Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The vortex—an early predictor of cardiovascular outcome?

Abstract

Blood motion in the heart features vortices that accompany the redirection of jet flows towards the outlet tracks. Vortices have a crucial role in fluid dynamics. The stability of cardiac vorticity is vital to the dynamic balance between rotating blood and myocardial tissue and to the development of cardiac dysfunction. Moreover, vortex dynamics immediately reflect physiological changes to the surrounding system, and can provide early indications of long-term outcome. However, the pathophysiological relevance of cardiac fluid dynamics is still unknown. We postulate that maladaptive intracardiac vortex dynamics might modulate the progressive remodelling of the left ventricle towards heart failure. The evaluation of blood flow presents a new paradigm in cardiac function analysis, with the potential for sensitive risk identification of cardiac abnormalities. Description of cardiac flow patterns after surgery or device therapy provides an intrinsic qualitative evaluation of therapeutic procedures, and could enable early risk stratification of patients vulnerable to adverse cardiac remodelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blood flow in the healthy left ventricle.
Figure 2: Time profile of pressure in healthy left cardiac chambers.
Figure 3: Echocardiographic recordings of intraventricular swirling flow in healthy individuals.
Figure 4: Echocardiographic recordings of intraventricular flow.
Figure 5: The vortex in left ventricular remodelling.
Figure 6: Echocardiographic recordings of postsurgical intraventricular flow.
Figure 7: Longitudinally directed intraventricular pressure gradients are markers of normal left ventricular function.

Similar content being viewed by others

References

  1. Kilner, P. J. et al. Asymmetric redirection of flow through the heart. Nature 404, 759–761 (2000).

    Article  CAS  Google Scholar 

  2. Pedrizzetti, G. & Domenichini, F. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95, 108101 (2005).

    Article  Google Scholar 

  3. Lancellotti, P. et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 14, 611–644 (2013).

    Article  Google Scholar 

  4. Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 22, 107–133 (2009).

    Article  Google Scholar 

  5. Brutsaert, D. L., Rademakers, F. E., Sys, S. U., Gillebert, T. C. & Housmans, P. R. Analysis of relaxation in the evaluation of ventricular function of the heart. Prog. Cardiovasc. Dis. 28, 143–163 (1985).

    Article  CAS  Google Scholar 

  6. Sengupta, P. P. et al. Left ventricular structure and function: basic science for cardiac imaging. J. Am. Coll. Cardiol. 48, 1988–2001 (2006).

    Article  Google Scholar 

  7. Buckberg, G., Hoffman, J. I., Mahajan, A., Saleh, S. & Coghlan, C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation 118, 2571–2587 (2008).

    Article  Google Scholar 

  8. Vendelin, M., Bovendeerd, P. H., Engelbrecht, J. & Arts, T. Optimizing ventricular fibres: uniform strain or stress, but not ATP consumption, leads to high efficiency. Am. J. Physiol. Heart Circ. Physiol. 283, H1072–H1081 (2002).

    Article  CAS  Google Scholar 

  9. Dong, S. J., Hees, P. S., Siu, C. O., Weiss, J. L. & Shapiro, E. P. MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of tau. Am. J. Physiol. Heart Circ. Physiol. 281, H2002–H2009 (2001).

    Article  CAS  Google Scholar 

  10. Geerts L., Bovendeerd, P., Nicolay, K. & Arts, T. Characterization of the normal cardiac myofibre field in goat measured with MR-diffusion tensor imaging. Am. J. Physiol. Heart Circ. Physiol. 283, H139–H145 (2002).

    Article  CAS  Google Scholar 

  11. Notomi, Y. et al. Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am. J. Physiol. Heart Circ. Physiol. 294, H505–H513 (2008).

    Article  CAS  Google Scholar 

  12. Burns, A. T., La Gerche, A., Prior, D. L. & Macisaac, A. I. Left ventricular untwisting is an important determinant of early diastolic function. JACC Cardiovasc. Imaging 2, 709–716 (2009).

    Article  Google Scholar 

  13. Leite-Moreira, A. F. & Gillebert, T. C. Nonuniform course of left ventricular pressure fall and its regulation by load and contractile state. Circulation 90, 2481–2491 (1994).

    Article  CAS  Google Scholar 

  14. Sengupta, P. P. et al. Emerging trends in CV flow visualization. JACC Cardiovasc. Imaging 5, 305–316 (2012).

    Article  Google Scholar 

  15. Courtois, M., Kovacs, S. J. Jr & Ludbrook, P. A. Transmitral pressure-flow velocity relation: Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78, 661–671 (1988).

    Article  CAS  Google Scholar 

  16. Vierendeels, J. A., Riemslagh, K., Dick, E. & Verdonck, P. R. Computer simulation of intraventricular flow and pressure gradients during diastole. J. Biomech. Eng. 122, 667–674 (2000).

    Article  CAS  Google Scholar 

  17. Ebbers, T., Wigström, L., Bolger, A. F., Wranne, B. & Karlsson, M. Noninvasive measurement of time-varying threedimensional relative pressure fields within the human heart. J. Biomech. Eng. 124, 288–293 (2002).

    Article  CAS  Google Scholar 

  18. Domenichini, F., Pedrizzetti, G. & Baccani, B. Three-dimensional filling flow into a model left ventricle. J. Fluid Mech. 539, 179–198 (2005).

    Article  Google Scholar 

  19. Markl, M., Kilner, P. J. & Ebbers, T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 13, 7 (2011).

    Article  Google Scholar 

  20. Bolger, A. F. et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 9, 741–747 (2007).

    Article  Google Scholar 

  21. Eriksson, J. et al. Semi-automatic quantification of 4D left ventricular blood flow. J. Cardiovasc. Magn. Reson. 12, 9 (2010).

    Article  Google Scholar 

  22. Carlhäll, C. J. & Bolger, A. Passing strange: flow in the failing ventricle. Circ. Heart Fail. 3, 326–331 (2010).

    Article  Google Scholar 

  23. Adrian, R. J. Twenty years of particle image velocimetry. Exp. Fluids 39, 159–169 (2005).

    Article  Google Scholar 

  24. Kim, H., Hertzberg, J. & Shandas, R. Development and validation of echo PIV. Exp. Fluids 36, 455–462 (2004).

    Article  Google Scholar 

  25. Zhang, F. et al. In vitro and preliminary in vivo validation of echo particle image velocimetry in carotid vascular imaging. Ultrasound Med. Biol. 37, 450–464 (2011).

    Article  Google Scholar 

  26. Kheradvar, A. et al. Echographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23, 86–94 (2010).

    Article  Google Scholar 

  27. Westerdale, J. et al. Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry. J. Ultras. Med. 30, 187–195 (2011).

    Article  Google Scholar 

  28. Sengupta, P. P. et al. Left ventricular isovolumic flow sequence during sinus and paced rhythms: new insights from use of high-resolution Doppler and ultrasonic digital particle imaging velocimetry. J. Am. Coll. Cardiol. 49, 899–908 (2007).

    Article  Google Scholar 

  29. Hong, G. R. et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc. Imaging 1, 705–717 (2008).

    Article  Google Scholar 

  30. Sengupta, P. P., Pedrizzetti, G. & Narula, J. Multiplanar visualization of blood flow using echocardiographic particle imaging velocimetry. JACC Cardiovasc. Imaging 5, 566–569 (2012).

    Article  Google Scholar 

  31. Wallace, J. M. Twenty years of experimental and direct numerical simulation access to the velocity gradient tensor: what have we learned about turbulence? Phys. Fluids 21, 021301 (2009).

    Article  Google Scholar 

  32. Wallace, J. M. & Vukoslavcevic, P. V. Measurement of the velocity gradient tensor in turbulent flows. Ann. Rev. Fluid Mech. 42, 157–181 (2010).

    Article  Google Scholar 

  33. Cimino, S. et al. In vivo analysis of intraventricular fluid dynamics in healthy hearts. Eur. J. Mech. B-Fluids 35, 40–46 (2012).

    Article  Google Scholar 

  34. Gharib, M., Rambod, E., Kheradvar, A., Sahn, D. J. & Dabiri, J. O. Optimal vortex formation as an index of cardiac health. Proc. Natl Acad. Sci. USA 103, 6305–6308 (2006).

    Article  CAS  Google Scholar 

  35. Son, J. W. et al. Abnormal left ventricular vortex flow patterns in association with left ventricular apical thrombus formation in patients with anterior myocardial infarction: a quantitative analysis by contrast echocardiography. Circ. J. 76, 2640–2646 (2012).

    Article  Google Scholar 

  36. Mangual, J. O. et al. Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. J. Biomech. 46, 1611–1617 (2013).

    Article  Google Scholar 

  37. Abe, H. et al. Contrast echocardiography for assessing left ventricular vortex strength in heart failure: a prospective cohort study. Eur. Heart J. Cardiovasc. Imaging 14, 1049–1060 (2013).

    Article  Google Scholar 

  38. Goliasch, G. et al. CRT improves LV filling dynamics: insights from echocardiographic particle imaging velocimetry. JACC Cardiovasc. Imaging 6, 704–713 (2013).

    Article  Google Scholar 

  39. Cohn, J. N., Ferrari, R. & Sharpe, N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an International Forum on Cardiac Remodeling. J. Am. Coll. Cardiol. 35, 569–582 (2000).

    Article  CAS  Google Scholar 

  40. Kehat, I. & Molkentin, J. D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 122, 2727–2735 (2010).

    Article  Google Scholar 

  41. Steenman, M. et al. Transcriptomal analysis of failing and nonfailing human hearts. Physiol. Genomics 12, 97–112 (2003).

    Article  CAS  Google Scholar 

  42. Asakura, M. & Kitakaze, M. Global gene expression profiling in the failing myocardium. Circ. J. 73, 1568–1576 (2009).

    Article  CAS  Google Scholar 

  43. Hill, J. A. & Olson, E. N. Cardiac plasticity. N. Engl. J. Med. 358, 1370–1380 (2008).

    Article  CAS  Google Scholar 

  44. Verma, A. et al. Prognostic implication of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan In Acute myocardial iNfarcTion) Echocardiographic Study. JACC Cardiovasc. Imaging 1, 582–591 (2008).

    Article  Google Scholar 

  45. Sengupta, P. P. & Narula, J. Reclassifying heart failure: predominantly subendocardial, subepicardial, and transmural. Heart Fail. Clin. 4, 379–382 (2008).

    Article  Google Scholar 

  46. Wu, E. et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index: prospective cohort study. Heart 94, 730–736 (2008).

    Article  CAS  Google Scholar 

  47. Nijveldt, R. et al. Assessment of microvascular obstruction and prediction of short-term remodeling after acute myocardial infarction: cardiac MR imaging study. Radiology 250, 363–370 (2009).

    Article  Google Scholar 

  48. Hein, S., Kostin, S., Heling, A., Maeno, Y. & Schaper, J. The role of the cytoskeleton in heart failure. Cardiovasc. Res. 45, 273–278 (2000).

    Article  CAS  Google Scholar 

  49. Baccarelli, A., Rienstra, M. & Benjamin, E. J. Cardiovascular epigenetic basic concepts and results from animal and human studies. Circ. Cardiovasc. Genet. 3, 567–573 (2010).

    Article  CAS  Google Scholar 

  50. Chaturvedi, P. & Tyagi, S. C. Epigenetic mechanisms underlying cardiac degeneration and regeneration. Int. J. Cardiol. 173, 1–11 (2014).

    Article  Google Scholar 

  51. Hove, J. R. et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421, 172–177 (2003).

    Article  CAS  Google Scholar 

  52. Liew, C. C. & Dzau, V. J. Molecular genetics and genomics of heart failure. Nat. Rev. Genet. 5, 811–825 (2004).

    Article  CAS  Google Scholar 

  53. Pasipoularides, A. Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic J. Cardiol. 53, 458–469 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Zhang, J. & Friedman, M. H. Adaptive response of vascular endothelial cells to an acute increase in shear stress magnitude. Am. J. Physiol. Heart Circ. Physiol. 302, H983–H991 (2012).

    Article  CAS  Google Scholar 

  55. Eriksson, J., Bolger, A. F., Ebbers, T. & Carlhäll, C. J. Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 14, 417–424 (2013).

    Article  Google Scholar 

  56. Ross, J. Jr. Afterload mismatch in aortic and mitral valve disease: implications for surgical therapy. J. Am. Coll. Cardiol. 5, 811–826 (1985).

    Article  Google Scholar 

  57. Vahanian, A. et al. Guidelines on the management of valvular heart disease (version 2012). Eur. Heart J. 33, 2451–2496 (2012).

    Article  Google Scholar 

  58. Nishimura, R. A. et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation http://dx.doi.org/10.1161/CIR.0000000000000029.

  59. Faludi, R. et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139, 1501–1510 (2010).

    Article  Google Scholar 

  60. Pedrizzetti, G., Domenichini, F. & Tonti, G. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38, 769–773 (2010).

    Article  Google Scholar 

  61. Adhyapak, S. M. & Parachuri, R. V. Architecture of the left ventricle: insights for optimal surgical ventricular restoration. Heart Fail. Rev. 15, 73–83 (2010).

    Article  Google Scholar 

  62. George, T. J., Arnaoutakis, G. J. & Shah, A. S. Surgical treatment of advanced heart failure: alternatives to heart transplantation and mechanical circulatory assist devices. Prog. Cardiovasc. Dis. 54, 115–131 (2011).

    Article  Google Scholar 

  63. Buckberg, G., Athanasuleas, C. & Conte, J. Surgical ventricular restoration for the treatment of heart failure. Nat. Rev. Cardiol. 9, 703–716 (2012).

    Article  Google Scholar 

  64. Doenst, T. et al. Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Ann. Thorac. Surg. 87, 1187–1195 (2009).

    Article  Google Scholar 

  65. Liakopoulos, O. J. et al. Sequential deformation and physiological considerations in unipolar right or left ventricular pacing. Eur. J. Cardiothorac. Surg. 29 (Suppl. 1), S188–S197 (2006).

    Article  Google Scholar 

  66. Guerra, M., Amorim, M. J., Brás-Silva, C. & Leite-Moreira, A. F. Intraventricular pressure gradients throughout the cardiac cycle: effects of ischaemia and modulation by afterload. Exp. Physiol. 98, 149–160 (2013).

    Article  Google Scholar 

  67. D'Ascia, C., Cittadini, A., Monti, M. G., Riccio, G. & Saccà, L. Effects of biventricular pacing on interstitial remodelling, tumour necrosis factor alpha expression, and apoptotic death in failing human myocardium. Eur. Heart J. 27, 201–206 (2006).

    Article  Google Scholar 

  68. Orrego, C. M. et al. Cellular evidence of reverse cardiac remodeling induced by cardiac resynchronization therapy. Congest. Heart Fail. 17, 140–146 (2011).

    Article  Google Scholar 

  69. McGarvey, J. R. et al. Directed epicardial assistance in ischemic cardiomyopathy: flow and function using cardiac magnetic resonance imaging. Ann. Thorac. Surg. 96, 577–585 (2013).

    Article  Google Scholar 

  70. Peura, J. L. et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scientific statement from the American Heart Association. Circulation 126, 2648–2667 (2012).

    Article  Google Scholar 

  71. Birks, E. J. & George, R. S. Molecular changes occurring during reverse remodelling following left ventricular assist device support. J. Cardiovasc. Transl. Res. 3, 635–642 (2010).

    Article  Google Scholar 

  72. Malliaras, K. G., Terrovitis, J. V., Drakos, S. G. & Nanas J. N. Reverse cardiac remodeling enabled by mechanical unloading of left ventricle. J. Cardiovasc. Transl. Res. 2, 114–125 (2009).

    Article  Google Scholar 

  73. Felkin, L. E., Lara-Pezzi, E. A., Hall, J. L., Birks, E. J. & Barton, P. J. Reverse remodelling and recovery from heart failure are associated with complex patterns of gene expression. J. Cardiovasc. Transl. Res. 4, 321–331 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Michael John of the Vita-Salute San Raffaele University in Milan, Italy for his support in the preparation of this paper.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Giovanni La Canna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrizzetti, G., La Canna, G., Alfieri, O. et al. The vortex—an early predictor of cardiovascular outcome?. Nat Rev Cardiol 11, 545–553 (2014). https://doi.org/10.1038/nrcardio.2014.75

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2014.75

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing