Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting angiogenesis: progress with anti-VEGF treatment with large molecules

Abstract

Angiogenesis—one of the hallmarks of cancer—has emerged as a valid therapeutic target in oncology. The VEGF system represents a key mediator of tumor-initiated angiogenesis and the first target of antiangiogenesis agents introduced in clinical practice. Although anti-VEGF therapies have clearly demonstrated antitumor efficacy in various malignancies, especially when combined with conventional cytotoxic chemotherapy, their mechanism of action is not fully understood. This Review will discuss the rationale for using antiangiogenic compounds and will focus on large molecules, such as antibodies, that target the VEGF system. Clinical data on bevacizumab is discussed in detail. Predictive markers for anti-VEGF agents have not yet been identified and questions regarding the usefulness of bevacizumab in the adjuvant setting as well as its continued use beyond progression remain unanswered, in spite of negative data on bevacizumab in treating patients with adjuvant colon cancer. Nonetheless, anti-VEGF therapy has enhanced the arsenal of anticancer therapies and has provided new insights into the biology of malignancy.

Key Points

  • Anti-VEGF therapy with bevacizumab can increase overall survival and/or progression-free survival in patients with colorectal, breast, lung cancer or glioblastoma multiforme when combined with cytotoxic agents

  • In spite of its well-documented efficacy in advanced malignancies, bevacizumab has not yet shown to be active as adjuvant therapy

  • Anti-VEGF therapy is thought to transiently 'normalize' the tumor vasculature and improve the delivery of drugs and oxygen to tumor cells, rendering them more chemosensitive and radiosensitive

  • No predictive biomarker for the efficacy of anti-VEGF therapy has been identified, which would allow the selection of patients who may obtain maximum benefit from anti-VEGF treatment

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGF receptors and their specific ligands.

Similar content being viewed by others

References

  1. Folkman, J. Angiogenesis: an organizing principle for drug discovery? Nat. Rev. Drug Discov. 6, 273–286 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Jain, R. K. et al. Angiogenesis in brain tumours. Nat. Rev. Neurosci. 8, 610–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Cao, Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci. Signal. 2, re1 (2009).

    Article  PubMed  Google Scholar 

  9. Kerbel, R. S. Tumor angiogenesis. N. Engl. J. Med. 358, 2039–2049 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994–1998 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Oliner, J. et al. Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6, 507–516 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kusters, B. et al. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma. Cancer Res. 63, 5408–5413 (2003).

    PubMed  Google Scholar 

  14. Tozer, G. M. et al. Blood vessel maturation and response to vascular-disrupting therapy in single vascular endothelial growth factor-A isoform-producing tumors. Cancer Res. 68, 2301–2311 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Batchelor, T. T. et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11, 83–95 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Machein, M. R. et al. Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am. J. Pathol. 165, 1557–1570 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reiss, Y., Machein, M. R. & Plate, K. H. The role of angiopoietins during angiogenesis in gliomas. Brain Pathol. 15, 311–317 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Yancopoulos, G. D. et al. Vascular-specific growth factors and blood vessel formation. Nature 407, 242–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Wizigmann-Voos, S. & Plate, K. H. Pathology, genetics and cell biology of hemangioblastomas. Histol. Histopathol. 11, 1049–1061 (1996).

    CAS  PubMed  Google Scholar 

  21. Fredriksson, L., Li, H. & Eriksson, U. The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev. 15, 197–204 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Folkman, J. Endogenous angiogenesis inhibitors. APMIS 112, 496–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Gray, M. J. et al. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J. Natl Cancer Inst. 100, 109–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Wedam, S. B. et al. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J. Clin. Oncol. 24, 769–777 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Dallas, N. A. et al. Functional significance of vascular endothelial growth factor receptors on gastrointestinal cancer cells. Cancer Metastasis Rev. 26, 433–441 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Fan, F. et al. Expression and function of vascular endothelial growth factor receptor-1 on human colorectal cancer cells. Oncogene 24, 2647–2653 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Allegra, C. J., Yothers, G., O'Connell, M. J., Sharif, S. & Wolmark, N. Initial safety report of NSABP C-08, a randomized phase III study of modified 5-fluorouracil (5-FU)/leucovorin (LCV) and oxaliplatin (OX) (mFOLFOX6) with or without bevacizumab (bev) in the adjuvant treatment of patients with stage II/III colon cancer [abstract]. ASCO Meeting Abstracts 26, 4006 (2008).

    Google Scholar 

  28. Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Ohm, J. E. et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 101, 4878–4886 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

    CAS  PubMed  Google Scholar 

  31. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970 (1999).

    CAS  PubMed  Google Scholar 

  32. Roskoski, R. Jr. VEGF receptor protein-tyrosine kinases: structure and regulation. Biochem. Biophys. Res. Commun. 375, 287–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Laird, A. D. et al. SU6668 is a potent antiangiogenic and antitumor agent that induces regression of established tumors. Cancer Res. 60, 4152–4160 (2000).

    CAS  PubMed  Google Scholar 

  34. Dvorak, H. F. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J. Clin. Oncol. 20, 4368–4380 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Ferrara, N., Hillan, K. J., Gerber, H. P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Casanovas, O., Hicklin, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Paavonen, K., Puolakkainen, P., Jussila, L., Jahkola, T. & Alitalo, K. Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol. 156, 1499–1504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, K. J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Warren, R. S., Yuan, H., Matli, M. R., Gillett, N. A. & Ferrara, N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J. Clin. Invest. 95, 1789–1797 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gordon, M. S. et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J. Clin. Oncol. 19, 843–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Holash, J. et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc. Natl Acad. Sci. USA 99, 11393–11398 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tew, W. P. et al. VEGF-Trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC): Preliminary results of a randomized, multicenter phase II study [abstract]. ASCO Meeting Abstracts 25, 5508 (2007).

    Google Scholar 

  44. Rixe, O. et al. Safety and pharmacokinetics of intravenous VEGF Trap plus irinotecan, 5-fluorouracil, and leucovorin (I-LV5FU2) in a combination phase I clinical trial of patients with advanced solid tumors [abstract]. ASCO Meeting Abstracts 24, 13161 (2006).

    Google Scholar 

  45. Jayson, G. C. et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J. Natl Cancer Inst. 94, 1484–1493 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Jayson, G. C. et al. Phase I investigation of recombinant anti-human vascular endothelial growth factor antibody in patients with advanced cancer. Eur. J. Cancer 41, 555–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Camidge, D. R. et al. A phase I dose-escalation study of weekly IMC-1121B, a fully human anti-vascular endothelial growth factor receptor 2 (VEGFR2) IgG1 monoclonal antibody (Mab), in patients (pts) with advanced cancer [abstract]. ASCO Meeting Abstracts 24, 3032 (2006).

    Google Scholar 

  48. Wu, Y. et al. Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin. Cancer Res. 12, 6573–6784 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kabbinavar, F. et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 21, 60–65 (2003).

    Article  CAS  Google Scholar 

  50. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Giantonio, B. J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25, 1539–1544 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Saltz, L. B. et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol. 26, 2013–2019 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Grothey, A. & Ellis, L. M. Targeting angiogenesis driven by vascular endothelial growth factors using antibody-based therapies. Cancer J. 14, 170–177 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Wolmark, N. et al. A phase III trial comparing mFOLFOX6 to mFOLFOX6 plus bevacizumab in stage II or III carcinoma of the colon: Results of NSABP Protocol C-08 [abstract]. ASCOC Meeting Abstracts 27, LBA4 (2009).

    Google Scholar 

  55. Sargent, D. et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J. Clin. Oncol. 27, 872–877 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Tang, P. et al. Phase II trial of aflibercept (VEGF Trap) in previously treated patients with metastatic colorectal cancer (MCRC): A PMH phase II consortium trial [abstract]. ASCO Meeting Abstracts 26, 4027 (2008).

    Google Scholar 

  57. Burris, H. A. 3rd et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Kindler, H. L. et al. A double-blind, placebo-controlled, randomized phase III trial of gemcitabine (G.) plus bevacizumab (B) versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC): A preliminary analysis of Cancer and Leukemia Group B (CALGB [abstract]. ASCO Meeting Abstracts 25, 4508 (2007).

    Google Scholar 

  59. Vervenne, W. et al. A randomized, double-blind, placebo (P) controlled, multicenter phase III trial to evaluate the efficacy and safety of adding bevacizumab (B) to erlotinib (E) and gemcitabine (G.) in patients (pts) with metastatic pancreatic cancer [abstract]. ASCO Meeting Abstracts 26, 4507 (2008).

    Google Scholar 

  60. Johnson, D. H. et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J. Clin. Oncol. 22, 2184–2191 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Reck, M. et al. Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J. Clin. Oncol. 27, 1227–1234 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Miller, K. D. et al. Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J. Clin. Oncol. 23, 792–799 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Miles, D. et al. Randomized, double-blind, placebo-controlled, phase III study of bevacizumab with docetaxel or docetaxel with placebo as first-line therapy for patients with locally recurrent or metastatic breast cancer (mBC): AVADO [abstract]. ASCO Meeting Abstracts 26, LBA1011 (2008).

    Google Scholar 

  66. Fong, T. A. et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 59, 99–106 (1999).

    CAS  PubMed  Google Scholar 

  67. Goldbrunner, R. H. et al. PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery 55, 426–432 (2004).

    PubMed  Google Scholar 

  68. Kunkel, P. et al. Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res. 61, 6624–6628 (2001).

    CAS  PubMed  Google Scholar 

  69. Rubenstein, J. L. et al. Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2, 306–314 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ali, S. A. et al. Bevacizumab and irinotecan therapy in glioblastoma multiforme: a series of 13 cases. J. Neurosurg. 109, 268–272 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Bokstein, F., Shpigel, S. & Blumenthal, D. T. Treatment with bevacizumab and irinotecan for recurrent high-grade glial tumors. Cancer 112, 2267–2273 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Vredenburgh, J. J. et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 13, 1253–1259 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Vredenburgh, J. J. et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J. Clin. Oncol. 25, 4722–4729 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Cloughesy, T. F. et al. A phase II, randomized, non-comparative clinical trial of the effect of bevacizumab (BV) alone or in combination with irinotecan (CPT) on 6-month progression free survival (PFS6) in recurrent, treatment-refractory glioblastoma (GBM) [abstract]. ASCO Meeting Abstracts 26, 2010b (2008).

    Google Scholar 

  75. Vredenburgh, J. J., Desjardins, A., Reardon, D. A. & Friedman, H. S. Experience with irinotecan for the treatment of malignant glioma. Neuro Oncol. 11, 80–91 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nghiemphu, P. L., Green, R. M., Pope, W. B., Lai, A. & Cloughesy, T. F. Safety of anticoagulation use and bevacizumab in patients with glioma. Neuro Oncol. 10, 355–360 (2008).

    Article  PubMed  Google Scholar 

  77. Norden, A. D., Drappatz, J. & Wen, P. Y. Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol. 7, 1152–1160 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Norden, A. D. et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70, 779–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Quant, E. C. et al. Role of a second chemotherapy in recurrent malignant glioma patients who progress on bevacizumab. Neuro Oncol. doi:10.1215/15228517-2009-006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. De Groot, J. F. et al. Phase II single arm trial of afilibercept in patients with recurrent temozolomide-resistant glioblastoma: NABTC 0601 [abstract]. ASCO Meeting Abstracts 26, 2020 (2008).

    Google Scholar 

  81. Rini, B. I. et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J. Clin. Oncol. 26, 5422–5428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Escudier, B. et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370, 2103–2111 (2007).

    Article  PubMed  Google Scholar 

  84. Azad, N. S. et al. Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. J. Clin. Oncol. 26, 3709–3714 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Feldman, D. R. et al. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 1432–1439 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Olson, T. A., Mohanraj, D., Carson, L. F. & Ramakrishnan, S. Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res. 54, 276–280 (1994).

    CAS  PubMed  Google Scholar 

  87. Paley, P. J. et al. Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer 80, 98–106 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Shimogai, R. et al. Expression of hypoxia-inducible factor 1alpha gene affects the outcome in patients with ovarian cancer. Int. J. Gynecol. Cancer 18, 499–505 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Burger, R. A., Sill, M. W., Monk, B. J., Greer, B. E. & Sorosky, J. I. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J. Clin. Oncol. 25, 5165–5171 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Cannistra, S. A. et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J. Clin. Oncol. 25, 5180–5186 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Han, E. S. & Monk, B. J. What is the risk of bowel perforation associated with bevacizumab therapy in ovarian cancer? Gynecol. Oncol. 105, 3–6 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Tew, W. P. et al. VEGF-trap for patients with recurrent platinum-resistant epithelial ovarian cancer (EOC): preliminary results of a randomized, multicenter phase II study [abstract]. ASCO Meeting Abstracts 25, 5508 (2008).

    Google Scholar 

  93. Perez, D. G. et al. Phase 2 trial of carboplatin, weekly paclitaxel, and biweekly bevacizumab in patients with unresectable stage IV melanoma: a North Central Cancer Treatment Group study, N047A. Cancer 115, 119–127 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Gonzalez-Cao, M. et al. Preliminary results of the combination of bevacizumab and weekly paclitaxel in advanced melanoma. Oncology 74, 12–16 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Monk, B. J. et al. Phase II trial of bevacizumab in the treatment of persistent or recurrent squamous cell carcinoma of the cervix: a Gynecologic Oncology Group Study. J. Clin. Oncol. 27, 1069–1074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Siegel, A. B. et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J. Clin. Oncol. 26, 2992–2998 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Thomas, M. B. et al. Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J. Clin. Oncol. 27, 843–850 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Yao, J. C. et al. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J. Clin. Oncol. 26, 1316–1323 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Alfaro, C. et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br. J. Cancer 100, 1111–1119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Duda, D. G. et al. Differential CD146 expression on circulating versus tissue endothelial cells in rectal cancer patients: implications for circulating endothelial and progenitor cells as biomarkers for antiangiogenic therapy. J. Clin. Oncol. 24, 1449–1453 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Duda, D. G. et al. Evidence for incorporation of bone marrow-derived endothelial cells into perfused blood vessels in tumors. Blood 107, 2774–2776 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ince, W. L. et al. Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab. J. Natl Cancer Inst. 97, 981–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Scartozzi, M. et al. Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann. Oncol. 20, 227–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Mir, O., Ropert, S., Alexandre, J. & Goldwasser, F. Hypertension as a surrogate marker for the activity of anti-VEGF agents. Ann. Oncol. 20, 967–970 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Gerstner, E. R., Sorensen, A. G., Jain, R. K. & Batchelor, T. T. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr. Opin. Neurol. 21, 728–735 (2008).

    Article  PubMed  Google Scholar 

  107. Jain, R. K. et al. Biomarkers of response and resistance to antiangiogenic therapy. Nat. Rev. Clin. Oncol. 6, 327–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tol, J. et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med. 360, 563–572 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Hecht, J. R. et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J. Clin. Oncol. 27, 672–680 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Cannistra, S. A. Challenges and pitfalls of combining targeted agents in phase I studies. J. Clin. Oncol. 26, 3665–3667 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Grothey.

Ethics declarations

Competing interests

A. Grothey declares he is a consultant for Amgen, Genentech and Pfizer. He also receives grant/research support from Bayer and Genentech. E. Galanis declares she receives grant/research support from Bayer and Genentech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grothey, A., Galanis, E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol 6, 507–518 (2009). https://doi.org/10.1038/nrclinonc.2009.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing