Epidemiology for the uninitiated. Screening. Br. Med. J. 2, 1417–1418 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peacock, A. J., Murphy, N. F., McMurray, J. J., Caballero, L. & Stewart, S. An epidemiological study of pulmonary arterial hypertension. Eur. Respir. J. 30, 104–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Humbert, M. et al. Pulmonary arterial hypertension in France: results from a national registry. Am. J. Respir. Crit. Care Med. 173, 1023–1030 (2006).

    Article  PubMed  Google Scholar 

  16. Machado, R. D. et al. Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum. Mutat. 27, 121–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Machado, R. D. et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension. Am. J. Hum. Genet. 68, 92–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Larkin, E. K. et al. Longitudinal analysis casts doubt on the presence of genetic anticipation in heritable pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 186, 892–896 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pope, J. E. et al. Prevalence of elevated pulmonary arterial pressures measured by echocardiography in a multicenter study of patients with systemic sclerosis. J. Rheumatol. 32, 1273–1278 (2005).

    PubMed  Google Scholar 

  20. Stupi, A. M. et al. Pulmonary hypertension in the CREST syndrome variant of systemic sclerosis. Arthritis Rheum. 29, 515–524 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Mukerjee, D. et al. Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: application of a registry approach. Ann. Rheum. Dis. 62, 1088–1093 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benza, R. L. et al. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest 142, 448–456 (2012).

    Article  PubMed  Google Scholar 

  23. Tyndall, A. J. et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann. Rheum. Dis. 69, 1809–1815 (2010).

    Article  PubMed  Google Scholar 

  24. D'Alto, M. & Mahadevan, V. S. Pulmonary arterial hypertension associated with congenital heart disease. Eur. Respir. Rev. 21, 328–337 (2012).

    Article  PubMed  Google Scholar 

  25. Duffels, M. G. et al. Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry. Int. J. Cardiol. 120, 198–204 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. van Riel, A. C. et al. Contemporary prevalence of pulmonary arterial hypertension in adult congenital heart disease following the updated clinical classification. Int. J. Cardiol. 174, 299–305 (2014).

    Article  PubMed  Google Scholar 

  27. Hadengue, A., Benhayoun, M. K., Lebrec, D. & Benhamou, J. P. Pulmonary hypertension complicating portal hypertension: prevalence and relation to splanchnic hemodynamics. Gastroenterology 100, 520–528 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Colle, I. O. et al. Diagnosis of portopulmonary hypertension in candidates for liver transplantation: a prospective study. Hepatology 37, 401–409 (2003).

    Article  PubMed  Google Scholar 

  29. Krowka, M. J. et al. Pulmonary hemodynamics and perioperative cardiopulmonary-related mortality in patients with portopulmonary hypertension undergoing liver transplantation. Liver Transpl. 6, 443–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Murray, K. F., Carithers, R. L. Jr & Aasld . AASLD practice guidelines: evaluation of the patient for liver transplantation. Hepatology 41, 1407–1432 (2005).

    Article  PubMed  Google Scholar 

  31. Parent, F. et al. A hemodynamic study of pulmonary hypertension in sickle cell disease. N. Engl. J. Med. 365, 44–53 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Fonseca, G. H., Souza, R., Salemi, V. M., Jardim, C. V. & Gualandro, S. F. Pulmonary hypertension diagnosed by right heart catheterisation in sickle cell disease. Eur. Respir. J. 39, 112–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Simonneau, G. et al. Updated clinical classification of pulmonary hypertension. J. Am. Coll. Cardiol 54 (Suppl.), S43–S54 (2009).

    Article  PubMed  Google Scholar 

  34. Chitsulo, L., Engels, D., Montresor, A. & Savioli, L. The global status of schistosomiasis and its control. Acta Trop. 77, 41–51 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lapa, M. et al. Cardiopulmonary manifestations of hepatosplenic schistosomiasis. Circulation 119, 1518–1523 (2009).

    Article  PubMed  Google Scholar 

  36. Sitbon, O. et al. Prevalence of HIV-related pulmonary arterial hypertension in the current antiretroviral therapy era. Am. J. Respir. Crit. Care Med. 177, 108–113 (2008).

    Article  PubMed  Google Scholar 

  37. McLaughlin, V. V. et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J. Am. Coll. Cardiol. 53, 1573–1619 (2009).

    Article  PubMed  Google Scholar 

  38. Klings, E. S. et al. An official American Thoracic Society clinical practice guideline: diagnosis, risk stratification, and management of pulmonary hypertension of sickle cell disease. Am. J. Respir. Crit. Care Med. 189, 727–740 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schwaiger, J. P., Khanna, D. & Gerry Coghlan, J. Screening patients with scleroderma for pulmonary arterial hypertension and implications for other at-risk populations. Eur. Respir. Rev. 22, 515–525 (2013).

    Article  PubMed  Google Scholar 

  40. Tedford, R. J. et al. Right ventricular dysfunction in systemic sclerosis-associated pulmonary arterial hypertension. Circ. Heart Fail. 6, 953–963 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Overbeek, M. J. et al. Right ventricular contractility in systemic sclerosis-associated and idiopathic pulmonary arterial hypertension. Eur. Respir. J. 31, 1160–1166 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Rich, J. D., Shah, S. J., Swamy, R. S., Kamp, A. & Rich, S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 139, 988–993 (2011).

    Article  PubMed  Google Scholar 

  43. Fisher, M. R. et al. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am. J. Respir. Crit. Care Med. 179, 615–621 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. D'Alto, M. et al. Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. Int. J. Cardiol. 168, 4058–4062 (2013).

    Article  PubMed  Google Scholar 

  45. Mukerjee, D. et al. Echocardiography and pulmonary function as screening tests for pulmonary arterial hypertension in systemic sclerosis. Rheumatology (Oxford) 43, 461–466 (2004).

    Article  CAS  Google Scholar 

  46. Hachulla, E. et al. Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum. 52, 3792–3800 (2005).

    Article  PubMed  Google Scholar 

  47. Coghlan, J. G. et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann. Rheum Dis. 73, 1340–1349 (2014).

    Article  PubMed  Google Scholar 

  48. Galie, N. et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur. Heart J. 30, 2493–2537 (2009).

    Article  PubMed  Google Scholar 

  49. Kitabatake, A. et al. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation 68, 302–309 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Arkles, J. S. et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 183, 268–276 (2011).

    Article  PubMed  Google Scholar 

  51. Abbas, A. E. et al. A simple method for noninvasive estimation of pulmonary vascular resistance. J. Am. Coll. Cardiol. 41, 1021–1027 (2003).

    Article  PubMed  Google Scholar 

  52. D'Alto, M. et al. Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension. J. Am. Soc. Echocardiogr. http://dx.doi.org/10.1016/j.echo.2014.09.004.

  53. Leuchte, H. H. et al. Clinical significance of brain natriuretic peptide in primary pulmonary hypertension. J. Am. Coll. Cardiol. 43, 764–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Fijalkowska, A. et al. Serum N-terminal brain natriuretic peptide as a prognostic parameter in patients with pulmonary hypertension. Chest 129, 1313–1321 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Nagaya, N. et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation 102, 865–870 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Blyth, K. G. et al. NT-proBNP can be used to detect right ventricular systolic dysfunction in pulmonary hypertension. Eur. Respir. J. 29, 737–744 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Williams, M. H. et al. Role of N-terminal brain natriuretic peptide (N-TproBNP) in scleroderma-associated pulmonary arterial hypertension. Eur. Heart J. 27, 1485–1494 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Mukerjee, D. et al. Significance of plasma N-terminal pro-brain natriuretic peptide in patients with systemic sclerosis-related pulmonary arterial hypertension. Respir. Med. 97, 1230–1236 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Allanore, Y. et al. N-terminal pro-brain natriuretic peptide as a diagnostic marker of early pulmonary artery hypertension in patients with systemic sclerosis and effects of calcium-channel blockers. Arthritis Rheum. 48, 3503–3508 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. McLaughlin, V. V. et al. Treatment goals of pulmonary hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D73–D81 (2013).

    Article  PubMed  Google Scholar 

  61. Luchner, A. et al. Effect of compensated renal dysfunction on approved heart failure markers: direct comparison of brain natriuretic peptide (BNP) and N-terminal pro-BNP. Hypertension 46, 118–123 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Steen, V. & Medsger, T. A. Jr. Predictors of isolated pulmonary hypertension in patients with systemic sclerosis and limited cutaneous involvement. Arthritis Rheum. 48, 516–522 (2003).

    Article  PubMed  Google Scholar 

  63. Thakkar, V. et al. The inclusion of N-terminal pro-brain natriuretic peptide in a sensitive screening strategy for systemic sclerosis-related pulmonary arterial hypertension: a cohort study. Arthritis Res. Ther. 15, R193 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Borland, C. A place for TL,NO with TL,CO? Eur. Respir. J. 31, 918–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Roughton, F. J. & Forster, R. E. Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl. Physiol. 11, 290–302 (1957).

    Article  CAS  PubMed  Google Scholar 

  66. Overbeek, M. J. et al. Membrane diffusion- and capillary blood volume measurements are not useful as screening tools for pulmonary arterial hypertension in systemic sclerosis: a case control study. Respir. Res. 9, 68 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Trip, P. et al. Diffusion capacity and BMPR2 mutations in pulmonary arterial hypertension. Eur. Respir. J. 43, 1195–1198 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Montani, D. et al. Pulmonary veno-occlusive disease. Eur. Respir. J. 33, 189–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Gunther, S. et al. Computed tomography findings of pulmonary venoocclusive disease in scleroderma patients presenting with precapillary pulmonary hypertension. Arthritis Rheum. 64, 2995–3005 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Sun, X. G., Hansen, J. E., Oudiz, R. J. & Wasserman, K. Pulmonary function in primary pulmonary hypertension. J. Am. Coll. Cardiol. 41, 1028–1035 (2003).

    Article  PubMed  Google Scholar 

  71. Arena, R., Lavie, C. J., Milani, R. V., Myers, J. & Guazzi, M. Cardiopulmonary exercise testing in patients with pulmonary arterial hypertension: an evidence-based review. J. Heart Lung Transplant. 29, 159–173 (2010).

    Article  PubMed  Google Scholar 

  72. Trip, P., Vonk-Noordegraaf, A. & Bogaard, H. J. Cardiopulmonary exercise testing reveals onset of disease and response to treatment in a case of heritable pulmonary arterial hypertension. Pulm. Circ. 2, 387–389 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Raevens, S. et al. Echocardiography for the detection of portopulmonary hypertension in liver transplant candidates: an analysis of cutoff values. Liver Transpl. 19, 602–610 (2013).

    Article  PubMed  Google Scholar 

  74. Machado, R. F. et al. Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. Blood 118, 855–864 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ataga, K. I. et al. Pulmonary hypertension in patients with sickle cell disease: a longitudinal study. Br. J. Haematol. 134, 109–115 (2006).

    Article  PubMed  Google Scholar 

  76. Gladwin, M. T. et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. N. Engl. J. Med. 350, 886–895 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Soubrier, F. et al. Genetics and genomics of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 62 (Suppl.), D13–D21 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. US National Library of Medicine. ClinicalTrials.gov [online], (2014).

  79. Kovacs, G., Berghold, A., Scheidl, S. & Olschewski, H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur. Respir. J. 34, 888–894 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Valerio, C. J., Schreiber, B. E., Handler, C. E., Denton, C. P. & Coghlan, J. G. Borderline mean pulmonary artery pressure in patients with systemic sclerosis: transpulmonary gradient predicts risk of developing pulmonary hypertension. Arthritis Rheum. 65, 1074–1084 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Brofman, B. L. et al. Unilateral pulmonary artery occlusion in man; control studies. J. Thorac. Surg. 34, 206–227 (1957).

    CAS  PubMed  Google Scholar 

  82. Reed, C. E., Spinale, F. G. & Crawford, F. A. Jr Effect of pulmonary resection on right ventricular function. Ann. Thorac. Surg. 53, 578–582 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Sasahara, A. A. Pulmonary vascular responses to thromboembolism. Mod. Concepts Cardiovasc. Dis. 36, 55–60 (1967).

    CAS  PubMed  Google Scholar 

  84. Tolle, J. J., Waxman, A. B., Van Horn, T. L., Pappagianopoulos, P. P. & Systrom, D. M. Exercise-induced pulmonary arterial hypertension. Circulation 118, 2183–2189 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kovacs, G. et al. Borderline pulmonary arterial pressure is associated with decreased exercise capacity in scleroderma. Am. J. Respir. Crit. Care Med. 180, 881–886 (2009).

    Article  PubMed  Google Scholar 

  86. Oudiz, R. J. & Rubin, L. J. Exercise-induced pulmonary arterial hypertension: a new addition to the spectrum of pulmonary vascular diseases. Circulation 118, 2120–2121 (2008).

    Article  PubMed  Google Scholar 

  87. Lang, I. M. & Madani, M. Update on chronic thromboembolic pulmonary hypertension. Circulation 130, 508–518 (2014).

    Article  PubMed  Google Scholar 

  88. Hoeper, M. M. et al. Chronic thromboembolic pulmonary hypertension. Lancet Respir. Med. 2, 573–582 (2014).

    Article  PubMed  Google Scholar 

  89. Hoeper, M. M. et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J. Am. Coll. Cardiol. 54, S85–96 (2009).

    Article  PubMed  Google Scholar 

  90. Naeije, R. et al. Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am. J. Respir. Crit. Care Med. 187, 576–583 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lewis, G. D. et al. Pulmonary vascular hemodynamic response to exercise in cardiopulmonary diseases. Circulation 128, 1470–1479 (2013).

    Article  PubMed  Google Scholar 

  92. Bae, S. et al. Baseline characteristics and follow-up in patients with normal haemodynamics versus borderline mean pulmonary arterial pressure in systemic sclerosis: results from the PHAROS registry. Ann. Rheum. Dis. 71, 1335–1342 (2012).

    Article  PubMed  Google Scholar 

  93. Saggar, R. et al. Brief report: effect of ambrisentan treatment on exercise-induced pulmonary hypertension in systemic sclerosis: a prospective single-center, open-label pilot study. Arthritis Rheum. 64, 4072–4077 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Bossone, E. et al. Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J. Am. Soc. Echocardiogr. 26, 1–14 (2013).

    Article  PubMed  Google Scholar 

  95. Grunig, E. et al. Stress Doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation 119, 1747–1757 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Reichenberger, F. et al. Noninvasive detection of early pulmonary vascular dysfunction in scleroderma. Resp. Med. 103, 1713–1718 (2009).

    Article  CAS  Google Scholar 

  97. Collins, N. et al. Abnormal pulmonary vascular responses in patients registered with a systemic autoimmunity database: Pulmonary Hypertension Assessment and Screening Evaluation using stress echocardiography (PHASE-I). Eur. J. Echocardiogr. 7, 439–446 (2006).

    Article  PubMed  Google Scholar 

  98. Alkotob, M. L. et al. Reduced exercise capacity and stress-induced pulmonary hypertension in patients with scleroderma. Chest 130, 176–181 (2006).

    Article  PubMed  Google Scholar 

  99. Steen, V. et al. Exercise-induced pulmonary arterial hypertension in patients with systemic sclerosis. Chest 134, 146–151 (2008).

    Article  PubMed  Google Scholar 

  100. Bossone, E., Rubenfire, M., Bach, D. S., Ricciardi, M. & Armstrong, W. F. Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension. J. Am. Coll. Cardiol. 33, 1662–1666 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Argiento, P. et al. Exercise stress echocardiography of the pulmonary circulation: limits of normal and sex differences. Chest 142, 1158–1165 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Maeder, M. T., Thompson, B. R., Brunner-La Rocca, H. P. & Kaye, D. M. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 56, 855–863 (2010).

    Article  PubMed  Google Scholar 

  103. Lau, E. M. et al. Dobutamine stress echocardiography for the assessment of pressure-flow relationships of the pulmonary circulation. Chest 146, 959–966 (2014).

    Article  PubMed  Google Scholar 

  104. Kuriyama, K. et al. CT-determined pulmonary artery diameters in predicting pulmonary hypertension. Invest. Radiol. 19, 16–22 (1984).

    Article  CAS  PubMed  Google Scholar 

  105. Haimovici, J. B. et al. Relationship between pulmonary artery diameter at computed tomography and pulmonary artery pressures at right-sided heart catheterization. Massachusetts General Hospital Lung Transplantation Program. Acad. Radiol. 4, 327–334 (1997).

    Article  CAS  PubMed  Google Scholar 

  106. Ng, C. S., Wells, A. U. & Padley, S. P. A CT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter. J. Thorac. Imaging 14, 270–278 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Moledina, S. et al. Fractal branching quantifies vascular changes and predicts survival in pulmonary hypertension: a proof of principle study. Heart 97, 1245–1249 (2011).

    Article  PubMed  Google Scholar 

  108. Boxt, L. M., Katz, J., Kolb, T., Czegledy, F. P. & Barst, R. J. Direct quantitation of right and left ventricular volumes with nuclear magnetic resonance imaging in patients with primary pulmonary hypertension. J. Am. Coll. Cardiol. 19, 1508–1515 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Benza, R., Biederman, R., Murali, S. & Gupta, H. Role of cardiac magnetic resonance imaging in the management of patients with pulmonary arterial hypertension. J. Am. Coll. Cardiol. 52, 1683–1692 (2008).

    Article  PubMed  Google Scholar 

  110. Sanz, J. et al. Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance. JACC Cardiovasc. Imaging 2, 286–295 (2009).

    Article  PubMed  Google Scholar 

  111. Ohno, Y. et al. Primary pulmonary hypertension: 3D dynamic perfusion MRI for quantitative analysis of regional pulmonary perfusion. Am. J. Roentgenol. 188, 48–56 (2007).

    Article  Google Scholar 

  112. Roeleveld, R. J. et al. A comparison of noninvasive MRI-based methods of estimating pulmonary artery pressure in pulmonary hypertension. J. Magn. Reson. Imaging 22, 67–72 (2005).

    Article  PubMed  Google Scholar 

  113. Saba, T. S., Foster, J., Cockburn, M., Cowan, M. & Peacock, A. J. Ventricular mass index using magnetic resonance imaging accurately estimates pulmonary artery pressure. Eur. Respir. J. 20, 1519–1524 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Laffon, E. et al. A computed method for noninvasive MRI assessment of pulmonary arterial hypertension. J. Appl. Physiol. (1985) 96, 463–468 (2004).

    Article  Google Scholar 

  115. Archer, S. L., Weir, E. K. & Wilkins, M. R. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121, 2045–2066 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zhao, L. et al. Heterogeneity in lung 18FDG uptake in pulmonary arterial hypertension: potential of dynamic 18FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments. Circulation 128, 1214–1224 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Hagan, G. et al. 18FDG PET imaging can quantify increased cellular metabolism in pulmonary arterial hypertension: A proof-of-principle study. Pulm. Circ. 1, 448–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ruiter, G. et al. Pulmonary 2-deoxy-2-[18F]-fluoro-D-glucose uptake is low in treated patients with idiopathic pulmonary arterial hypertension. Pulm. Circ. 3, 647–653 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Lau, E. M. et al. Pulmonary hypertension leads to a loss of gravity dependent redistribution of regional lung perfusion: a SPECT/CT study. Heart 100, 47–53 (2014).

    Article  PubMed  Google Scholar 

  120. Hakim, M. et al. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 112, 5949–5966 (2012).

    Article  CAS  PubMed  Google Scholar 

  121. Peled, N. et al. Non-invasive breath analysis of pulmonary nodules. J. Thorac. Oncol. 7, 1528–1533 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Peng, G. et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Cohen-Kaminsky, S. et al. A proof of concept for the detection and classification of pulmonary arterial hypertension through breath analysis with a sensor array. Am. J. Respir. Crit. Care Med. 188, 756–759 (2013).

    Article  PubMed  Google Scholar 

  124. Wilson, J. M. G. & Jungner, G. Principles and Practice of Screening for Disease (WHO, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article. E.M.T.L. wrote the manuscript, and all the authors reviewed and edited the article before submission.

Corresponding author

Correspondence to David S. Celermajer.

Ethics declarations

Competing interests

E.M.T.L. has received support from Actelion for speaking engagements. M.H. has relationships with the following companies: Actelion, Aires, Bayer, BMS, GSK, Novartis, Pfizer, and United Therapeutics. In addition to being an investigator in trials involving these companies, relationships include consultancy services and membership of scientific advisory boards. D.S.C. has received support from Actelion, including serving on the speaker bureau and funding for research.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, E., Humbert, M. & Celermajer, D. Early detection of pulmonary arterial hypertension. Nat Rev Cardiol 12, 143–155 (2015). https://doi.org/10.1038/nrcardio.2014.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing