Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Toxic effects and their management: daily clinical challenges in the treatment of colorectal cancer

Abstract

Among the many chemotherapeutic options for metastatic colorectal cancer, none has shown clear superiority in efficacy. All pharmacologic agents in current use have been associated with adverse events. Frequently reported adverse events associated with the chemotherapeutic agents oxaliplatin, irinotecan, 5-fluorouracil, and capecitabine include acute and chronic neuropathy, hypersensitivity reactions, diarrhea, neutropenia, and hand-foot syndrome. Although biologic agents are seemingly less toxic, toxic effects can also arise with their use; antiangiogenic agents result in hypertension, and EGFR inhibitors can cause severe hypersensitivity, paronychial infections, and more commonly, dermatologic rash. Furthermore, a correlation has been reported for the efficacy of anti-EGFR agents and development of rash. Data indicate that elderly patients with colorectal cancer who have adequate function and performance status, who may previously have been dissuaded from pursuing active therapy solely on the basis of age, should receive the same treatment as younger patients. To enhance the survival of patients with metastatic colorectal cancer, many therapies are administered. Recognition of treatment-emergent toxic effects will, therefore, aid the design and implementation of management strategies that minimize treatment interruption and/or discontinuation, and enhance quality of life for patients.

Key Points

  • Drug-related toxicity is dependent on individual differences in patients before initiation of treatment; however, toxicities can be anticipated and management strategies can be incorporated into the general treatment plan

  • Strategies to manage toxicity can minimize the interruption or discontinuation of treatment, and improve quality of life for patients

  • Strategies to manage hypersensitivity reactions include desensitization approaches, such as use of steroids, antihistamines, subcutaneous epinephrine, and prolongation of infusion time

  • Recognition of potential predictive markers for efficacy might decrease unnecessary exposure of patients to therapy, thereby minimizing the risk of potential toxicities

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed algorithm for assessment and management of treatment-induced diarrhea.
Figure 2: Rash associated with treatment with the EGFR inhibitor cetuximab.

Similar content being viewed by others

References

  1. Mayer, R. J. Moving beyond fluorouracil for colorectal cancer. N. Engl. J. Med. 343, 963–964 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Poon, M. A. et al. Biochemical modulation of fluorouracil: evidence of significant improvement of survival and quality of life in patients with advanced colorectal carcinoma. J. Clin. Oncol. 7, 1407–1418 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. de Gramont, A. et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J. Clin. Oncol. 18, 2938–2947 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Goldberg, R. M. et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol. 22, 23–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Van Cutsem, E. & Geboes, K. The multidisciplinary management of gastrointestinal cancer. The integration of cytotoxics and biologicals in the treatment of metastatic colorectal cancer. Best Pract. Res. Clin. Gastroenterol. 21, 1089–1108 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. de Gramont, A. et al. Randomized trial comparing monthly low-dose leucovorin–5-fluorouracil bolus with bimonthly high dose leucovorin–5-fluorouracil bolus plus continuous infusion for advanced colorectal cancer: a French Intergroup study. J. Clin. Oncol. 15, 808–815 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Maughan, T. et al. Comparison of survival, palliation, and quality of life with three chemotherapy regimens in metastatic colorectal cancer: a multicentre randomised trial. Lancet 359, 1555–1563 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Weh, H. et al. A randomised phase III study comparing weekly folinic acid (FA) and high-dose 5-fluorouracil (5-FU) with monthly 5-FU/FA (days 1–5) in untreated patients with metastatic colorectal carcinoma. Onkologie 21, 403–407 (1998).

    Google Scholar 

  9. Kohne, C. H. et al. Randomized phase III study of high-dose fluorouracil given as a weekly 24-hour infusion with or without leucovorin versus bolus fluorouracil plus leucovorin in advanced colorectal cancer: European organisation of Research and Treatment of Cancer Gastrointestinal Group Study 40952. J. Clin. Oncol. 21, 3721–3728 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Aranda, E. et al. Randomized trial comparing monthly low-dose leucovorin and fluorouracil bolus with weekly high-dose 48-hour continuous-infusion fluorouracil for advanced colorectal cancer: a Spanish Cooperative Group for Gastrointestinal Tumor Therapy (TTD) study. Ann. Oncol. 9, 727–731 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. [No authors listed.] Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. The Meta-analysis Group in Cancer. J. Clin. Oncol. 16, 301–308 (1998).

  12. Hansen, R. M. et al. Phase III study of bolus versus infusion fluorouracil with or without cisplatin in advanced colorectal cancer. J. Natl Cancer Inst. 88, 668–674 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. [No authors listed.] Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rates. Advanced Colorectal Cancer Meta-Analysis Project. J. Clin. Oncol. 10, 896–903 (1992).

  14. Thirion, P. et al. Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: an updated meta-analysis. J. Clin. Oncol. 22, 3766–3775 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Saltz, L. B. et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N. Engl. J. Med. 343, 905–914 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Colucci, G. et al. Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale. J. Clin. Oncol. 23, 4866–4875 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Hochster, H. S. et al. Safety and efficacy of oxaliplatin/fluoropyrimidine regimens with or without bevacizumab as first-line treatment of metastatic colorectal cancer (mCRC): final analysis of the TREE-Study [abstract]. ASCO Meeting Abstracts 24, 3510 (2006).

    Google Scholar 

  18. Fuchs, C. S. et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J. Clin. Oncol. 25, 4779–4786 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Giantonio, B. J. et al. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25, 1539–1544 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Saltz, L. B. et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J. Clin. Oncol. 22, 1201–1208 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Jonker, D. J. et al. Cetuximab for the treatment of colorectal cancer. N. Engl. J. Med. 357, 2040–2048 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Van Cutsem, E. et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J. Clin. Oncol. 25, 1658–1664 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. van Kuilenburg, A. B. et al. Increased dihydropyrimidine dehydrogenase activity associated with mild toxicity in patients treated with 5-fluorouracil and leucovorin. Eur. J. Cancer 43, 459–465 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Binder, A. et al. Pain in oxaliplatin-induced neuropathy—sensitisation in the peripheral and central nociceptive system. Eur. J. Cancer 43, 2658–2663 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Trotti, A. et al. Patient-reported outcomes and the evolution of adverse event reporting in oncology. J. Clin. Oncol. 25, 5121–5127 (2007).

    Article  PubMed  Google Scholar 

  28. Leonard, G. D. et al. Survey of oxaliplatin-associated neurotoxicity using an interview-based questionnaire in patients with metastatic colorectal cancer. BMC Cancer 5, 116 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. de Gramont, A. et al. Oxaliplatin/5FU/LV in adjuvant colon cancer: Updated efficacy results of the MOSAIC trial, including survival, with a median follow-up of six years [abstract]. ASCO Meeting Abstracts 25, 4007 (2007).

    Google Scholar 

  30. Kuebler, J. P. et al. Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: results from NSABP C-07. J. Clin. Oncol. 25, 2198–2204 (2008).

    Article  CAS  Google Scholar 

  31. Kuebler, J. P. et al. Severe enteropathy among patients with stage II/III colon cancer treated on a randomized trial of bolus 5-fluorouracil/leucovorin plus or minus oxaliplatin: a prospective analysis. Cancer 110, 1945–1950 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Andre, T. et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N. Engl. J. Med. 350, 2343–2351 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Tournigand, C. et al. OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-go fashion in advanced colorectal cancer—-a GERCOR study. J. Clin. Oncol. 24, 394–400 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Argyriou, A. A. et al. A review on oxaliplatin-induced peripheral nerve damage. Cancer Treat. Rev. 34, 368–377 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Gamelin, L. et al. Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-Fluorouracil and leucovorin for advanced colorectal cancer. Clin. Cancer Res. 10, 4055–4061 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Nikcevich, D. A. et al. Effect of intravenous calcium and magnesium (IV CaMg) on oxaliplatin-induced sensory neurotoxicity (sNT) in adjuvant colon cancer: results of the phase III placebo-controlled, double-blind NCCTG trial N04C7 [abstract]. ASCO Meeting Abstracts 26, 4009 (2008).

    Google Scholar 

  37. Grothey, A. et al. Intermittent oxaliplatin (oxali) administration and time-to-treatment-failure (TTF) in metastatic colorectal cancer (mCRC): final results of the phase III CONcePT trial [abstract]. ASCO Meeting Abstracts 26, 4010 (2008).

    Google Scholar 

  38. Cassidy, J. et al. Randomized double blind (DB) placebo (Plcb) controlled phase III study assessing the efficacy of xaliproden (X) in reducing the cumulative peripheral sensory neuropathy (PSN) induced by the oxaliplatin (Ox) and 5-FU/LV combination (FOLFOX4) in first-line treatment of patients (pts) with metastatic colorectal cancer (MCRC) [abstract]. ASCO Meeting Abstracts 24, 3507 (2006).

    Google Scholar 

  39. Wang, W. S. et al. Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. Oncologist 12, 312–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Amara, S. Oral glutamine for the prevention of chemotherapy-induced peripheral neuropathy. Ann. Pharmacother. 42, 1481–1485 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Grothey, A. Clinical management of oxaliplatin-associated neurotoxicity. Clin. Colorectal Cancer 5 (Suppl. 1), S38–S46 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Foster, T. S. Efficacy and safety of alpha-lipoic acid supplementation in the treatment of symptomatic diabetic neuropathy. Diabetes Educ. 33, 111–117 (2007).

    Article  PubMed  Google Scholar 

  43. Gowda, A. et al. Hypersensitivity reactions to oxaliplatin: incidence and management. Oncology (Williston Park) 18, 1671–1675 (2004).

    Google Scholar 

  44. Rubbia-Brandt, L. et al. Severe hepatic sinusoidal obstruction associated with oxaliplatin-based chemotherapy in patients with metastatic colorectal cancer. Ann. Oncol. 15, 460–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Vauthey, J. N. et al. Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J. Clin. Oncol. 24, 2065–2072 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Gandia, D. et al. CPT-11-induced cholinergic effects in cancer patients. J. Clin. Oncol. 11, 196–197 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Sargent, D. J. et al. Recommendation for caution with irinotecan, fluorouracil, and leucovorin for colorectal cancer. N. Engl. J. Med. 345, 144–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Koopman, M. et al. Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet 370, 135–142 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Heinemann, V. et al. Randomized trial comparing cetuximab plus XELIRI versus cetuximab plus XELOX as first line treatment of patients with metastatic colorectal cancer (mCRC): a study of the German AIO CRC study group [abstract]. ASCO Meeting Abstracts 26, 4033 (2008).

    Google Scholar 

  50. Schmiegel, W. H. et al. Comparable safety and response rate with bevacizumab in combination with capecitabine/oxaliplatin (CapOx/Bev) versus capecitabine/irinotecan (CapIri/Bev) in advanced CRC (mCRC): a randomized phase II study of the AIO GI tumor study group [abstract]. ASCO Meeting Abstracts 25, 4034 (2007).

    Google Scholar 

  51. Labianca, R. et al. Alternating versus continuous “FOLFIRI” in advanced colorectal cancer (ACC): a randomized “GISCAD” trial [abstract]. ASCO Meeting Abstracts 24, 3505 (2006).

    Google Scholar 

  52. Camptosar [package insert]. Pfizer Inc., New York, NY (2006).

  53. Dranitsaris, G. et al. Severe diarrhea in patients with advanced-stage colorectal cancer receiving FOLFOX or FOLFIRI chemotherapy: the development of a risk prediction tool. Clin. Colorectal Cancer 6, 367–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Haller, D. G. et al. Potential regional differences for the tolerability profiles of fluoropyrimidines. J. Clin. Oncol. 26, 2118–2123 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Cassidy, J. et al. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J. Clin. Oncol. 26, 2006–2012 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Twelves, C. et al. Capecitabine as adjuvant treatment for stage III colon cancer. N. Engl. J. Med. 352, 2696–2704 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Douillard, J. Y. et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355, 1041–1047 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Skillings, J. R. et al. Arterial thromboembolic events (ATEs) in a pooled analysis of 5 randomized, controlled trials (RCTs) of bevacizumab (BV) with chemotherapy [abstract]. ASCO Meeting Abstracts 23, 3019 (2005).

    Google Scholar 

  59. Nalluri, S. R., Chu, D., Keresztes, R., Zhu, X. & Wu, S. Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis. JAMA 300, 2277–2285 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Reddy, S. K. et al. Addition of bevacizumab to irinotecan- and oxaliplatin-based preoperative chemotherapy regimens does not increase morbidity after resection of colorectal liver metastases. J. Am. Coll. Surg. 206, 96–106 (2008).

    Article  PubMed  Google Scholar 

  61. Gruenberger, B. et al. Bevacizumab, capecitabine, and oxaliplatin as neoadjuvant therapy for patients with potentially curable metastatic colorectal cancer. J. Clin. Oncol. 26, 1830–1835 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Bilchik, A. J. & Hecht, J. R. Perioperative risks of bevacizumab and other biologic agents for hepatectomy: theoretical or evidence based? J. Clin. Oncol. 26, 1786–1788 (2008).

    Article  PubMed  Google Scholar 

  63. Ozcan, C., Wong, S. J. & Hari, P. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N. Engl. J. Med. 354, 980–982 (2006).

    Article  PubMed  Google Scholar 

  64. Glusker, P., Recht, L. & Lane, B. Reversible posterior leukoencephalopathy syndrome and bevacizumab. N. Engl. J. Med. 354, 980–982 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Tam, C. S. et al. Reversible posterior leukoencephalopathy syndrome complicating cytotoxic chemotherapy for hematologic malignancies. Am. J. Hematol. 77, 72–76 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Bevacizumab [package insert]. Genentech, Inc., San Francisco, CA (2006).

  67. Saltz, L. B. et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J. Clin. Oncol. 26, 2013–2019 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Saif, M. W. et al. Gastrointestinal perforation due to bevacizumab in colorectal cancer. Ann. Surg. Oncol. 14, 1860–1869 (2007).

    Article  PubMed  Google Scholar 

  69. Kang, B. W. et al. Bevacizumab plus FOLFIRI or FOLFOX as third-line or later treatment in patients with metastatic colorectal cancer after failure of 5-fluorouracil, irinotecan, and oxaliplatin: a retrospective analysis. Med. Oncol. doi:10.1007/s12032-008-9077-8 (2008).

  70. [No authors listed.] Bevacizumab: serious neurological disorders and nasal perforations. Prescrire. Int. 16, 112 (2007).

  71. Tabernero, J. et al. Phase II trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer. J. Clin. Oncol. 25, 5225–5232 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Lacouture, M. E. & Melosky, B. L. Cutaneous reactions to anticancer agents targeting the epidermal growth factor receptor: a dermatology-oncology perspective. Skin Therapy Lett. 12, 1–5 (2007).

    CAS  PubMed  Google Scholar 

  73. Eng, C. et al. Impact on quality of life of adding cetuximab to irinotecan in patients who have failed prior oxaliplatin-based therapy: the EPIC trial [abstract]. ASCO Meeting Abstracts 25, 4003 (2007).

    Google Scholar 

  74. O'Neil, B. H. et al. High incidence of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with atopic history. J. Clin. Oncol. 25, 3644–3648 (2007).

    Article  PubMed  Google Scholar 

  75. Chung, C. H. et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1, 3-galactose. N. Engl. J. Med. 358, 1109–1117 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pfeiffer, P. et al. Cetuximab and irinotecan as third line therapy in patients with advanced colorectal cancer after failure of irinotecan, oxaliplatin and 5-fluorouracil. Acta Oncol. 46, 697–701 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Lacouture, M. E. et al. Impact and management of skin toxicity associated with anti-epidermal growth factor receptor therapy: survey results Oncology 72, 152–159 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Tejpar, S. et al. Phase I/II study of cetuximab dose-escalation in patients with metastatic colorectal cancer (mCRC) with no or slight skin reactions on cetuximab standard dose treatment (EVEREST): pharmacokinetic (PK), pharmacodynamic (PD) and efficacy data [abstract]. ASCO Meeting Abstracts 25, 4037 (2007).

    Google Scholar 

  79. Tabernero, J. et al. Administration of cetuximab every 2 weeks in the treatment of metastatic colorectal cancer: an effective, more convenient alternative to weekly administration? Oncologist 13, 113–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Lynch, T. J. et al. Epidermal growth factor receptor inhibitor-associated cutaneous toxicities: an evolving paradigm in clinical management. Oncologist 12, 610–621 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Schrag, D. et al. Cetuximab therapy and symptomatic hypomagnesemia. J. Natl Cancer Inst. 97, 1221–1224 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Fakih, M. Management of anti-EGFR-targeting monoclonal antibody-induced hypomagnesemia. Oncology (Williston Park) 22, 74–76 (2008).

    Google Scholar 

  83. Tejpar, S. et al. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol. 8, 387–394 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Hecht, J. R. et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J. Clin. Oncol. 27, 672–680 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Lievre, A. et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J. Clin. Oncol. 26, 374–379 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Khambata-Ford, S. et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J. Clin. Oncol. 25, 3230–3237 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Frattini, M. et al. PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br. J. Cancer 97, 1139–1145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kohne, C. H. et al. Chemotherapy in elderly patients with colorectal cancer. Oncologist 13, 390–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Feliu, J. et al. XELOX (capecitabine plus oxaliplatin) as first-line treatment for elderly patients over 70 years of age with advanced colorectal cancer. Br. J. Cancer 94, 969–975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Comella, P. et al. Capecitabine plus oxaliplatin for the first-line treatment of elderly patients with metastatic colorectal carcinoma: final results of the Southern Italy Cooperative Oncology Group Trial 0108. Cancer 104, 282–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Twelves, C. J. et al. Capecitabine/oxaliplatin, a safe and active first-line regimen for older patients with metastatic colorectal cancer: post hoc analysis of a large phase II study. Clin. Colorectal Cancer 5, 101–107 (2005).

    Article  PubMed  Google Scholar 

  92. Folprecht, G. et al. Irinotecan/fluorouracil combination in first-line therapy of older and younger patients with metastatic colorectal cancer: combined analysis of 2,691 patients in randomized controlled trials. J. Clin. Oncol. 26, 1443–1451 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Folprecht, G. et al. Efficacy of 5-fluorouracil-based chemotherapy in elderly patients with metastatic colorectal cancer: a pooled analysis of clinical trials. Ann. Oncol. 15, 1330–1338 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Kabbinavar, F. F. et al. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J. Clin. Oncol. 23, 3697–3705 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Takimoto, C. H. et al. Administration of oxaliplatin to patients with renal dysfunction: a preliminary report of the national cancer institute organ dysfunction working group. Semin. Oncol. 30 (Suppl. 15), 20–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Synold, T. W. et al. Dose-escalating and pharmacologic study of oxaliplatin in adult cancer patients with impaired hepatic function: a National Cancer Institute Organ. Dysfunction Working Group study. Clin. Cancer Res. 13, 3660–3666 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Twelves, C. J. et al. Capecitabine as adjuvant treatment for stage III colon cancer. N. Engl. J. Med. 352, 2696–2704 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Schmoll, H. J. et al. Phase III trial of capecitabine plus oxaliplatin as adjuvant therapy for stage III colon cancer: a planned safety analysis in 1,864 patients. J. Clin Oncol. 25, 102–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Cassidy, J. et al. First-line oral capecitabine therapy in metastatic colorectal cancer: a favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann. Oncol. 13, 566–575 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Grothey, A. Recognizing and managing toxicities of molecular targeted therapies for colorectal cancer. Oncology (Williston Park) 20 (Suppl. 10), 21–28 (2006).

    Google Scholar 

  101. Saif, M. W. & Cohenuram, M. Role of panitumumab in the management of metastatic colorectal cancer. Clin. Colorectal Cancer 6, 118–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Kornblau, S. et al. Management of cancer treatment-related diarrhea. Issues and therapeutic strategies. J. Pain Symptom Manage. 19, 118–129 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Segaert, S. & Van Cutsem, E. Clinical signs, pathophysiology and management of skin toxicity during therapy with epidermal growth factor receptor inhibitors. Ann. Oncol. 16, 1425–1433 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Editorial support was provided by Adelphi, Inc., New York, NY, USA.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

C Eng has served as a consultant for Pfizer Inc, and has received research support from Bristol-Myers Squibb, Genentech and Sanofi-Aventis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eng, C. Toxic effects and their management: daily clinical challenges in the treatment of colorectal cancer. Nat Rev Clin Oncol 6, 207–218 (2009). https://doi.org/10.1038/nrclinonc.2009.16

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2009.16

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing