Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms

Key Points

  • Various cardiovascular and noncardiovascular drugs can induce proarrhythmic adverse effects

  • Pharmacokinetic risk factors and genetic predisposition can enhance proarrhythmia

  • Antiarrhythmic, antimicrobial, antipsychotic, and antidepressant drugs are important drug classes with an associated risk of proarrhythmia

  • Monitoring the QT interval might not be sufficient to assess the risk of proarrhythmia

  • Spatial and temporal dispersion of repolarization, action-potential configuration, and occurrence of early afterdepolarizations are additional predictors of proarrhythmia

Abstract

Drug-induced ventricular tachyarrhythmias can be caused by cardiovascular drugs, noncardiovascular drugs, and even nonprescription agents. They can result in arrhythmic emergencies and sudden cardiac death. If a new arrhythmia or aggravation of an existing arrhythmia develops during therapy with a drug at a concentration usually considered not to be toxic, the situation can be defined as proarrhythmia. Various cardiovascular and noncardiovascular drugs can increase the occurrence of polymorphic ventricular tachycardia of the 'torsade de pointes' type. Antiarrhythmic drugs, antimicrobial agents, and antipsychotic and antidepressant drugs are the most important groups. Age, female sex, and structural heart disease are important risk factors for the occurrence of torsade de pointes. Genetic predisposition and individual pharmacodynamic and pharmacokinetic sensitivity also have important roles in the generation of arrhythmias. An increase in spatial or temporal dispersion of repolarization and a triangular action-potential configuration have been identified as crucial predictors of proarrhythmia in experimental models. These studies emphasized that sole consideration of the QT interval is not sufficient to assess the proarrhythmic risk. In this Review, we focus on important triggers of proarrhythmia and the underlying electrophysiological mechanisms that can enhance or prevent the development of torsade de pointes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spatial dispersion of repolarization.
Figure 2: Temporal dispersion of repolarization.
Figure 3: Representative Poincaré plots obtained from analysis of 30 MAPs under baseline conditions, under the influence of a | erythromycin or b | veratridine, and after additional infusion of DHA.
Figure 4: Action-potential configuration.
Figure 5: Early afterdepolarizations leading to torsades de pointes in a rabbit whole-heart model.

Similar content being viewed by others

References

  1. Bertino, J. S. Jr, Owens, R. C. Jr, Carnes, T. D. & Iannini, P. B. Gatifloxacin-associated corrected QT interval prolongation, torsades de pointes, and ventricular fibrillation in patients with known risk factors. Clin. Infect. Dis. 34, 861–863 (2002).

    Article  PubMed  Google Scholar 

  2. Amankwa, K., Krishnan, S. C. & Tisdale, J. E. Torsades de pointes associated with fluoroquinolones: importance of concomitant risk factors. Clin. Pharmacol. Ther. 75, 242–247 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Frothingham, R. Rates of torsades de pointes associated with ciprofloxacin, ofloxacin, levofloxacin, gatifloxacin, and moxifloxacin. Pharmacotherapy 21, 1468–1472 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Stahlmann, R. & Schwabe, R. Safety profile of grepafloxacin compared with other fluoroquinolones. J. Antimicrob. Chemother. 40 (Suppl. A), 83–92 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Prabhakar, M. & Krahn, A. D. Ciprofloxacin-induced acquired long QT syndrome. Heart Rhythm 1, 624–626 (2004).

    Article  PubMed  Google Scholar 

  6. Eckardt, L. & Breithardt, G. in Cardiac Electrophysiology: From Cell to Bedside (eds Zipes, D. P. & Jalife, J.) 769–777 (Saunders, 2009).

    Google Scholar 

  7. Giudicessi, J. R. & Ackerman, M. J. Potassium-channel mutations and cardiac arrhythmias—diagnosis and therapy. Nat. Rev. Cardiol. 9, 319–332 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lengyel, C. et al. Effect of a neuroprotective drug, eliprodil on cardiac repolarisation: importance of the decreased repolarisation reserve in the development of proarrhythmic risk. Br. J. Pharmacol. 143, 152–158 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kamei, S. et al. Molecular analysis of potassium ion channel genes in sudden death cases among patients administered psychotropic drug therapy: are polymorphisms in LQT genes a potential risk factor? J. Hum. Genet. 59, 95–99 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Itoh, H. et al. Latent genetic backgrounds and molecular pathogenesis in drug-induced long-QT syndrome. Circ. Arrhythm. Electrophysiol. 2, 511–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Schulze-Bahr, E. et al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum. Mutat. 21, 651–652 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Rolf, S. et al. The ajmaline challenge in Brugada syndrome: diagnostic impact, safety, and recommended protocol. Eur. Heart J. 24, 1104–1112 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Splawski, I. et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 297, 1333–1336 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Kaab, S. et al. A large candidate gene survey identifies the KCNE1 D85N polymorphism as a possible modulator of drug-induced torsades de pointes. Circ. Cardiovasc. Genet. 5, 91–99 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Soyka, L. F., Wirtz, C. & Spangenberg, R. B. Clinical safety profile of sotalol in patients with arrhythmias. Am. J. Cardiol. 65, 74A–81A (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Elming, H. et al. A benefit-risk assessment of class III antiarrhythmic agents. Expert Opin. Drug Saf. 3, 559–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Milberg, P. et al. Comparison of the in vitro electrophysiologic and proarrhythmic effects of amiodarone and sotalol in a rabbit model of acute atrioventricular block. J. Cardiovasc. Pharmacol. 44, 278–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Milberg, P. et al. Inhibition of the Na+/Ca2+ exchanger suppresses torsades de pointes in an intact heart model of long QT syndrome-2 and long QT syndrome-3. Heart Rhythm 5, 1444–1452 (2008).

    Article  PubMed  Google Scholar 

  19. Frommeyer, G. et al. A new mechanism preventing proarrhythmia in chronic heart failure: rapid phase-III repolarization explains the low proarrhythmic potential of amiodarone in contrast to sotalol in a model of pacing-induced heart failure. Eur. J. Heart Fail. 13, 1060–1069 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Frommeyer, G. et al. Effect of ranolazine on ventricular repolarization in class III antiarrhythmic drug-treated rabbits. Heart Rhythm 9, 2051–2058 (2012).

    Article  PubMed  Google Scholar 

  21. Kääb, S., Hinterseer, M., Nabauer, M. & Steinbeck, G. Sotalol testing unmasks altered repolarization in patients with suspected acquired long-QT-syndrome—a case-control pilot study using i.v. sotalol. Eur. Heart J. 24, 649–657 (2003).

    Article  PubMed  Google Scholar 

  22. Elming, H., Brendorp, B., Pedersen, O. D., Kober, L. & Torp-Petersen, C. Dofetilide: a new drug to control cardiac arrhythmia. Expert Opin. Pharmacother. 4, 973–985 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Yap, Y. G. & Camm, A. J. Drug induced QT prolongation and torsades de pointes. Heart 89, 1363–1372 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Camm, A. J. Safety considerations in the pharmacological management of atrial fibrillation. Int. J. Cardiol. 127, 299–306 (2008).

    Article  PubMed  Google Scholar 

  25. Wu, Y., Carlsson, L., Liu, T., Kowey, P. R. & Yan, G. X. Assessment of the proarrhythmic potential of the novel antiarrhythmic agent AZD7009 and dofetilide in experimental models of torsades de pointes. J. Cardiovasc. Electrophysiol. 16, 898–904 (2005).

    Article  PubMed  Google Scholar 

  26. Champeroux, P. et al. Dofetilide induced QT interval short term variability and ventricular arrhythmias are dependent on high frequency autonomic oscillations. Br. J. Pharmacol. 172, 2878–2891 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farkas, A. S. et al. Importance of extracardiac α1-adrenoceptor stimulation in assisting dofetilide to induce torsade de pointes in rabbit hearts. Eur. J. Pharmacol. 537, 118–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Vincze, D. et al. Relevance of anaesthesia for dofetilide-induced torsades de pointes in α1-adrenoceptor-stimulated rabbits. Br. J. Pharmacol. 153, 75–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Gowda, R. M. et al. Female preponderance in ibutilide-induced torsade de pointes. Int. J. Cardiol. 95, 219–222 (2004).

    Article  PubMed  Google Scholar 

  30. Papp, J. G. et al. Differential electrophysiologic effects of chronically administered amiodarone on canine Purkinje fibers versus ventricular muscle. J. Cardiovasc. Pharmacol. Ther. 1, 287–296 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Milberg, P. et al. Electrophysiologic profile of dronedarone on the ventricular level: beneficial effect on postrepolarization refractoriness in the presence of rapid phase 3 repolarization. J. Cardiovasc. Pharmacol. 59, 92–100 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Hohnloser, S. H. et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N. Engl. J. Med. 360, 668–678 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Kober, L. et al. Increased mortality after dronedarone therapy for severe heart failure. N. Engl. J. Med. 358, 2678–2687 (2008).

    Article  PubMed  Google Scholar 

  34. Connolly, S. J. et al. Dronedarone in high-risk permanent atrial fibrillation. N. Engl. J. Med. 365, 2268–2276 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Hohnloser, S. H. et al. Interaction between digoxin and dronedarone in the PALLAS trial. Circ. Arrhythm. Electrophysiol. 7, 1019–1025 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Frommeyer, G. et al. Dronedarone and digitalis: individually reduced post-repolarization refractoriness enhances life-threatening arrhythmias. Europace http://dx.doi.org/10.1093/europace/euu393.

  37. Hohnloser, S. H., van de Loo, A. & Baedeker, F. Efficacy and proarrhythmic hazards of pharmacologic cardioversion of atrial fibrillation: prospective comparison of sotalol versus quinidine. J. Am. Coll. Cardiol. 26, 852–858 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Echt, D. S. et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med. 324, 781–788 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Ohtani, H. et al. Comparative pharmacodynamic analysis of QT interval prolongation induced by the macrolides clarithromycin, roxithromycin, and azithromycin in rats. Antimicrob. Agents Chemother. 44, 2630–2637 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Daleau, P., Lessard, E., Groleau, M. F. & Turgeon, J. Erythromycin blocks the rapid component of the delayed rectifier potassium current and lengthens repolarization of guinea pig ventricular myocytes. Circulation 91, 3010–3016 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Freedman, R. A., Anderson, K. P., Green, L. S. & Mason, J. W. Effect of erythromycin on ventricular arrhythmias and ventricular repolarization in idiopathic long QT syndrome. Am. J. Cardiol. 59, 168–169 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Nattel, S., Ranger, S., Talajic, M., Lemery, R. & Roy, D. Erythromycin-induced long QT syndrome: concordance with quinidine and underlying cellular electrophysiologic mechanism. Am. J. Med. 89, 235–238 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Katapadi, K., Kostandy, G., Katapadi, M., Hussain, K. M. & Schifter, D. A review of erythromycin-induced malignant tachyarrhythmia—torsade de pointes: a case report. Angiology 48, 821–826 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Eckardt, L., Haverkamp, W., Borggrefe, M. & Breithardt, G. Experimental models of torsade de pointes. Cardiovasc. Res. 39, 178–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Eckardt, L. et al. Drug-related torsades de pointes in the isolated rabbit heart: comparison of clofilium, d,l-sotalol, and erythromycin. J. Cardiovasc. Pharmacol. 32, 425–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Milberg, P. et al. Antiarrhythmic effects of free polyunsaturated fatty acids in an experimental model of LQT2 and LQT3 due to suppression of early afterdepolarizations and reduction of spatial and temporal dispersion of repolarization. Heart Rhythm 8, 1492–1500 (2011).

    Article  PubMed  Google Scholar 

  47. Milberg, P. et al. G-CSF therapy reduces myocardial repolarization reserve in the presence of increased arteriogenesis, angiogenesis and connexin 43 expression in an experimental model of pacing-induced heart failure. Basic Res. Cardiol. 106, 995–1008 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Fazekas, T., Krassoi, I., Lengyel, C., Varro, A. & Papp, J. G. Suppression of erythromycin-induced early afterdepolarizations and torsade de pointes ventricular tachycardia by mexiletine. Pacing Clin. Electrophysiol. 21, 147–150 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, K. L., Jim, M. H., Tang, S. C. & Tai, Y. T. QT prolongation and torsades de pointes associated with clarithromycin. Am. J. Med. 104, 395–396 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Samarendra, P., Kumari, S., Evans, S. J., Sacchi, T. J. & Navarro, V. QT prolongation associated with azithromycin/amiodarone combination. Pacing Clin. Electrophysiol. 24, 1572–1574 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Thomsen, M. B. et al. No proarrhythmic properties of the antibiotics moxifloxacin or azithromycin in anaesthetized dogs with chronic-AV block. Br. J. Pharmacol. 149, 1039–1048 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ohara, H. et al. Azithromycin can prolong QT interval and suppress ventricular contraction, but will not induce torsade de pointes. Cardiovasc. Toxicol. 15, 232–240 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Milberg, P. et al. Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. J. Pharmacol. Exp. Ther. 303, 218–225 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Anderson, M. E., Mazur, A., Yang, T. & Roden, D. M. Potassium current antagonist properties and proarrhythmic consequences of quinolone antibiotics. J. Pharmacol. Exp. Ther. 296, 806–810 (2001).

    CAS  PubMed  Google Scholar 

  55. Samaha, F. F. QTc interval prolongation and polymorphic ventricular tachycardia in association with levofloxacin. Am. J. Med. 107, 528–529 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Siepmann, M. & Kirch, W. Drug points: tachycardia associated with moxifloxacin. BMJ 322, 23 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iannini, P. B., Doddamani, S., Byazrova, E., Curciumaru, I. & Kramer, H. Risk of torsades de pointes with non-cardiac drugs. Prolongation of QT interval is probably a class effect of fluoroquinolones. BMJ 322, 46–47 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Owens, R. C. Jr. Risk assessment for antimicrobial agent-induced QTc interval prolongation and torsades de pointes. Pharmacotherapy 21, 301–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Jaillon, P., Morganroth, J., Brumpt, I. & Talbot, G. Overview of electrocardiographic and cardiovascular safety data for sparfloxacin. J. Antimicrob. Chemother. 37 (Suppl. A), 161–167 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Dupont, H. et al. Torsades de pointe probably related to sparfloxacin. Eur. J. Clin. Microbiol Infect. Dis. 15, 350–351 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Milberg, P. et al. Proarrhythmia as a class effect of quinolones: increased dispersion of repolarization and triangulation of action potential predict torsades de pointes. J. Cardiovasc. Electrophysiol 18, 647–654 (2007).

    Article  PubMed  Google Scholar 

  62. Chiba, K., Sugiyama, A., Satoh, Y., Shiina, H. & Hashimoto, K. Proarrhythmic effects of fluoroquinolone antibacterial agents: in vivo effects as physiologic substrate for torsades. Toxicol. Appl. Pharmacol. 169, 8–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Chiba, K. et al. In vivo experimental approach for the risk assessment of fluoroquinolone antibacterial agents-induced long QT syndrome. Eur. J. Pharmacol. 486, 189–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Overbey, A. N., Austin, A., Seidensticker, D. F. & Lin, A. H. Overdrive pacing in a patient with incessant torsades de pointes. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2013-200146.

  65. Esch, J. J. & Kantoch, M. J. Torsades de pointes ventricular tachycardia in a pediatric patient treated with fluconazole. Pediatr. Cardiol. 29, 210–213 (2008).

    Article  PubMed  Google Scholar 

  66. Pham, C. P., de Feiter, P. W., van der Kuy, P. H. & van Mook, W. N. Long QTc interval and torsade de pointes caused by fluconazole. Ann. Pharmacother. 40, 1456–1461 (2006).

    Article  PubMed  Google Scholar 

  67. Zeuli, J. D., Wilson, J. W. & Estes, L. L. Effect of combined fluoroquinolone and azole use on QT prolongation in hematology patients. Antimicrob. Agents Chemother. 57, 1121–1127 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Poluzzi, E., Raschi, E., Motola, D., Moretti, U. & De Ponti, F. Antimicrobials and the risk of torsades de pointes: the contribution from data mining of the US FDA Adverse Event Reporting System. Drug Saf. 33, 303–314 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Manosuthi, W. et al. Effect of high-dose fluconazole on QT interval in patients with human immunodeficiency virus (HIV)-associated cryptococcal meningitis. Int. J. Antimicrob. Agents 34, 494–496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Han, S. et al. Fluconazole inhibits hERG K+ channel by direct block and disruption of protein trafficking. Eur. J. Pharmacol. 650, 138–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Sung, D. J. et al. Blockade of K+ and Ca2+ channels by azole antifungal agents in neonatal rat ventricular myocytes. Biol. Pharm. Bull. 35, 1469–1475 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Brown, J. D., Lim, L. L. & Koning, S. Voriconazole associated torsades de pointes in two adult patients with haematological malignancies. Med. Mycol. Case Rep. 4, 23–25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Elbey, M. A., Cil, H., Onturk, E. & Islamoglu, Y. OTc prolongation and torsade de pointes ventricular tachycardia in a small dose voriconazole therapy. Eur. Rev. Med. Pharmacol. Sci. 16, 100–102 (2012).

    CAS  PubMed  Google Scholar 

  74. FDA. Drugs. FDA Drug Safety Communication: Revised recommendations for Celexa (citalopram hydrobromide) related to a potential risk of abnormal heart rhythms with high doses [online], (2013).

  75. FDA. Drugs. FDA Drug Safety Communication: Abnormal heart rhythms associated with high doses of Celexa (citalopram hydrobromide) [online], (2012).

  76. Deshmukh, A., Ulveling, K., Alla, V., Abuissa, H. & Airey, K. Prolonged QTc interval and torsades de pointes induced by citalopram. Tex. Heart Inst. J. 39, 68–70 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. Isbister, G. K. et al. Activated charcoal decreases the risk of QT prolongation after citalopram overdose. Ann. Emerg. Med. 50, 593–600 (2007).

    Article  PubMed  Google Scholar 

  78. Greene, S. C., Brooks, D. E. & Lovecchio, F. Effect of activated charcoal on citalopram-induced QT prolongation. Ann. Emerg. Med. 52, 86–87 (2008).

    Article  PubMed  Google Scholar 

  79. Unterecker, S., Warrings, B., Deckert, J. & Pfuhlmann, B. Correlation of QTc interval prolongation and serum level of citalopram after intoxication—a case report. Pharmacopsychiatry 45, 30–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Vieweg, W. V. et al. Citalopram, QTc interval prolongation, and torsade de pointes. How should we apply the recent FDA ruling? Am. J. Med. 125, 859–868 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Tseng, P. T., Lee, Y., Lin, Y. E. & Lin, P. Y. Low-dose escitalopram for 2 days associated with corrected QT interval prolongation in a middle-aged woman: a case report and literature review. Gen. Hosp. Psychiatry 34, 210.e13–210.e15 (2012).

    Article  Google Scholar 

  82. van Gorp, F., Duffull, S., Hackett, L. P. & Isbister, G. K. Population pharmacokinetics and pharmacodynamics of escitalopram in overdose and the effect of activated charcoal. Br. J. Clin. Pharmacol. 73, 402–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Mohammed, R., Norton, J., Geraci, S. A., Newman, D. B. & Koch, C. A. Prolonged QTc interval due to escitalopram overdose. J. Miss. State Med. Assoc. 51, 350–353 (2010).

    PubMed  Google Scholar 

  84. Thase, M. E., Larsen, K. G., Reines, E. & Kennedy, S. H. The cardiovascular safety profile of escitalopram. Eur. Neuropsychopharmacol. 23, 1391–1400 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Chae, Y. J. et al. Escitalopram block of hERG potassium channels. Naunyn Schmiedebergs Arch. Pharmacol. 387, 23–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Y., Baranchuk, A. & Hancox, J. C. Towards limiting QT interval prolongation and arrhythmia risk in citalopram use. Cardiol. J. 21, 454–457 (2014).

    Article  PubMed  Google Scholar 

  87. Thanacoody, H. K. & Thomas, S. H. Tricyclic antidepressant poisoning: cardiovascular toxicity. Toxicol. Rev. 24, 205–214 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Hasnain, M. et al. Quetiapine and the need for a thorough QT/QTc study. J. Clin. Psychopharmacol. 34, 3–6 (2014).

    Article  PubMed  Google Scholar 

  89. Aghaienia, N., Brahm, N. C., Lussier, K. M. & Washington, N. B. Probable quetiapine-mediated prolongation of the QT interval. J. Pharm. Pract. 24, 506–512 (2011).

    Article  PubMed  Google Scholar 

  90. Vieweg, W. V., Schneider, R. K. & Wood, M. A. Torsade de pointes in a patient with complex medical and psychiatric conditions receiving low-dose quetiapine. Acta Psychiatr. Scand. 112, 318–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Blaschke, D. et al. Torsade de pointes during combined treatment with risperidone and citalopram. Pharmacopsychiatry 40, 294–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Ravina, T., Ravina, P. & Gutierrez, J. Acquired long QT syndrome: risperidone-facilitated triggered activity and torsades de pointes during complete AV block. Int. J. Cardiol. 116, 416–420 (2007).

    Article  PubMed  Google Scholar 

  93. Pollak, P. T., Verjee, Z. H. & Lyon, A. W. Risperidone-induced QT prolongation following overdose correlates with serum drug concentration and resolves rapidly with no evidence of altered pharmacokinetics. J. Clin. Pharmacol. 51, 1112–1115 (2011).

    Article  PubMed  Google Scholar 

  94. Vieweg, W. V. et al. Risperidone QTc interval prolongation, and torsade de pointes: a systematic review of case reports. Psychopharmacology (Berl.) 228, 515–524 (2013).

    Article  CAS  Google Scholar 

  95. Gopal, S. et al. Risk of cardiovascular morbidity with risperidone or paliperidone treatment: analysis of 64 randomized, double-blind trials. J. Clin. Psychopharmacol. 33, 157–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Ando, K. et al. Analysis of proarrhythmic potential of antipsychotics risperidone and olanzapine in anesthetized dogs. Eur. J. Pharmacol. 558, 151–158 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Tisdale, J. E. et al. Accuracy of uncorrected versus corrected QT interval for prediction of torsade de pointes associated with intravenous haloperidol. Pharmacotherapy 27, 175–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Hassaballa, H. A. & Balk, R. A. Torsade de pointes associated with the administration of intravenous haloperidol:a review of the literature and practical guidelines for use. Expert Opin. Drug Saf. 2, 543–547 (2003).

    CAS  PubMed  Google Scholar 

  99. Eckardt, L., Breithardt, G. & Haverkamp, W. Electrophysiologic characterization of the antipsychotic drug sertindole in a rabbit heart model of torsade de pointes: low torsadogenic potential despite QT prolongation. J. Pharmacol. Exp. Ther. 300, 64–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Vieweg, W. V. et al. Proarrhythmic risk with antipsychotic and antidepressant drugs: implications in the elderly. Drugs Aging 26, 997–1012 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Frishman, W. H. & Aronow, W. S. Pharmacology of antiarrhythmic drugs in elderly patients. Clin. Geriatr. Med. 28, 575–615 (2012).

    Article  PubMed  Google Scholar 

  102. Chatterjee. S. et al. Benefits of β blockers in patients with heart failure and reduced ejection fraction: network meta-analysis. BMJ 346, f55 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wenzel-Seifert, K., Wittmann, M. & Haen, E. QTc prolongation by psychotropic drugs and the risk of torsade de pointes. Dtsch. Arztebl. Int. 108, 687–693 (2011).

    PubMed  PubMed Central  Google Scholar 

  104. Wolbrette, D. L. Risk of proarrhythmia with class III antiarrhythmic agents: sex-based differences and other issues. Am. J. Cardiol. 91, 39D–44D (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Makkar, R. R., Fromm, B. S., Steinman, R. T., Meissner, M. D. & Lehmann, M. H. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 270, 2590–2597 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Lehmann, M. H., Hardy, S., Archibald, D., Quart, B. & MacNeil, D. J. Sex difference in risk of torsade de pointes with d,l-sotalol. Circulation 94, 2535–2541 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Lehmann, M. H., Hardy, S., Archibald, D. & MacNeil, D. J. JTc prolongation with d,l-sotalol in women versus men. Am. J. Cardiol. 83, 354–359 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Hreiche, R., Morissette, P. & Turgeon, J. Drug-induced long QT syndrome in women: review of current evidence and remaining gaps. Gend. Med. 5, 124–135 (2008).

    Article  PubMed  Google Scholar 

  109. Odening, K. E., Choi, B. R. & Koren, G. Sex hormones and cardiac arrest in long QT syndrome: does progesterone represent a potential new antiarrhythmic therapy? Heart Rhythm 9, 1150–1152 (2012).

    Article  PubMed  Google Scholar 

  110. Odening, K. E. et al. Estradiol promotes sudden cardiac death in transgenic long QT type 2 rabbits while progesterone is protective. Heart Rhythm 9, 823–832 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Odening, K. E. & Koren, G. How do sex hormones modify arrhythmogenesis in long QT syndrome? Sex hormone effects on arrhythmogenic substrate and triggered activity. Heart Rhythm 11, 2107–2115 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Eckardt, L. et al. Arrhythmias in heart failure: current concepts of mechanisms and therapy. J. Cardiovasc. Electrophysiol. 11, 106–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Kottkamp, H. et al. Clinical significance and management of ventricular arrhythmias in heart failure. Eur. Heart J. 15, (Suppl. D), 155–163 (1994).

    Article  PubMed  Google Scholar 

  114. Tsuji, Y. et al. Pacing-induced heart failure causes a reduction of delayed rectifier potassium currents along with decreases in calcium and transient outward currents in rabbit ventricle. Cardiovasc. Res. 48, 300–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Frommeyer, G. et al. New insights into the beneficial electrophysiologic profile of ranolazine in heart failure: prevention of ventricular fibrillation with increased postrepolarization refractoriness and without drug-induced proarrhythmia. J. Card. Fail. 18, 939–949 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Frommeyer, G. et al. Further insights into the underlying electrophysiological mechanisms for reduction of atrial fibrillation by ranolazine in an experimental model of chronic heart failure. Eur. J. Heart Fail. 14, 1322–1331 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Milberg, P. et al. Blockade of ICa suppresses early afterdepolarizations and reduces transmural dispersion of repolarization in a whole heart model of chronic heart failure. Br. J. Pharmacol. 166, 557–568 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Milberg, P. et al. Acute inhibition of the Na+/Ca2+ exchanger reduces proarrhythmia in an experimental model of chronic heart failure. Heart Rhythm 9, 570–578 (2012).

    Article  PubMed  Google Scholar 

  119. Milberg, P. et al. Reduced repolarization reserve due to anthracycline therapy facilitates torsade de pointes induced by IKr blockers. Basic Res. Cardiol. 102, 42–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Hamlin, R. L. Animal models of ventricular arrhythmias. Pharmacol. Ther. 113, 276–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Vecchia, L., Ometto, R., Finocchi, G. & Vincenzi, M. Torsade de pointes ventricular tachycardia during low dose intermittent dobutamine treatment in a patient with dilated cardiomyopathy and congestive heart failure. Pacing Clin. Electrophysiol. 22, 397–399 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Antzelevitch, C. Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace 9 (Suppl. 4), iv4–iv15 (2007).

    PubMed  PubMed Central  Google Scholar 

  123. Antzelevitch, C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am. J. Physiol. Heart Circ. Physiol. 293, H2024–2038 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Antzelevitch, C. Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm 2 (Suppl.), S9–S15 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Extramiana, F. & Antzelevitch, C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation 110, 3661–3666 (2004).

    Article  PubMed  Google Scholar 

  126. Hondeghem, L. M., Carlsson, L. & Duker, G. Instability and triangulation of the action potential predict serious proarrhythmia, but action potential duration prolongation is antiarrhythmic. Circulation 103, 2004–2013 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Hondeghem, L. M., Dujardin, K. & De Clerck, F. Phase 2 prolongation, in the absence of instability and triangulation, antagonizes class III proarrhythmia. Cardiovasc. Res. 50, 345–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Antzelevitch, C. Drug-induced spatial dispersion of repolarization. Cardiol. J. 15, 100–121 (2008).

    PubMed  PubMed Central  Google Scholar 

  129. Sicouri, S., Glass, A., Ferreiro, M. & Antzelevitch, C. Transseptal dispersion of repolarization and its role in the development of torsade de pointes arrhythmias. J. Cardiovasc. Electrophysiol. 21, 441–447 (2010).

    Article  PubMed  Google Scholar 

  130. Antzelevitch, C. & Fish, J. Electrical heterogeneity within the ventricular wall. Basic Res. Cardiol. 96, 517–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, D. W. & Antzelevitch, C. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circ. Res. 76, 351–365 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Sicouri, S. & Antzelevitch, C. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ. Res. 68, 1729–1741 (1991).

    Article  CAS  PubMed  Google Scholar 

  133. Milberg, P. et al. Transmural dispersion of repolarization as a key factor of arrhythmogenicity in a novel intact heart model of LQT3. Cardiovasc. Res. 65, 397–404 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Fabritz, L. et al. Prolonged action potential durations, increased dispersion of repolarization, and polymorphic ventricular tachycardia in a mouse model of proarrhythmia. Basic Res. Cardiol. 98, 25–32 (2003).

    Article  PubMed  Google Scholar 

  135. Said, T. H., Wilson, L. D., Jeyaraj, D., Fossa, A. A. & Rosenbaum, D. S. Transmural dispersion of repolarization as a preclinical marker of drug-induced proarrhythmia. J. Cardiovasc. Pharmacol. 60, 165–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Antzelevitch, C. et al. Electrophysiologic properties and antiarrhythmic actions of a novel antianginal agent. J. Cardiovasc. Pharmacol. Ther. 9 (Suppl. 1), S65–S83 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Antzelevitch, C. et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 110, 904–910 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Frommeyer, G. et al. Electrophysiological profile of vernakalant in an experimental whole-heart model: the absence of proarrhythmia despite significant effect on myocardial repolarization. Europace 16, 1240–1248 (2014).

    Article  PubMed  Google Scholar 

  139. Frommeyer, G. et al. Vernakalant in an experimental model of pacing-induced heart failure: lack of proarrhythmia despite prolongation of repolarization. J. Card. Fail. 20, 786–792 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Milberg, P. et al. Verapamil prevents torsade de pointes by reduction of transmural dispersion of repolarization and suppression of early afterdepolarizations in an intact heart model of LQT3. Basic Res. Cardiol. 100, 365–371 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Milberg, P. et al. Reduction of dispersion of repolarization and prolongation of postrepolarization refractoriness explain the antiarrhythmic effects of quinidine in a model of short QT syndrome. J. Cardiovasc. Electrophysiol. 18, 658–664 (2007).

    Article  PubMed  Google Scholar 

  142. Lengyel, C., Varro, A., Tabori, K., Papp, J. G. & Baczko, I. Combined pharmacological block of I(Kr) and I(Ks) increases short-term QT interval variability and provokes torsades de pointes. Br. J. Pharmacol. 151, 941–951 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Thomsen, M. B., Volders, P. G., Beekman, J. D., Matz, J. & Vos, M. A. Beat-to-beat variability of repolarization determines proarrhythmic outcome in dogs susceptible to drug-induced torsades de pointes. J. Am. Coll. Cardiol. 48, 1268–1276 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Thomsen, M. B. et al. Sudden cardiac death in dogs with remodeled hearts is associated with larger beat-to-beat variability of repolarization. Basic Res. Cardiol. 100, 279–287 (2005).

    Article  PubMed  Google Scholar 

  145. Thomsen, M. B. et al. Increased short-term variability of repolarization predicts d-sotalol-induced torsades de pointes in dogs. Circulation 110, 2453–2459 (2004).

    Article  PubMed  Google Scholar 

  146. Detre, E., Thomsen, M. B., Beekman, J. D., Petersen, K. U. & Vos, M. A. Decreasing the infusion rate reduces the proarrhythmic risk of NS-7: confirming the relevance of short-term variability of repolarisation in predicting drug-induced torsades de pointes. Br. J. Pharmacol. 145, 397–404 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Thomsen, M. B. et al. Proarrhythmic electrical remodelling is associated with increased beat-to-beat variability of repolarisation. Cardiovasc. Res. 73, 521–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. January, C. T., Gong, Q. & Zhou, Z. Long QT syndrome: cellular basis and arrhythmia mechanism in LQT2. J. Cardiovasc. Electrophysiol. 11, 1413–1418 (2000).

    Article  CAS  PubMed  Google Scholar 

  149. Volders, P. G. et al. Progress in the understanding of cardiac early afterdepolarizations and torsades de pointes: time to revise current concepts. Cardiovasc. Res. 46, 376–392 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Habbab, M. A. & el-Sherif, N. Drug-induced torsades de pointes: role of early afterdepolarizations and dispersion of repolarization. Am. J. Med. 89, 241–246 (1990).

    Article  CAS  PubMed  Google Scholar 

  151. Verkerk, A. O. et al. Incorporated sarcolemmal fish oil fatty acids shorten pig ventricular action potentials. Cardiovasc. Res. 70, 509–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Shimizu, W. et al. Effects of verapamil and propranolol on early afterdepolarizations and ventricular arrhythmias induced by epinephrine in congenital long QT syndrome. J. Am. Coll. Cardiol 26, 1299–1309 (1995).

    Article  CAS  PubMed  Google Scholar 

  153. Nagy, Z. A. et al. Selective inhibition of sodium-calcium exchanger by SEA-0400 decreases early and delayed after depolarization in canine heart. Br. J. Pharmacol. 143, 827–831 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Moore, H. J. & Franz, M. R. Monophasic action potential recordings in humans. J. Cardiovasc. Electrophysiol. 18, 787–790 (2007).

    Article  PubMed  Google Scholar 

  155. Valentin, J. P., Hoffmann, P., De Clerck, F., Hammond, T. G. & Hondeghem, L. Review of the predictive value of the Langendorff heart model (Screenit system) in assessing the proarrhythmic potential of drugs. J. Pharmacol. Toxicol. Methods 49, 171–181 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Hinterseer, M. et al. Beat-to-beat variability of QT intervals is increased in patients with drug-induced long-QT syndrome: a case control pilot study. Eur. Heart J. 29, 185–190 (2008).

    Article  PubMed  Google Scholar 

  157. Hinterseer, M. et al. Usefulness of short-term variability of QT intervals as a predictor for electrical remodeling and proarrhythmia in patients with nonischemic heart failure. Am. J. Cardiol 106, 216–220 (2010).

    Article  PubMed  Google Scholar 

  158. Varkevisser, R. et al. Beat-to-beat variability of repolarization as a new biomarker for proarrhythmia in vivo. Heart Rhythm 9, 1718–1726 (2012).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, discussed its content, wrote the manuscript, and reviewed/edited it before submission.

Corresponding author

Correspondence to Gerrit Frommeyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frommeyer, G., Eckardt, L. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms. Nat Rev Cardiol 13, 36–47 (2016). https://doi.org/10.1038/nrcardio.2015.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2015.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing