Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aetiology and management of hereditary aortopathy

Key Points

  • Aortic aneurysms are a major health problem accounting for 1–2% of all deaths in Western countries

  • The genetic basis of thoracic aortic aneurysms (TAAs) is highly heterogeneous

  • Dysregulated transforming growth factor-β signalling, extracellular matrix homeostasis, and vascular smooth muscle cell contraction are crucial disease mechanisms in TAA

  • Further elucidation of the genetic aetiology of TAA will advance patient management by improving family-based risk stratification, by paving the way for personalized treatment protocols and by pinpointing novel therapeutic targets

  • The pathological mechanisms of inherited TAA might serve as a paradigm for sporadic TAA

Abstract

Aortic aneurysms are a major health problem because they account for 1–2% of all deaths in the Western population. Although abdominal aortic aneurysms (AAAs) are more prevalent than thoracic aortic aneurysms (TAAs), TAAs have been more exhaustively studied over the past 2 decades because they have a higher heritability and affect younger individuals. Gene identification in both syndromic and nonsyndromic TAA is proceeding at a rapid pace and has already pinpointed >20 genes associated with familial TAA risk. Whereas these genes explain <30% of all cases of familial TAA, their functional characterization has substantially improved our knowledge of the underlying pathological mechanisms. As such, perturbed extracellular matrix homeostasis, transforming growth factor-β signalling, and vascular smooth muscle cell contractility have been proposed as important processes in TAA pathogenesis. These new insights enable novel treatment options that are currently being investigated in large clinical trials. Moreover, together with the advent of next-generation sequencing approaches, these genetic findings are promoting a shift in the management of patients with TAA by enabling gene-tailored interventions. In this Review, we comprehensively describe the molecular landscape of familial TAA, and we discuss whether familial TAA, from a biological point of view, can serve as a paradigm for the genetically more complex forms of the condition, such as sporadic TAA or AAA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional classification of genes associated with syndromic and nonsyndromic thoracic aortic aneurysms.
Figure 2: Signalling pathways involved in familial thoracic aortic aneurysms (TAA).

Similar content being viewed by others

References

  1. Criado, F. J. Aortic dissection: a 250-year perspective. Tex. Heart Inst. J. 38, 694–700 (2011).

    PubMed  PubMed Central  Google Scholar 

  2. Lindsay, M. E. & Dietz, H. C. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature 473, 308–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elefteriades, J. A. Thoracic aortic aneurysm: reading the enemy's playbook. Yale J. Biol. Med. 81, 175–186 (2008).

    PubMed  PubMed Central  Google Scholar 

  4. Li, X., Zhao, G., Zhang, J., Duan, Z. & Xin, S. Prevalence and trends of the abdominal aortic aneurysms epidemic in general population — a meta-analysis. PLoS ONE 8, e81260 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kuivaniemi, H. et al. Update on abdominal aortic aneurysm research: from clinical to genetic studies. Scientifica (Cairo) 2014, 564734 (2014).

    Google Scholar 

  6. Vardulaki, K. A. et al. Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm. Br. J. Surg. 87, 195–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Wong, D. R., Willett, W. C. & Rimm, E. B. Smoking, hypertension, alcohol consumption, and risk of abdominal aortic aneurysm in men. Am. J. Epidemiol. 165, 838–845 (2007).

    Article  PubMed  Google Scholar 

  8. Sakalihasan, N. et al. Family members of patients with abdominal aortic aneurysms are at increased risk for aneurysms: analysis of 618 probands and their families from the Liege AAA Family Study. Ann. Vasc. Surg. 28, 787–797 (2014).

    Article  PubMed  Google Scholar 

  9. Van Vlijmen-Van Keulen, C. J., Rauwerda, J. A. & Pals, G. Genome-wide linkage in three Dutch families maps a locus for abdominal aortic aneurysms to chromosome 19q13.3. Eur. J. Vasc. Endovasc. Surg. 30, 29–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Shibamura, H. et al. Genome scan for familial abdominal aortic aneurysm using sex and family history as covariates suggests genetic heterogeneity and identifies linkage to chromosome 19q13. Circulation 109, 2103–2108 (2004).

    Article  PubMed  Google Scholar 

  11. Bradley, D. T., Badger, S. A., McFarland, M. & Hughes, A. E. Abdominal aortic aneurysm genetic associations: mostly false? A systematic review and meta-analysis. Eur. J. Vasc. Endovasc. Surg. 51, 64–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Andelfinger, G., Loeys, B. & Dietz, H. A. Decade of discovery in the genetic understanding of thoracic aortic disease. Can. J. Cardiol. 32, 13–25 (2016).

    Article  PubMed  Google Scholar 

  13. Pyeritz, R. E. Heritable thoracic aortic disorders. Curr. Opin. Cardiol. 29, 97–102 (2014).

    Article  PubMed  Google Scholar 

  14. LeMaire, S. A. & Russell, L. Epidemiology of thoracic aortic dissection. Nat. Rev. Cardiol. 8, 103–113 (2011).

    Article  PubMed  Google Scholar 

  15. Bonderman, D. et al. Mechanisms underlying aortic dilatation in congenital aortic valve malformation. Circulation 99, 2138–2143 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Dobrin, P. B. & Mrkvicka, R. Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation. Cardiovasc. Surg. 2, 484–488 (1994).

    CAS  PubMed  Google Scholar 

  17. Martufi, G., Gasser, T. C., Appoo, J. J. & Di Martino, E. S. Mechano-biology in the thoracic aortic aneurysm: a review and case study. Biomech. Model. Mechanobiol. 13, 917–928 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Sazonova, O. V. et al. Extracellular matrix presentation modulates vascular smooth muscle cell mechanotransduction. Matrix Biol. 41, 36–43 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Newby, A. C. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc. Res. 69, 614–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X., Shen, Y. H. & LeMaire, S. A. Thoracic aortic dissection: are matrix metalloproteinases involved? Vascular 17, 147–157 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chung, A. W. et al. Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome. Circ. Res. 101, 512–522 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Chung, A. W., Yang, H. H., Radomski, M. W. & van Breemen, C. Long-term doxycycline is more effective than atenolol to prevent thoracic aortic aneurysm in Marfan syndrome through the inhibition of matrix metalloproteinase-2 and -9. Circ. Res. 102, e73–e85 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Rabkin, S. W. Accentuating and opposing factors leading to development of thoracic aortic aneurysms not due to genetic or inherited conditions. Front. Cardiovasc. Med. 2, 21 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Nagashima, H. et al. Angiotensin II type 2 receptor mediates vascular smooth muscle cell apoptosis in cystic medial degeneration associated with Marfan's syndrome. Circulation 104, I282–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Mao, N. et al. Phenotypic switching of vascular smooth muscle cells in animal model of rat thoracic aortic aneurysm. Interact. Cardiovasc. Thorac. Surg. 21, 62–70 (2015).

    Article  PubMed  Google Scholar 

  26. Roccabianca, S., Ateshian, G. A. & Humphrey, J. D. Biomechanical roles of medial pooling of glycosaminoglycans in thoracic aortic dissection. Biomech. Model. Mechanobiol. 13, 13–25 (2014).

    Article  PubMed  Google Scholar 

  27. He, R. et al. Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J. Thorac. Cardiovasc. Surg. 131, 671–678 (2006).

    Article  PubMed  Google Scholar 

  28. Malashicheva, A. et al. Phenotypic and functional changes of endothelial and smooth muscle cells in thoracic aortic aneurysms. Int. J. Vasc. Med. 2016, 3107879 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Dietz, H. C. et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Loeys, B. et al. Comprehensive molecular screening of the FBN1 gene favors locus homogeneity of classical Marfan syndrome. Hum. Mutat. 24, 140–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Engelfriet, P. M., Boersma, E., Tijssen, J. G., Bouma, B. J. & Mulder, B. J. Beyond the root: dilatation of the distal aorta in Marfan's syndrome. Heart 92, 1238–1243 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loeys, B. L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37, 275–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Micha, D. et al. SMAD2 mutations are associated with arterial aneurysms and dissections. Hum. Mutat. 36, 1145–1149 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. van de Laar, I. M. et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat. Genet. 43, 121–126 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Lindsay, M. E. et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat. Genet. 44, 922–927 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Boileau, C. et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat. Genet. 44, 916–921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bertoli-Avella, A. M. et al. Mutations in a TGF-beta ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J. Am. Coll. Cardiol. 65, 1324–1336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meester, J. A. et al. Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet. Med. http://dx.doi.org/10.1038/gim.2016.126 (2016).

  39. Halper, J. Proteoglycans and diseases of soft tissues. Adv. Exp. Med. Biol. 802, 49–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Douglas, T., Heinemann, S., Bierbaum, S., Scharnweber, D. & Worch, H. Fibrillogenesis of collagen types I, II, and III with small leucine-rich proteoglycans decorin and biglycan. Biomacromolecules 7, 2388–2393 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Hildebrand, A. et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem. J. 302, 527–534 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kolb, M., Margetts, P. J., Sime, P. J. & Gauldie, J. Proteoglycans decorin and biglycan differentially modulate TGF-beta-mediated fibrotic responses in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L1327–L1334 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Schepers, D. et al. The SMAD-binding domain of SKI: a hotspot for de novo mutations causing Shprintzen–Goldberg syndrome. Eur. J. Hum. Genet. 23, 224–228 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Doyle, A. J. et al. Mutations in the TGF-beta repressor SKI cause Shprintzen–Goldberg syndrome with aortic aneurysm. Nat. Genet. 44, 1249–1254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carmignac, V. et al. In-frame mutations in exon 1 of SKI cause dominant Shprintzen–Goldberg syndrome. Am. J. Hum. Genet. 91, 950–957 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wenstrup, R. J. et al. Prevalence of aortic root dilation in the Ehlers–Danlos syndrome. Genet. Med. 4, 112–117 (2002).

    Article  PubMed  Google Scholar 

  47. Schwarze, U. et al. Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers–Danlos syndrome, Ehlers–Danlos syndrome type IV. Am. J. Hum. Genet. 69, 989–1001 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Monroe, G. R. et al. Familial Ehlers–Danlos syndrome with lethal arterial events caused by a mutation in COL5A1. Am. J. Med. Genet. A 167, 1196–1203 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Borck, G., Beighton, P., Wilhelm, C., Kohlhase, J. & Kubisch, C. Arterial rupture in classic Ehlers–Danlos syndrome with COL5A1 mutation. Am. J. Med. Genet. A152A, 2090–2093 (2010).

  50. de Leeuw, K. et al. Superior mesenteric artery aneurysm in a 9-year-old boy with classical Ehlers–Danlos syndrome. Am. J. Med. Genet. A158A, 626–629 (2012).

  51. Mehta, S., Dhar, S. U. & Birnbaum, Y. Common iliac artery aneurysm and spontaneous dissection with contralateral iatrogenic common iliac artery dissection in classic Ehlers–Danlos syndrome. Int. J. Angiol. 21, 167–170 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Malfait, F. et al. Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers–Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum. Mutat. 28, 387–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Karaa, A. & Stoler, J. M. Ehlers Danlos syndrome: an unusual presentation you need to know about. Case Rep. Pediatr. 2013, 764659 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Rohrbach, M. et al. Phenotypic variability of the kyphoscoliotic type of Ehlers–Danlos syndrome (EDS VIA): clinical, molecular and biochemical delineation. Orphanet J. Rare Dis. 6, 46 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. de Wit, M. C. et al. Combined cardiological and neurological abnormalities due to filamin A gene mutation. Clin. Res. Cardiol. 100, 45–50 (2011).

    Article  PubMed  Google Scholar 

  56. Yeowell, H. N. et al. Deletion of cysteine 369 in lysyl hydroxylase 1 eliminates enzyme activity and causes Ehlers–Danlos syndrome type VI. Matrix Biol. 19, 37–46 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Fox, J. W. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Coady, M. A. et al. Familial patterns of thoracic aortic aneurysms. Arch. Surg. 134, 361–367 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Vaughan, C. J. et al. Identification of a chromosome 11q23.2-q24 locus for familial aortic aneurysm disease, a genetically heterogeneous disorder. Circulation 103, 2469–2475 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Guo, D. et al. Familial thoracic aortic aneurysms and dissections: genetic heterogeneity with a major locus mapping to 5q13-14. Circulation 103, 2461–2468 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Guo, D. C. et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat. Genet. 39, 1488–1493 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Morisaki, H. et al. Mutation of ACTA2 gene as an important cause of familial and nonfamilial nonsyndromatic thoracic aortic aneurysm and/or dissection (TAAD). Hum. Mutat. 30, 1406–1411 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Guo, D. C. et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am. J. Hum. Genet. 84, 617–627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhu, L. et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat. Genet. 38, 343–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Pannu, H. et al. MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum. Mol. Genet. 16, 2453–2462 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Takeda, N. et al. A deleterious MYH11 mutation causing familial thoracic aortic dissection. Hum. Genome Var. 2, 15028 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pomianowski, P. et al. Single amino acid deletion in MYH11 segregating in a family with TAAD. J. Genet. Disor. Genet. Rep. 4, 1 (2015).

    Google Scholar 

  68. Wang, L. et al. Mutations in myosin light chain kinase cause familial aortic dissections. Am. J. Hum. Genet. 87, 701–707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hannuksela, M. et al. A novel variant in MYLK causes thoracic aortic dissections: genotypic and phenotypic description. BMC Med. Genet. 17, 61 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Guo, D. C. et al. Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. Am. J. Hum. Genet. 93, 398–404 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gago-Diaz, M. et al. PRKG1 and genetic diagnosis of early-onset thoracic aortic disease. Eur. J. Clin. Invest. 46, 787–794 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Barbier, M. et al. MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am. J. Hum. Genet. 95, 736–743 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guo, D. C. et al. MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am. J. Hum. Genet. 96, 170–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Loscalzo, M. L. et al. Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am. J. Hum. Genet. 143A, 1960–1967 (2007).

    CAS  Google Scholar 

  75. Kuang, S. Q. et al. FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J. Clin. Invest. 126, 948–961 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Guo, D. C. et al. LOX mutations predispose to thoracic aortic aneurysms and dissections. Circ. Res. 118, 928–934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Iseri, S. U. et al. Seeing clearly: the dominant and recessive nature of FOXE3 in eye developmental anomalies. Hum. Mutat. 30, 1378–1386 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Lee, V. S. et al. Loss of function mutation in LOX causes thoracic aortic aneurysm and dissection in humans. Proc. Natl Acad. Sci. USA 113, 8759–8764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Milewicz, D. M. et al. Fibrillin-1 (FBN1) mutations in patients with thoracic aortic aneurysms. Circulation 94, 2708–2711 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Keramati, A. R., Sadeghpour, A., Farahani, M. M., Chandok, G. & Mani, A. The non-syndromic familial thoracic aortic aneurysms and dissections maps to 15q21 locus. BMC Med. Genet. 11, 143 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Regalado, E. S. et al. Pathogenic FBN1 variants in familial thoracic aortic aneurysms and dissections. Clin. Genet. 89, 719–723 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Regalado, E. S. et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ. Res. 109, 680–686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gago-Diaz, M. et al. Whole exome sequencing for the identification of a new mutation in TGFB2 involved in a familial case of non-syndromic aortic disease. Clin. Chim. Acta 437, 88–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Hasham, S. N. et al. Mapping a locus for familial thoracic aortic aneurysms and dissections (TAAD2) to 3p24-25. Circulation 107, 3184–3190 (2003).

    Article  PubMed  Google Scholar 

  85. Pannu, H. et al. Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation 112, 513–520 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Neptune, E. R. et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat. Genet. 33, 407–411 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Ng, C. M. et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J. Clin. Invest. 114, 1586–1592 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Habashi, J. P. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312, 117–121 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cohn, R. D. et al. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 13, 204–210 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Franken, R. et al. Circulating transforming growth factor-beta as a prognostic biomarker in Marfan syndrome. Int. J. Cardiol. 168, 2441–2446 (2013).

    Article  PubMed  Google Scholar 

  92. Verstraeten, A., Alaerts, M., Van Laer, L. & Loeys, B. Marfan syndrome and related disorders: 25 years of gene discovery. Hum. Mutat. 37, 524–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Bolar, N., Van Laer, L. & Loeys, B. L. Marfan syndrome: from gene to therapy. Curr. Opin. Pediatr. 24, 498–504 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Gallo, E. M. et al. Angiotensin II-dependent TGF-beta signaling contributes to Loeys–Dietz syndrome vascular pathogenesis. J. Clin. Invest. 124, 448–460 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Renard, M. et al. Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFbeta signaling in FTAAD. Int. J. Cardiol. 165, 314–321 (2013).

    Article  PubMed  Google Scholar 

  96. Hartshorne, D. J. Biochemical basis for contraction of vascular smooth muscle. Chest 78, 140–149 (1980).

    Article  CAS  PubMed  Google Scholar 

  97. Webb, R. C. Smooth muscle contraction and relaxation. Adv. Physiol. Educ. 27, 201–206 (2003).

    Article  PubMed  Google Scholar 

  98. Surks, H. K. cGMP-dependent protein kinase I and smooth muscle relaxation: a tale of two isoforms. Circ. Res. 101, 1078–1080 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Hiratzka, L. F. et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation 121, e266–e369 (2010).

    PubMed  Google Scholar 

  100. Erbel, R. et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur. Heart J. 35, 2873–2926 (2014).

    Article  PubMed  Google Scholar 

  101. Braverman, A. C. Timing of aortic surgery in the Marfan syndrome. Curr. Opin. Cardiol. 19, 549–550 (2004).

    Article  PubMed  Google Scholar 

  102. Brophy, C. M., Tilson, J. E. & Tilson, M. D. Propranolol stimulates the crosslinking of matrix components in skin from the aneurysm-prone blotchy mouse. J. Surg. Res. 46, 330–332 (1989).

    Article  CAS  PubMed  Google Scholar 

  103. Shores, J., Berger, K. R., Murphy, E. A. & Pyeritz, R. E. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan's syndrome. N. Engl. J. Med. 330, 1335–1341 (1994).

    Article  CAS  PubMed  Google Scholar 

  104. Gersony, D. R., McClaughlin, M. A., Jin, Z. & Gersony, W. M. The effect of beta-blocker therapy on clinical outcome in patients with Marfan's syndrome: a meta-analysis. Int. J. Cardiol. 114, 303–308 (2007).

    Article  PubMed  Google Scholar 

  105. Ladouceur, M. et al. Effect of beta-blockade on ascending aortic dilatation in children with the Marfan syndrome. Am. J. Cardiol. 99, 406–409 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Gao, L. et al. The effect of beta-blocker therapy on progressive aortic dilatation in children and adolescents with Marfan's syndrome: a meta-analysis. Acta Paediatr. 100, e101–e105 (2011).

    Article  PubMed  Google Scholar 

  107. Williams, A., Davies, S., Stuart, A. G., Wilson, D. G. & Fraser, A. G. Medical treatment of Marfan syndrome: a time for change. Heart 94, 414–421 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Habashi, J. P. et al. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 332, 361–365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Braverman, A. C. Transforming growth factor-β: a biomarker in Marfan syndrome? Circulation 120, 464–466 (2009).

    Article  PubMed  Google Scholar 

  110. Lim, D. S. et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 103, 789–791 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lavoie, P. et al. Neutralization of transforming growth factor-beta attenuates hypertension and prevents renal injury in uremic rats. J. Hypertens. 23, 1895–1903 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Chiu, H. H. et al. Losartan added to beta-blockade therapy for aortic root dilation in Marfan syndrome: a randomized, open-label pilot study. Mayo Clin. Proc. 88, 271–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Brooke, B. S. et al. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. N. Engl. J. Med. 358, 2787–2795 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Groenink, M. et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur. Heart J. 34, 3491–3500 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Lacro, R. V. et al. Atenolol versus losartan in children and young adults with Marfan's syndrome. N. Engl. J. Med. 371, 2061–2071 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Pees, C. et al. Usefulness of losartan on the size of the ascending aorta in an unselected cohort of children, adolescents, and young adults with Marfan syndrome. Am. J. Cardiol. 112, 1477–1483 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Bhatt, A. B. et al. Distinct effects of losartan and atenolol on vascular stiffness in Marfan syndrome. Vasc. Med. 20, 317–325 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Forteza, A. et al. Efficacy of losartan versus atenolol for the prevention of aortic dilation in Marfan syndrome: a randomized clinical trial. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehv575 (2015).

  119. Milleron, O. et al. Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur. Heart J. 36, 2160–2166 (2015).

    Article  PubMed  Google Scholar 

  120. Pitcher, A. et al. Design and rationale of a prospective, collaborative meta-analysis of all randomized controlled trials of angiotensin receptor antagonists in Marfan syndrome, based on individual patient data: a report from the Marfan Treatment Trialists' Collaboration. Am. Heart J. 169, 605–612 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cook, J. R. et al. Dimorphic effects of transforming growth factor-beta signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome. Arterioscler. Thromb. Vasc. Biol. 35, 911–917 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Benedetto, U. et al. Surgical management of aortic root disease in Marfan syndrome: a systematic review and meta-analysis. Heart 97, 955–958 (2011).

    Article  PubMed  Google Scholar 

  123. Kari, F. A. et al. Residual and progressive aortic regurgitation after valve-sparing root replacement: a propensity-matched multi-institutional analysis in 764 patients. Ann. Thorac. Surg. 101, 1500–1506 (2016).

    Article  PubMed  Google Scholar 

  124. Ziganshin, B. A. et al. Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. Ann. Thorac. Surg. 100, 1604–1611 (2015).

    Article  PubMed  Google Scholar 

  125. Van Hemelrijk, C., Renard, M. & Loeys, B. The Loeys–Dietz syndrome: an update for the clinician. Curr. Opin. Cardiol. 25, 546–551 (2010).

    Article  PubMed  Google Scholar 

  126. Lemaire, S. A. et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat. Genet. 43, 996–1000 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sepetiene, R. et al. Association between fibrillin1 polymorphisms (rs2118181, rs10519177) and transforming growth factor beta1 concentration in human plasma. Mol. Med. 21, 735–738 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Prakash, S. K. et al. Rare copy number variants disrupt genes regulating vascular smooth muscle cell adhesion and contractility in sporadic thoracic aortic aneurysms and dissections. Am. J. Hum. Genet. 87, 743–756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Prakash, S. et al. Recurrent rare genomic copy number variants and bicuspid aortic valve are enriched in early onset thoracic aortic aneurysms and dissections. PLoS ONE 11, e0153543 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Kuang, S. Q. et al. Recurrent chromosome 16p13.1 duplications are a risk factor for aortic dissections. PLoS Genet. 7, e1002118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. van de Luijtgaarden, K. M. et al. First genetic analysis of aneurysm genes in familial and sporadic abdominal aortic aneurysm. Hum. Genet. 134, 881–893 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mourmoura, E. et al. Evidence of deregulated cholesterol efflux in abdominal aortic aneurysm. Acta Histochem. 118, 97–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Ruddy, J. M., Jones, J. A., Spinale, F. G. & Ikonomidis, J. S. Regional heterogeneity within the aorta: relevance to aneurysm disease. J. Thorac. Cardiovasc. Surg. 136, 1123–1130 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Fukui, D. et al. Overexpression of transforming growth factor beta1 in smooth muscle cells of human abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 25, 540–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Doyle, A. J. et al. Differential expression of Hedgehog/Notch and transforming growth factor-beta in human abdominal aortic aneurysms. J. Vasc. Surg. 62, 464–470 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

B.L. receives research funding from the Fund for Scientific Research Flanders [G.0221.12]; the Foundation Leducq [12 CVD 03] and the European Research Council [ERC-StG-2012-30972]. B.L. is a senior clinical investigator of the Fund for Scientific Research Flanders (FWO). A.V. is a postdoctoral researcher supported by the Fund for Scientific Research Flanders (FWO). I.L. holds a PhD grant from the Agency for Innovation by Science and Technology (IWT).

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, discussed its content, and wrote the manuscript. B.L. and A.V. reviewed and edited the article before submission.

Corresponding author

Correspondence to Bart Loeys.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verstraeten, A., Luyckx, I. & Loeys, B. Aetiology and management of hereditary aortopathy. Nat Rev Cardiol 14, 197–208 (2017). https://doi.org/10.1038/nrcardio.2016.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing