Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thrombus aspiration in acute myocardial infarction

Key Points

  • Patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI) often have distal embolization and microvascular obstruction and, therefore, experience incomplete microvascular myocardial reperfusion, which jeopardizes clinical outcome

  • Manual thrombus aspiration during PCI might limit distal embolization and microvascular obstruction, reduces the need for potentially harmful predilatations, and facilitates direct stenting

  • Although studies have generally demonstrated superior myocardial reperfusion with routine manual thrombus aspiration, no reduction in hard clinical end points was seen when compared with conventional PCI in large clinical trials

  • Safety concerns were raised by a large thrombus aspiration trial that demonstrated a small, but significant, increase in risk of stroke with thrombus aspiration; operator-dependence might have a role

  • Thrombus aspiration has enabled us to study coronary thrombus in vivo, potentially leading to new biomarkers and therapies, and has facilitated recognition of distinct mechanisms of coronary thrombosis

  • A planned meta-analysis of individual patient data will shed more light on the efficacy and safety of thrombus aspiration in primary PCI; selected use by a skilled operator is reasonable while we await the findings

Abstract

The success of primary percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is often hampered by incomplete microvascular myocardial reperfusion owing to distal embolization of thrombus resulting in microvascular obstruction. To address this problem, thrombus aspiration devices have been developed that can be used to evacuate coronary thrombus either manually or mechanically. Thrombus aspiration has the potential to reduce the local thrombus load, minimize the need for balloon predilatation, facilitate direct stenting, prevent distal embolization, and ultimately improve myocardial reperfusion. Furthermore, thrombus aspiration has enabled us to study coronary thrombus in vivo, and has facilitated recognition of distinct mechanisms of coronary thrombosis. Clinical trials focusing on manual thrombus aspiration in primary PCI have generally shown improved myocardial reperfusion. However, in two large trials powered for clinical end points, no reduction in 1-year mortality or other adverse clinical events was observed with the use of this strategy. Moreover, one of these trials showed a marginally increased risk of stroke. Consequently, current guidelines do not recommend routine use of thrombus aspiration. Future studies should focus on the identification of subgroups of patients with STEMI who might derive benefit from manual thrombus aspiration, and establish the effect of operator performance on the efficacy and safety of the procedure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manual thrombus aspiration.
Figure 2: A typical clinical case involving thrombus aspiration in primary percutaneous coronary intervention.
Figure 3: Sizes of the randomized clinical trials in which manual thrombus aspiration was compared with conventional percutaneous coronary intervention.
Figure 4: Thrombi retrieved during thrombus aspiration come in different sizes, shapes, colours, and consistencies.

Similar content being viewed by others

References

  1. Davies, M. J. The pathophysiology of acute coronary syndromes. Heart 83, 361–366 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keeley, E. C., Boura, J. A. & Grines, C. L. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet 361, 13–20 (2003).

    PubMed  Google Scholar 

  3. Lincoff, A. M. & Topol, E. J. Illusion of reperfusion. Does anyone achieve optimal reperfusion during acute myocardial infarction? Circulation 88, 1361–1374 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Kampinga, M. A. et al. Is the myocardial blush grade scored by the operator during primary percutaneous coronary intervention of prognostic value in patients with ST-elevation myocardial infarction in routine clinical practice? Circ. Cardiovasc. Interv. 3, 216–223 (2010).

    Article  PubMed  Google Scholar 

  5. van't Hof, A. W., Liem, A., de Boer, M. J. & Zijlstra, F. Clinical value of 12-lead electrocardiogram after successful reperfusion therapy for acute myocardial infarction. Lancet 350, 615–619 (1997).

    Article  Google Scholar 

  6. Buller, C. E. et al. ST-segment recovery and outcome after primary percutaneous coronary intervention for ST-elevation myocardial infarction: insights from the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial. Circulation 118, 1335–1346 (2008).

    Article  PubMed  Google Scholar 

  7. Farkouh, M. E. et al. Relationship between ST-segment recovery and clinical outcomes after primary percutaneous coronary intervention: the HORIZONS-AMI ECG substudy report. Circ. Cardiovasc. Interv. 6, 216–223 (2013).

    Article  PubMed  Google Scholar 

  8. Ito, H. et al. Clinical implications of the 'no reflow' phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 93, 223–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Ito, H. et al. Myocardial perfusion patterns related to thrombolysis in myocardial infarction perfusion grades after coronary angioplasty in patients with acute anterior wall myocardial infarction. Circulation 93, 1993–1999 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. van 't Hof, A. W. et al. Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Circulation 97, 2302–2306 (1998).

    Article  PubMed  Google Scholar 

  11. Stone, G. W. et al. Impact of normalized myocardial perfusion after successful angioplasty in acute myocardial infarction. J. Am. Coll. Cardiol. 39, 591–597 (2002).

    Article  PubMed  Google Scholar 

  12. Wu, K. C. et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 97, 765–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, K. C. CMR of microvascular obstruction and hemorrhage in myocardial infarction. J. Cardiovasc. Magn. Reson. 14, 68 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tsunoda, T. et al. The pattern of alteration in flow velocity in the recanalized artery is related to left ventricular recovery in patients with acute infarction and successful direct balloon angioplasty. J. Am. Coll. Cardiol. 32, 338–344 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wakatsuki, T. et al. Coronary flow velocity immediately after primary coronary stenting as a predictor of ventricular wall motion recovery in acute myocardial infarction. J. Am. Coll. Cardiol. 35, 1835–1841 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Fearon, W. F. et al. Novel index for invasively assessing the coronary microcirculation. Circulation 107, 3129–3132 (2003).

    Article  PubMed  Google Scholar 

  17. McGeoch, R. et al. The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 3, 715–722 (2010).

    Article  PubMed  Google Scholar 

  18. Crea, F., Camici, P. G. & Bairey Merz, C. N. Coronary microvascular dysfunction: an update. Eur. Heart J. 35, 1101–1111 (2014).

    Article  PubMed  Google Scholar 

  19. Niccoli, G., Kharbanda, R. K., Crea, F. & Banning, A. P. No-reflow: again prevention is better than treatment. Eur. Heart J. 31, 2449–2455 (2010).

    Article  PubMed  Google Scholar 

  20. DeWood, M. A. et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N. Engl. J. Med. 303, 897–902 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Beran, G. et al. Intracoronary thrombectomy with the X-sizer catheter system improves epicardial flow and accelerates ST-segment resolution in patients with acute coronary syndrome: a prospective, randomized, controlled study. Circulation 105, 2355–2360 (2002).

    Article  PubMed  Google Scholar 

  22. Vlaar, P. J. et al. A comparison of 2 thrombus aspiration devices with histopathological analysis of retrieved material in patients presenting with ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 1, 258–264 (2008).

    Article  PubMed  Google Scholar 

  23. Frobert, O., Calais, F., James, S. K. & Lagerqvist, B. ST-elevation myocardial infarction, thrombus aspiration, and different invasive strategies. A TASTE trial substudy. J. Am. Heart Assoc. 4, e001755 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sianos, G. et al. Angiographic stent thrombosis after routine use of drug-eluting stents in ST-segment elevation myocardial infarction: the importance of thrombus burden. J. Am. Coll. Cardiol. 50, 573–583 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Napodano, M. et al. Thrombus burden and myocardial damage during primary percutaneous coronary intervention. Am. J. Cardiol. 113, 1449–1456 (2014).

    Article  PubMed  Google Scholar 

  26. Yunoki, K. et al. Relationship of thrombus characteristics to the incidence of angiographically visible distal embolization in patients with ST-segment elevation myocardial infarction treated with thrombus aspiration. JACC Cardiovasc. Interv. 6, 377–385 (2013).

    Article  PubMed  Google Scholar 

  27. Alak, A., Lugomirski, P., Aleksova, N. & Jolly, S. S. A meta-analysis of randomized controlled trials of conventional stenting versus direct stenting in patients with acute myocardial infarction. J. Invasive Cardiol. 27, 405–409 (2015).

    PubMed  Google Scholar 

  28. Barbato, E., Marco, J. & Wijns, W. Direct stenting. Eur. Heart J. 24, 394–403 (2003).

    Article  PubMed  Google Scholar 

  29. Fernandez-Rodriguez, D. et al. Optimization in stent implantation by manual thrombus aspiration in ST-segment-elevation myocardial infarction: findings from the EXAMINATION trial. Circ. Cardiovasc. Interv. 7, 294–300 (2014).

    Article  PubMed  Google Scholar 

  30. Ali, A. et al. Rheolytic thrombectomy with percutaneous coronary intervention for infarct size reduction in acute myocardial infarction: 30-day results from a multicenter randomized study. J. Am. Coll. Cardiol. 48, 244–252 (2006).

    Article  PubMed  Google Scholar 

  31. Antoniucci, D. et al. Comparison of rheolytic thrombectomy before direct infarct artery stenting versus direct stenting alone in patients undergoing percutaneous coronary intervention for acute myocardial infarction. Am. J. Cardiol. 93, 1033–1035 (2004).

    Article  PubMed  Google Scholar 

  32. Migliorini, A. et al. Comparison of AngioJet heolytic thrombectomy before direct infarct artery stenting with direct stenting alone in patients with acute myocardial infarction: the JETSTENT trial. J. Am. Coll. Cardiol. 56, 1298–1306 (2010).

    Article  PubMed  Google Scholar 

  33. De Carlo, M. et al. A prospective randomized trial of thrombectomy versus no thrombectomy in patients with ST-segment elevation myocardial infarction and thrombus-rich lesions: MUSTELA (MUltidevice Thrombectomy in Acute ST-Segment ELevation Acute Myocardial Infarction) trial. JACC Cardiovasc. Interv. 5, 1223–1230 (2012).

    Article  PubMed  Google Scholar 

  34. Napodano, M. et al. Intracoronary thrombectomy improves myocardial reperfusion in patients undergoing direct angioplasty for acute myocardial infarction. J. Am. Coll. Cardiol. 42, 1395–1402 (2003).

    Article  PubMed  Google Scholar 

  35. Lefevre, T. et al. X-sizer for thrombectomy in acute myocardial infarction improves ST-segment resolution: results of the X-sizer in AMI for negligible embolization and optimal ST resolution (X AMINE ST) trial. J. Am. Coll. Cardiol. 46, 246–252 (2005).

    Article  PubMed  Google Scholar 

  36. Boston Scientific. AngioJet Ultra: coronary thrombectomy sytem [online], (2015).

  37. Kumbhani, D. J., Bavry, A. A., Desai, M. Y., Bangalore, S. & Bhatt, D. L. Role of aspiration and mechanical thrombectomy in patients with acute myocardial infarction undergoing primary angioplasty: an updated meta-analysis of randomized trials. J. Am. Coll. Cardiol. 62, 1409–1418 (2013).

    Article  PubMed  Google Scholar 

  38. Svilaas, T. et al. Thrombus aspiration during primary percutaneous coronary intervention. N. Engl. J. Med. 358, 557–567 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Fröbert, O. et al. Thrombus aspiration during ST-segment elevation myocardial infarction. N. Engl. J. Med. 369, 1587–1597 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Jolly, S. S. et al. Randomized trial of primary PCI with or without routine manual thrombectomy. N. Engl. J. Med. 372, 1389–1398 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stone, G. W. et al. Intracoronary abciximab and aspiration thrombectomy in patients with large anterior myocardial infarction: the INFUSE-AMI randomized trial. JAMA 307, 1817–1826 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Bulum, J., Ernst, A. & Strozzi, M. The impact of successful manual thrombus aspiration on in-stent restenosis after primary PCI: angiographic and clinical follow-up. Coron. Artery Dis. 23, 487–491 (2012).

    Article  PubMed  Google Scholar 

  43. Burzotta, F. et al. Manual thrombus-aspiration improves myocardial reperfusion: the randomized evaluation of the effect of mechanical reduction of distal embolization by thrombus-aspiration in primary and rescue angioplasty (REMEDIA) trial. J. Am. Coll. Cardiol. 46, 371–376 (2005).

    Article  PubMed  Google Scholar 

  44. Chao, C. L. et al. Time-dependent benefit of initial thrombosuction on myocardial reperfusion in primary percutaneous coronary intervention. Int. J. Clin. Pract. 62, 555–561 (2008).

    Article  PubMed  Google Scholar 

  45. Chevalier, B. et al. Systematic primary aspiration in acute myocardial percutaneous intervention: a multicentre randomised controlled trial of the export aspiration catheter. EuroIntervention 4, 222–228 (2008).

    Article  PubMed  Google Scholar 

  46. Ciszewski, M. et al. Aspiration coronary thrombectomy for acute myocardial infarction increases myocardial salvage: single center randomized study. Catheter. Cardiovasc. Interv. 78, 523–531 (2011).

    Article  PubMed  Google Scholar 

  47. De Luca, L. et al. Impact of intracoronary aspiration thrombectomy during primary angioplasty on left ventricular remodelling in patients with anterior ST elevation myocardial infarction. Heart 92, 951–957 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Dudek, D. et al. Percutaneous thrombectomy with the RESCUE system in acute myocardial infarction. Kardiol. Pol. 61, 523–533 (2004).

    PubMed  Google Scholar 

  49. Hoole, S. P. et al. Serial assessment of the index of microcirculatory resistance during primary percutaneous coronary intervention comparing manual aspiration catheter thrombectomy with balloon angioplasty (IMPACT study): a randomised controlled pilot study. Open Heart 2, e000238 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ikari, Y. et al. Upfront thrombus aspiration in primary coronary intervention for patients with ST-segment elevation acute myocardial infarction: report of the VAMPIRE (VAcuuM asPIration thrombus REmoval) trial. JACC Cardiovasc. Interv. 1, 424–431 (2008).

    Article  PubMed  Google Scholar 

  51. Kaltoft, A. et al. Routine thrombectomy in percutaneous coronary intervention for acute ST-segment-elevation myocardial infarction: a randomized, controlled trial. Circulation 114, 40–47 (2006).

    Article  PubMed  Google Scholar 

  52. Liistro, F. et al. Impact of thrombus aspiration on myocardial tissue reperfusion and left ventricular functional recovery and remodeling after primary angioplasty. Circ. Cardiovasc. Interv. 2, 376–383 (2009).

    Article  PubMed  Google Scholar 

  53. Lipiecki, J. et al. Effect of thrombus aspiration on infarct size and left ventricular function in high-risk patients with acute myocardial infarction treated by percutaneous coronary intervention. Results of a prospective controlled pilot study. Am. Heart J. 157, 583.e1–583.e7 (2009).

    Article  Google Scholar 

  54. Liu, C. P. et al. Additive benefit of glycoprotein IIb/IIIa inhibition and adjunctive thrombus aspiration during primary coronary intervention: results of the Initial Thrombosuction and Tirofiban Infusion (ITTI) trial. Int. J. Cardiol. 156, 174–179 (2012).

    Article  PubMed  Google Scholar 

  55. Onuma, Y. et al. Randomized study to assess the effect of thrombus aspiration on flow area in patients with ST-elevation myocardial infarction: an optical frequency domain imaging study — TROFI trial. Eur. Heart J. 34, 1050–1060 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Sardella, G. et al. Thrombus aspiration during primary percutaneous coronary intervention improves myocardial reperfusion and reduces infarct size: the EXPIRA (thrombectomy with export catheter in infarct-related artery during primary percutaneous coronary intervention) prospective, randomized trial. J. Am. Coll. Cardiol. 53, 309–315 (2009).

    Article  PubMed  Google Scholar 

  57. Silva-Orrego, P. et al. Thrombus aspiration before primary angioplasty improves myocardial reperfusion in acute myocardial infarction: the DEAR-MI (Dethrombosis to Enhance Acute Reperfusion in Myocardial Infarction) study. J. Am. Coll. Cardiol. 48, 1552–1559 (2006).

    Article  PubMed  Google Scholar 

  58. Sim, D. S. et al. Effect of manual thrombus aspiration during primary percutaneous coronary intervention on infarct size: evaluation with cardiac computed tomography. Int. J. Cardiol. 168, 4328–4330 (2013).

    Article  PubMed  Google Scholar 

  59. Woo, S. I. et al. Thrombus aspiration during primary percutaneous coronary intervention for preserving the index of microcirculatory resistance: a randomised study. EuroIntervention 9, 1057–1062 (2014).

    Article  PubMed  Google Scholar 

  60. Dudek, D. et al. Thrombus aspiration followed by direct stenting: a novel strategy of primary percutaneous coronary intervention in ST-segment elevation myocardial infarction. Results of the Polish-Italian-Hungarian RAndomized ThrombEctomy Trial (PIHRATE Trial). Am. Heart J. 160, 966–972 (2010).

    Article  PubMed  Google Scholar 

  61. Svilaas, T., van der Horst, I. C. & Zijlstra, F. Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS) — study design. Am. Heart J. 151, 597.e1–597.e7 (2006).

    Article  Google Scholar 

  62. Vlaar, P. J. et al. Cardiac death and reinfarction after 1 year in the Thrombus Aspiration during Percutaneous coronary intervention in Acute myocardial infarction Study (TAPAS): a 1-year follow-up study. Lancet 371, 1915–1920 (2008).

    Article  PubMed  Google Scholar 

  63. Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC) et al. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC). Eur. Heart J. 33, 2569–2619 (2012).

  64. American College of Cardiology Foundation/American Heart Association Task Force. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 61, e78–e140 (2013).

  65. Russo, J. J. et al. An international survey of clinical practice during primary percutaneous coronary intervention for ST-elevation myocardial infarction with a focus on aspiration thrombectomy. EuroIntervention 8, 1143–1148 (2013).

    Article  PubMed  Google Scholar 

  66. Frobert, O., Lagerqvist, B., Kreutzer, M., Olivecrona, G. K. & James, S. K. Thrombus aspiration in ST-elevation myocardial infarction in Sweden: a short report on real world outcome. Int. J. Cardiol. 145, 572–573 (2010).

    Article  PubMed  Google Scholar 

  67. Lin, M. S., Wu, L. S., Cheng, N. J., Lin, P. C. & Chang, C. J. Thrombus aspiration complicated by systemic embolization in patients with acute myocardial infarction. Circ. J. 73, 1356–1358 (2009).

    Article  PubMed  Google Scholar 

  68. De Luca, G., Navarese, E. P. & Suryapranata, H. A meta-analytic overview of thrombectomy during primary angioplasty. Int. J. Cardiol. 166, 606–612 (2013).

    Article  PubMed  Google Scholar 

  69. Frobert, O. et al. Thrombus Aspiration in ST-Elevation myocardial infarction in Scandinavia (TASTE trial). A multicenter, prospective, randomized, controlled clinical registry trial based on the Swedish angiography and angioplasty registry (SCAAR) platform. Study design and rationale. Am. Heart J. 160, 1042–1048 (2010).

    Article  PubMed  Google Scholar 

  70. James, S., Rao, S. V. & Granger, C. B. Registry-based randomized clinical trials — a new clinical trial paradigm. Nat. Rev. Cardiol. 12, 312–316 (2015).

    Article  PubMed  Google Scholar 

  71. Lagerqvist, B. et al. Outcomes 1 year after thrombus aspiration for myocardial infarction. N. Engl. J. Med. 371, 1111–1120 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Jolly, S. S. et al. Design and rationale of the TOTAL trial: a randomized trial of routine aspiration ThrOmbecTomy with percutaneous coronary intervention (PCI) versus PCI ALone in patients with ST-elevation myocardial infarction undergoing primary PCI. Am. Heart J. 167, 315.e1–321.e1 (2014).

    Article  Google Scholar 

  73. Jolly, S. S. et al. Outcomes after thrombus aspiration for ST elevation myocardial infarction: 1-year follow-up of the prospective randomised TOTAL trial. Lancet 387, 127–135 (2016).

    Article  PubMed  Google Scholar 

  74. Jolly, S. S. et al. Stroke in the TOTAL trial: a randomized trial of routine thrombectomy versus percutaneous coronary intervention alone in ST elevation myocardial infarction. Eur. Heart J. 36, 2364–2372 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Elgendy, I. Y., Huo, T., Bhatt, D. L. & Bavry, A. A. Is aspiration thrombectomy beneficial in patients undergoing primary percutaneous coronary intervention? Meta-analysis of randomized trials. Circ. Cardiovasc. Interv. 8, e002258 (2015).

    PubMed  Google Scholar 

  76. Riley, R. D., Lambert, P. C. & Abo-Zaid, G. Meta-analysis of individual participant data: rationale, conduct, and reporting. BMJ 340, c221 (2010).

    Article  PubMed  Google Scholar 

  77. US National Library of Science. ClinicalTrials.gov [online], (2015).

  78. Pyxaras, S. A. et al. Synergistic effect of thrombus aspiration and abciximab in primary percutaneous coronary intervention. Catheter. Cardiovasc. Interv. 82, 604–611 (2013).

    PubMed  Google Scholar 

  79. Noman, A. et al. Impact of thrombus aspiration during primary percutaneous coronary intervention on mortality in ST-segment elevation myocardial infarction. Eur. Heart J. 33, 3054–3061 (2012).

    Article  PubMed  Google Scholar 

  80. De Rosa, S., Caiazzo, G., Torella, D. & Indolfi, C. Aspiration thrombectomy: an easily forgiven 'latecomer'. J. Am. Coll. Cardiol. 63, 2052–2053 (2014).

    Article  PubMed  Google Scholar 

  81. Bhindi, R. et al. Culprit lesion thrombus burden after manual thrombectomy or percutaneous coronary intervention-alone in ST-segment elevation myocardial infarction: the optical coherence tomography sub-study of the TOTAL (ThrOmbecTomy versus PCI ALone) trial. Eur. Heart J. 36, 1892–1900 (2015).

    Article  PubMed  Google Scholar 

  82. Yamaguchi, T. et al. Optical coherence tomography assessment of efficacy of thrombus aspiration in patients undergoing a primary percutaneous coronary intervention for acute ST-elevation myocardial infarction. Coron. Artery Dis. 26, 567–572 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vlaar, P. J. et al. The feasibility and safety of routine thrombus aspiration in patients with non-ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 72, 937–942 (2008).

    Article  PubMed  Google Scholar 

  84. Wieringa, W. G. et al. The feasibility of optical coherence tomography guided thrombus aspiration in patients with non-ST-elevation myocardial infarction after initial conservative therapy — a pilot study. Int. J. Cardiol. 168, 4981–4982 (2013).

    Article  PubMed  Google Scholar 

  85. Thiele, H. et al. Effect of aspiration thrombectomy on microvascular obstruction in NSTEMI patients: the TATORT-NSTEMI trial. J. Am. Coll. Cardiol. 64, 1117–1124 (2014).

    Article  PubMed  Google Scholar 

  86. Zimarino, M. et al. Reduction of atherothrombotic burden before stent deployment in non-ST elevation acute coronary syndromes: reduction of myocardial necrosis achieved with nose-dive manual thrombus aspiration (REMNANT) trial. A volumetric intravascular ultrasound study. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.26301, (2015).

  87. De Vita, M. et al. Urgent PCI in patients with stent thrombosis: an observational single-center study comparing thrombus aspiration and standard PCI. J. Invasive Cardiol. 20, 161–165 (2008).

    PubMed  Google Scholar 

  88. Lemesle, G. et al. Impact of thrombus aspiration use for the treatment of stent thrombosis on early patient outcomes. J. Invasive Cardiol. 21, 210–214 (2009).

    PubMed  Google Scholar 

  89. Mahmoud, K. D. et al. Usefulness of thrombus aspiration for the treatment of coronary stent thrombosis. Am. J. Cardiol. 108, 1721–1727 (2011).

    Article  PubMed  Google Scholar 

  90. Waldo, S. W. et al. Procedural success and long-term outcomes of aspiration thrombectomy for the treatment of stent thrombosis. Catheter. Cardiovasc. Interv. 82, 1048–1053 (2013).

    Article  PubMed  Google Scholar 

  91. Kubo, S. et al. Comparison of long-term outcome after percutaneous coronary intervention for stent thrombosis between early, late, and very late stent thrombosis. Circ. J. 78, 101–109 (2013).

    PubMed  Google Scholar 

  92. Jolly, S. S. et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 377, 1409–1420 (2011).

    Article  PubMed  Google Scholar 

  93. Wallentin, L. et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 361, 1045–1057 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Wiviott, S. D. et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 357, 2001–2015 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Palmerini, T. et al. Long-term safety of drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J. Am. Coll. Cardiol. 65, 2496–2507 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Vlaar, P. J. et al. Operator dependence of outcome after primary percutaneous coronary intervention. EuroIntervention 6, 760–767 (2011).

    Article  PubMed  Google Scholar 

  97. Inaba, Y., Chen, J. A., Mehta, N. & Bergmann, S. R. Impact of single or multicentre study design on the results of trials examining the efficacy of adjunctive devices to prevent distal embolisation during acute myocardial infarction. EuroIntervention 5, 375–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Dechartres, A., Boutron, I., Trinquart, L., Charles, P. & Ravaud, P. Single-center trials show larger treatment effects than multicenter trials: evidence from a meta-epidemiologic study. Ann. Intern. Med. 155, 39–51 (2011).

    Article  PubMed  Google Scholar 

  99. Windecker, S. et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 35, 2541–2619 (2014).

    Article  PubMed  Google Scholar 

  100. Levine, G. N. et al. 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention and the 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J. Am. Coll. Cardiol. http://dx.doi.org/10.1016/j.jacc.2015.10.005, (2015).

  101. Rittersma, S. Z. et al. Plaque instability frequently occurs days or weeks before occlusive coronary thrombosis: a pathological thrombectomy study in primary percutaneous coronary intervention. Circulation 111, 1160–1165 (2005).

    Article  PubMed  Google Scholar 

  102. Kramer, M. C. et al. Histopathological features of aspirated thrombi after primary percutaneous coronary intervention in patients with ST-elevation myocardial infarction. PLoS ONE 4, e5817 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mahmoud, K. D., Hillege, H. L., Jaffe, A. S., Lennon, R. J. & Holmes, D. R. Jr. Biochemical validation of patient-reported symptom onset time in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. JACC Cardiovasc. Interv. 8, 778–787 (2015).

    Article  PubMed  Google Scholar 

  104. Ramaiola, I. et al. Changes in thrombus composition and profilin-1 release in acute myocardial infarction. Eur. Heart J. 36, 965–975 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Suades, R. et al. Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time. Int. J. Cardiol. 202, 378–387 (2015).

    Article  PubMed  Google Scholar 

  106. Suades, R. et al. Growing thrombi release increased levels of CD235a+ microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. J. Thromb. Haemost. 13, 1776–1786 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Stakos, D. A. et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur. Heart J. 36, 1405–1414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Autar, A. S. et al. Neutrophil extracellular traps in coronary artery thrombi in patients with acute myocardial infarction. J. Thromb. Haemost. 13 (Suppl. 2), 291–292 (2015).

    Google Scholar 

  109. Autar, A. S. et al. Microvascular obstruction in STEMI patients during pPCI is related to the size of the aspirated coronary artery thrombi and pre-PCI Neutrophil Extracellular Trap levels. Eur. Heart J. 36 (Suppl. 1), 226 (2015).

    Google Scholar 

  110. Quadros, A. S. et al. Red versus white thrombi in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention: clinical and angiographic outcomes. Am. Heart J. 164, 553–560 (2012).

    Article  PubMed  Google Scholar 

  111. Pessi, T. et al. Bacterial signatures in thrombus aspirates of patients with myocardial infarction. Circulation 127, 1219–1228 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Karanasos, A. et al. Angiographic and optical coherence tomography insights into bioresorbable scaffold thrombosis: single-center experience. Circ. Cardiovasc. Interv. 8, e002369 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Ahmadi, A. et al. Do plaques rapidly progress prior to myocardial infarction? The interplay between plaque vulnerability and progression. Circ. Res. 117, 99–104 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Manoharan, G. et al. Severity of coronary arterial stenoses responsible for acute coronary syndromes. Am. J. Cardiol. 103, 1183–1188 (2009).

    Article  PubMed  Google Scholar 

  115. McCormick, L. M., Hoole, S. P., Brown, A. J., Dutka, D. P. & West, N. E. A contemporary re-evaluation of culprit lesion severity in patients presenting with STEMI. Acute Card. Care 14, 111–116 (2012).

    Article  PubMed  Google Scholar 

  116. Kramer, M. C. et al. Thrombus aspiration alone during primary percutanous coronary intervention as definitive treatment in acute ST-elevation myocardial infarction. Catheter. Cardiovasc. Interv. 79, 860–867 (2012).

    Article  PubMed  Google Scholar 

  117. Escaned, J. et al. Safety of lone thrombus aspiration without concomitant coronary stenting in selected patients with acute myocardial infarction. EuroIntervention 8, 1149–1156 (2013).

    Article  PubMed  Google Scholar 

  118. Fokkema, M. L., Vlaar, P. J. & Svilaas, T. Thrombus aspiration as definitive mechanical intervention for ST-elevation myocardial infarction: a report of five cases. J. Invasive Cardiol. 20, 242–244 (2008).

    PubMed  Google Scholar 

  119. Prati, F. et al. OCT-based diagnosis and management of STEMI associated with intact fibrous cap. JACC Cardiovasc. Imaging 6, 283–287 (2013).

    Article  PubMed  Google Scholar 

  120. Niccoli, G. et al. Plaque rupture and intact fibrous cap assessed by optical coherence tomography portend different outcomes in patients with acute coronary syndrome. Eur. Heart J. 36, 1377–1384 (2015).

    Article  PubMed  Google Scholar 

  121. Huang, A. L. et al. Routine aspiration thrombectomy improves the diagnosis and management of embolic myocardial infarction. Catheter. Cardiovasc. Interv. http://dx.doi.org/10.1002/ccd.26047, (2015).

  122. Shibata, T. et al. Prevalence, clinical features, and prognosis of acute myocardial infarction attributable to coronary artery embolism. Circulation 132, 241–250 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Carrick, D. et al. A randomized trial of deferred stenting versus immediate stenting to prevent no- or slow-reflow in acute ST-segment elevation myocardial infarction (DEFER-STEMI). J. Am. Coll. Cardiol. 63, 2088–2098 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. US National Library of Science. ClinicalTrials.gov [online], (2015).

  125. US National Library of Science. ClinicalTrials.gov [online], (2015).

  126. US National Library of Science. ClinicalTrials.gov [online], (2015).

  127. Fokkema, M. L. et al. Incidence and clinical consequences of distal embolization on the coronary angiogram after percutaneous coronary intervention for ST-elevation myocardial infarction. Eur. Heart J. 30, 908–915 (2009).

    Article  PubMed  Google Scholar 

  128. Spoon, D. B. et al. Trends in cause of death after percutaneous coronary intervention. Circulation 129, 1286–1294 (2014).

    Article  PubMed  Google Scholar 

  129. Pedersen, F. et al. Short- and long-term cause of death in patients treated with primary PCI for STEMI. J. Am. Coll. Cardiol. 64, 2101–2108 (2014).

    Article  PubMed  Google Scholar 

  130. Stone, G. W. et al. Intralesional abciximab and thrombus aspiration in patients with large anterior myocardial infarction: one-year results from the INFUSE-AMI trial. Circ. Cardiovasc. Interv. 6, 527–534 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Anouchska S. A. Autar and Heleen M. M. van Beusekom (Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, the Netherlands) for their assistance with Figure 4.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article and discussed its content. K.D.M. wrote the manuscript, and F.Z. reviewed and edited it before submission.

Corresponding author

Correspondence to Karim D. Mahmoud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, K., Zijlstra, F. Thrombus aspiration in acute myocardial infarction. Nat Rev Cardiol 13, 418–428 (2016). https://doi.org/10.1038/nrcardio.2016.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing